1
|
Carroll M, Fox HB, Tran A, Chellappan G, Rojas LV, Karengil G, Karandish F, Langston JW, Fall BM, Whalen MM, McCluskie MJ, Durocher Y, Datta A, Kapre SV, Olave IA. SARS-CoV-2 conjugate vaccine elicits robust immune responses that can protect against evolving variants. Vaccine 2025; 54:126988. [PMID: 40054138 DOI: 10.1016/j.vaccine.2025.126988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/07/2025] [Accepted: 03/01/2025] [Indexed: 05/13/2025]
Abstract
The SARS-CoV-2 pandemic necessitated effective vaccines that can endure antigenic mutations. Here we demonstrate highly immunogenic conjugate vaccines that elicit broad cross-neutralization to variants of concern (VOC) in animal studies. By utilizing protein-protein conjugation and Toll-Like Receptor (TLR) agonist adjuvants we achieve enhanced immunogenicity compared to unconjugated equivalents. These vaccine candidates induced broad cross-protection against several VOC, a characteristic lacking in early COVID-19 vaccines. Murine neutralizing antibody (nAb) titers from animals vaccinated with Beta-only conjugates were equivalent between Beta, Delta, Omicron BA.1, BA.2, and BA.4/BA.5 variants, which were circulating up to three years after the antigenic Beta strain. Additionally, Beta-Delta bivalent conjugate vaccines readily prevented disease in hamster challenge. Together this demonstrates a vaccine with remarkably broad cross-protection and potential to protect for extended periods despite mutations, without requiring modified boosters or antigen adaption. These techniques can be applied to more recent SARS-CoV-2 strains, and other viruses, highlighting the benefits of protein-protein conjugation coupled with TLR agonist secondary adjuvants.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/administration & dosage
- Cricetinae
- Cross Protection
- Female
- Adjuvants, Immunologic
- Spike Glycoprotein, Coronavirus/immunology
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
- Humans
Collapse
Affiliation(s)
| | - Heather B Fox
- Viral Vaccines R&D, Inventprise, Inc., Redmond, WA, USA
| | - Anh Tran
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | | | | | | | | | | | - Brent M Fall
- Viral Vaccines R&D, Inventprise, Inc., Redmond, WA, USA
| | - Mary M Whalen
- Viral Vaccines R&D, Inventprise, Inc., Redmond, WA, USA
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Yves Durocher
- Life Sciences - NRC Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC, Canada
| | - Anup Datta
- Bacterial Vaccines R&D, Inventprise, Inc., Redmond, WA, USA
| | | | - Ivan A Olave
- Viral Vaccines R&D, Inventprise, Inc., Redmond, WA, USA.
| |
Collapse
|
2
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhang RY, Wen Y, He CB, Zhou SH, Wu YH, Wang EY, Feng RR, Ding D, Du JJ, Gao XF, Guo J. Conjugation of TLR7 and TLR7/8 agonists onto weak protein antigen via versatile oxime ligation for enhanced vaccine efficacy. Int J Biol Macromol 2024; 278:134620. [PMID: 39127274 DOI: 10.1016/j.ijbiomac.2024.134620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Protein-based subunit vaccines are weakly immunogenic, and developing self-adjuvanting vaccines with adjuvant conjugated to antigen is a promising approach for generating optimal immune responses. Here, we report a novel adjuvant-protein conjugate vaccine based on versatile oxime ligation technique. Firstly, the adjuvant properties of a series of TLR7 and TLR7/8 small molecule agonists in self-adjuvanting vaccines were systematically compared by coupling them to proteins in consistent ratio via p-carboxybenzaldehyde (p-CBA) for the first time. All conjugate vaccines induced cytokine secretion in murine and human macrophages in vitro, and promoted specific antibody production in vivo. Notably, a conjugate containing imidazoquinoline TLR7/8 agonist (TLR7/8a1) showed the greatest enhancement in Th1/2 balanced antibody response. To minimize the interference with the protein antigenic integrity, we further developed a systematic glycoconjugation strategy to conjugate this TLR7/8a1 onto the glycan chains of SARS-CoV-2 S1 glycoprotein via oxime ligation, in which S1 containing different numbers of aldehyde groups were obtained by differential periodate oxidation. The resulting TLR7/8a1-S1 conjugate triggered a potent humoral and cellular immunity in vivo. Together these data demonstrate the promise of these TLR7 and TLR7/8 agonists as effective built-in adjuvants, and the versatile oxime ligation strategy might broaden potential applications in designing different conjugate vaccines.
Collapse
Affiliation(s)
- Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China; Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen-Bin He
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ye-Hui Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - En-Yang Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ran-Ran Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
4
|
Zhou SH, Zhang RY, Wen Y, Zou YK, Ding D, Bian MM, Cui HY, Guo J. Multifunctional Lipidated Protein Carrier with a Built-In Adjuvant as a Universal Vaccine Platform Potently Elevates Immunogenicity of Weak Antigens. J Med Chem 2024; 67:6822-6838. [PMID: 38588468 DOI: 10.1021/acs.jmedchem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.
Collapse
Affiliation(s)
- Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yong-Ke Zou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Miao-Miao Bian
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hong-Ying Cui
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Manabe Y, Gárate-Reyes B, Ito K, Hurtado-Guerrero R, Kabayama K, Fukase K. Synthesis and immunological evaluation of TLR1/2 ligand-conjugated RBDs as self-adjuvanting vaccine candidates against SARS-CoV-2. Chem Commun (Camb) 2024; 60:3946-3949. [PMID: 38497901 DOI: 10.1039/d4cc00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We synthesized and evaluated Pam3CSK4-conjugated receptor binding domain (RBD)/deglycosylated RBD as potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidates. Our investigation revealed the critical importance of limiting the number of introduced Pam3CSK4 molecules to the RBD in order to preserve its antigenicity. We also confirmed the harmonious integration of the adjuvant-conjugation strategy with the glycan-shield removal strategy.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Brandon Gárate-Reyes
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 11 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
7
|
Zhang RY, Zhou SH, Feng RR, Wen Y, Ding D, Zhang ZM, Wei HW, Guo J. Adjuvant-Free COVID-19 Vaccine with Glycoprotein Antigen Oxidized by Periodate Rapidly Elicits Potent Immune Responses. ACS Chem Biol 2023; 18:915-923. [PMID: 37009726 PMCID: PMC10081833 DOI: 10.1021/acschembio.3c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Modification of antigens to improve their immunogenicity represents a promising direction for the development of protein vaccine. Here, we designed facilely prepared adjuvant-free vaccines in which the N-glycan of SARS-CoV-2 receptor-binding domain (RBD) glycoprotein was oxidized by sodium periodate. This strategy only minimally modifies the glycans and does not interfere with the epitope peptides. The RBD glycoprotein oxidized by high concentrations of periodate (RBDHO) significantly enhanced antigen uptake mediated by scavenger receptors and promoted the activation of antigen-presenting cells. Without any external adjuvant, two doses of RBDHO elicited 324- and 27-fold increases in IgG antibody titers and neutralizing antibody titers, respectively, compared to the unmodified RBD antigen. Meanwhile, the RBDHO vaccine could cross-neutralize all of the SARS-CoV-2 variants of concern. In addition, RBDHO effectively enhanced cellular immune responses. This study provides a new insight for the development of adjuvant-free protein vaccines.
Collapse
Affiliation(s)
- Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Ran-Ran Feng
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong 226499, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
8
|
Wen Y, Zhang RY, Wang J, Zhou SH, Peng XQ, Ding D, Zhang ZM, Wei HW, Guo J. Novel sialoglycan linkage for constructing adjuvant-protein conjugate as potent vaccine for COVID-19. J Control Release 2023; 355:238-247. [PMID: 36716860 PMCID: PMC9907060 DOI: 10.1016/j.jconrel.2023.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Self-adjuvanting protein vaccines have been proved to be highly immunogenic with efficient codelivery of adjuvant and antigen. Current protein vaccines with built-in adjuvants are all modified at the peptide backbone of antigen protein, which could not achieve minor epitope interference and adjuvant multivalency at the same time. Herein, we developed a new conjugate strategy to construct effective adjuvant-protein vaccine with adjuvant cluster effect and minimal epitope interference. The toll-like receptor 7 agonist (TLR7a) is covalently conjugated on the terminal sialoglycans of SARS-CoV-2-S1 protein, leading to intracellular release of the small-molecule stimulators with greatly reduced risks of systemic toxicity. The resulting TLR7a-S1 conjugate elicited strong activation of immune cells in vitro, and potent antibody and cellular responses with a significantly enhanced Th1-bias in vivo. TLR7a-S1-induced antibody also effectively cross-neutralized all variants of concern. This sialoglycoconjugation approach to construct protein conjugate vaccines will have more applications to combat SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao-Qian Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology Co. Ltd, Nantong 226499, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
9
|
Zhou SH, Zhang RY, You ZW, Zou YK, Wen Y, Wang J, Ding D, Bian MM, Zhang ZM, Yuan H, Yang GF, Guo J. pH-Sensitive and Biodegradable Mn 3(PO 4) 2·3H 2O Nanoparticles as an Adjuvant of Protein-Based Bivalent COVID-19 Vaccine to Induce Potent and Broad-Spectrum Immunity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:acsami.2c19736. [PMID: 36748861 PMCID: PMC9924082 DOI: 10.1021/acsami.2c19736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Developing a novel and potent adjuvant with great biocompatibility for immune response augmentation is of great significance to enhance vaccine efficacy. In this work, we prepared a long-term stable, pH-sensitive, and biodegradable Mn3(PO4)2·3H2O nanoparticle (nano-MnP) by simply mixing MnCl2/NaH2PO4/Na2HPO4 solution for the first time and employed it as an immune stimulant in the bivalent COVID-19 protein vaccine comprised of wild-type S1 (S1-WT) and Omicron S1 (S1-Omicron) proteins as antigens to elicit a broad-spectrum immunity. The biological experiments indicated that the nano-MnP could effectively activate antigen-presenting cells through the cGAS-STING pathway. Compared with the conventional Alum-adjuvanted group, the nano-MnP-adjuvanted bivalent vaccine elicited approximately 7- and 8-fold increases in IgG antibody titers and antigen-specific IFN-γ secreting T cells, respectively. Importantly, antisera of the nano-MnP-adjuvanted group could effectively cross-neutralize the SARS-CoV-2 and its five variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron, demonstrating that this bivalent vaccine based on S1-WT and S1-Omicron proteins is an effective vaccine design strategy to induce broad-spectrum immune responses. Collectively, this nano-MnP material may provide a novel and efficient adjuvant platform for various prophylactic and therapeutic vaccines and provide insights for the development of the next-generation manganese adjuvant.
Collapse
Affiliation(s)
| | | | - Zi-Wei You
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Miao-Miao Bian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
10
|
Sharfin Rahman M, De Alwis Watuthanthrige N, Chandrarathne BM, Page RC, Konkolewicz D. Polymer modification of SARS-CoV-2 spike protein impacts its ability to bind key receptor. Eur Polym J 2023; 184:111767. [PMID: 36531158 PMCID: PMC9749382 DOI: 10.1016/j.eurpolymj.2022.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The global spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has caused the loss of many human lives and severe economic losses. SARS-CoV-2 mediates its infection in humans via the spike glycoprotein. The receptor binding domain of the SARS-CoV-2 spike protein binds to its cognate receptor, angiotensin converting enzyme-2 (ACE2) to initiate viral entry. In this study, we examine how polymer modification of the spike protein receptor binding domain impacts binding to ACE2. The horseradish peroxidase conjugated receptor binding domain was modified with a range of polymers including hydrophilic N,N-dimethylacrylamide, hydrophobic N-isopropylacrylamide, cationic 3-(N,N-dimethylamino)propylacrylamide, and anionic 2-acrylamido-2-methylpropane sulfonic acid polymers. The effect of polymer chain length was observed using N,N-dimethylacrylamide polymers with degrees of polymerization of 5, 10 and 25. Polymer conjugation of the receptor binding domain significantly reduced the interaction with ACE2 protein, as determined by an enzyme-linked immunosorbent assay. Stability analysis showed that these conjugates remained highly stable even after seven days incubation at physiological temperature. Hence, this study provides a detailed view of the effect specific type of modification using a library of polymers with different functionalities in interrupting RBD-ACE2 interaction.
Collapse
Affiliation(s)
- Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | | | - Bhagya M Chandrarathne
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| |
Collapse
|
11
|
Ding D, Wen Y, Liao CM, Yin XG, Zhang RY, Wang J, Zhou SH, Zhang ZM, Zou YK, Gao XF, Wei HW, Yang GF, Guo J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. J Med Chem 2023; 66:1467-1483. [PMID: 36625758 PMCID: PMC9844103 DOI: 10.1021/acs.jmedchem.2c01642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xu-Guang Yin
- School of Medicine, Shaoxing
University, Shaoxing312000, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology,
Nanchang330013, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong226499, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| |
Collapse
|
12
|
Sun H, Chan JFW, Yuan S. Cellular Sensors and Viral Countermeasures: A Molecular Arms Race between Host and SARS-CoV-2. Viruses 2023; 15:352. [PMID: 36851564 PMCID: PMC9962416 DOI: 10.3390/v15020352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic that has caused disastrous effects on the society and human health globally. SARS-CoV-2 is a sarbecovirus in the Coronaviridae family with a positive-sense single-stranded RNA genome. It mainly replicates in the cytoplasm and viral components including RNAs and proteins can be sensed by pattern recognition receptors including toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors (NLRs) that regulate the host innate and adaptive immune responses. On the other hand, the SARS-CoV-2 genome encodes multiple proteins that can antagonize the host immune response to facilitate viral replication. In this review, we discuss the current knowledge on host sensors and viral countermeasures against host innate immune response to provide insights on virus-host interactions and novel approaches to modulate host inflammation and antiviral responses.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
| | - Jasper Fuk-Woo Chan
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
13
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
14
|
Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol 2022; 13:989664. [PMID: 36188605 PMCID: PMC9518217 DOI: 10.3389/fphar.2022.989664] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Hui Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| |
Collapse
|
15
|
Zhang RY, Zhou SH, He CB, Wang J, Wen Y, Feng RR, Yin XG, Yang GF, Guo J. Adjuvant-Protein Conjugate Vaccine with Built-In TLR7 Agonist on S1 Induces Potent Immunity against SARS-CoV-2 and Variants of Concern. ACS Infect Dis 2022; 8:1367-1375. [PMID: 35748575 PMCID: PMC9260725 DOI: 10.1021/acsinfecdis.2c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/29/2022]
Abstract
With the global pandemic of the new coronavirus disease (COVID-19), a safe, effective, and affordable mass-produced vaccine remains the current focus of research. Herein, we designed an adjuvant-protein conjugate vaccine candidate, in which the TLR7 agonist (TLR7a) was conjugated to S1 subunit of SARS-CoV-2 spike protein, and systematically compared the effect of different numbers of built-in TLR7a on the immune activity for the first time. As the number of built-in TLR7a increased, a bell-shaped reaction was observed in three TLR7a-S1 conjugates, with TLR7a(10)-S1 (with around 10 built-in adjuvant molecules on one S1 protein) eliciting a more potent immune response than TLR7a(2)-S1 and TLR7a(18)-S1. This adjuvant-protein conjugate strategy allows the built-in adjuvant to provide cluster effects and prevents systemic toxicity and facilitates the co-delivery of adjuvant and antigen. Vaccination of mice with TLR7a(10)-S1 triggered a potent humoral and cellular immunity and a balanced Th1/Th2 immune response. Meanwhile, the vaccine induces effective neutralizing antibodies against SARS-CoV-2 and all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). It is expected that the adjuvant-protein conjugate strategy has great potential to construct a potent recombinant protein vaccine candidate against various types of diseases.
Collapse
Affiliation(s)
| | | | - Chen-Bin He
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Ran-Ran Feng
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical
Biology of Ministry of Education, International Joint Research Center
for Intelligent Biosensing Technology and Health, Hubei International
Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central
China Normal University, Wuhan 430079, China
| |
Collapse
|
16
|
Zhou SH, Li YT, Zhang RY, Liu YL, You ZW, Bian MM, Wen Y, Wang J, Du JJ, Guo J. Alum Adjuvant and Built-in TLR7 Agonist Synergistically Enhance Anti-MUC1 Immune Responses for Cancer Vaccine. Front Immunol 2022; 13:857779. [PMID: 35371101 PMCID: PMC8965739 DOI: 10.3389/fimmu.2022.857779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
The tumor-associated antigen mucin 1 (MUC1) is an attractive target of antitumor vaccine, but its weak immunogenicity is a big challenge for the development of vaccine. In order to enhance immune responses against MUC1, herein, we conjugated small molecular toll-like receptor 7 agonist (TLR7a) to carrier protein BSA via MUC1 glycopeptide to form a three-component conjugate (BSA-MUC1-TLR7a). Furthermore, we combined the three-component conjugate with Alum adjuvant to explore their synergistic effects. The immunological studies indicated that Alum adjuvant and built-in TLR7a synergistically enhanced anti-MUC1 antibody responses and showed Th1-biased immune responses. Meanwhile, antibodies elicited by the vaccine candidate effectively recognized tumor cells and induced complement-dependent cytotoxicity. In addition, Alum adjuvant and built-in TLR7a synergistically enhanced MUC1 glycopeptide-specific memory CD8+ T-cell immune responses. More importantly, the vaccine with the binary adjuvant can significantly inhibit tumor growth and prolong the survival time of mice in the tumor challenge experiment. This novel vaccine construct provides an effective strategy to develop antitumor vaccines.
Collapse
Affiliation(s)
- Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yu-Ting Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yan-Ling Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zi-Wei You
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Miao-Miao Bian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Bio-sensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
17
|
Zhang RY, Yin XG, Zhou SH, Zhang HW, Lu J, He CB, Wang J, Wen Y, Li YT, Liu YL, Feng RR, Ding D, Wei HW, Gong R, Yang GF, Guo J. A protein vaccine with Alum/c-GAMP/poly(I:C) rapidly boosts robust immunity against SARS-CoV-2 and variants of concern. Chem Commun (Camb) 2022; 58:3925-3928. [PMID: 35244125 DOI: 10.1039/d2cc00271j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adjuvants are important components in vaccines to increase the immunogenicity of proteins and induce optimal immunity. In this study, we designed a novel ternary adjuvant system Alum + c-GAMP + poly(I:C) with STING agonist 3,3'-c-GAMP (c-GAMP) and TLR3 agonist poly(I:C) co-adsorbed on the conventional adjuvant aluminum gel (Alum), and further constructed an S1 protein vaccine. Two doses of vaccination with the ternary adjuvant vaccine were sufficient to induce a balanced Th1/Th2 immune response and robust humoral and cellular immunity. Additionally, the ternary adjuvant group had effective neutralizing activity against live virus SARS-CoV-2 and pseudovirus of all variants of concern (alpha, beta, gamma, delta and omicron). These results indicate that the ternary adjuvants have a significant synergistic effect and can rapidly trigger potent immune responses; the combination of the ternary adjuvant system with S1 protein is a promising COVID-19 vaccine candidate.
Collapse
Affiliation(s)
- Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hai-Wei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jie Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Chen-Bin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yu-Ting Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yan-Ling Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ran-Ran Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology Co. Ltd, Nantong 226499, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
18
|
Wang J, Yin XG, Wen Y, Lu J, Zhang RY, Zhou SH, Liao CM, Wei HW, Guo J. MPLA-Adjuvanted Liposomes Encapsulating S-Trimer or RBD or S1, but Not S-ECD, Elicit Robust Neutralization Against SARS-CoV-2 and Variants of Concern. J Med Chem 2022; 65:3563-3574. [PMID: 35108485 PMCID: PMC8848510 DOI: 10.1021/acs.jmedchem.1c02025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/31/2022]
Abstract
Safe and effective vaccines are the best method to defeat worldwide SARS-CoV-2 and its circulating variants. The SARS-CoV-2 S protein and its subunits are the most attractive targets for the development of protein-based vaccines. In this study, we evaluated three lipophilic adjuvants, monophosphoryl lipid A (MPLA), Toll-like receptor (TLR) 1/2 ligand Pam3CSK4, and α-galactosylceramide (α-GalCer), in liposomal and nonliposomal vaccines. The immunological results showed that the MPLA-adjuvanted liposomal vaccine induced the strongest humoral and cellular immunity. Therefore, we further performed a systematic comparison of S-trimer, S-ECD, S1, and RBD as antigens in MPLA-adjuvanted liposomes and found that, although these four vaccines all induced robust specific antibody responses, only S-trimer, S1, and RBD liposomes, but not S-ECD, elicited potent neutralizing antibody responses. Moreover, RBD, S-trimer, and S1 liposomes effectively neutralized variants (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results provide important information for the subunit vaccine design against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Xu-Guang Yin
- School of Medical Sciences, Shaoxing
University, Zhejiang 312000, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jie Lu
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology Co.
Ltd, Nantong 226499, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
19
|
Zhang N, Li K, Liu Z, Nandakumar KS, Jiang S. A Perspective on the Roles of Adjuvants in Developing Highly Potent COVID-19 Vaccines. Viruses 2022; 14:v14020387. [PMID: 35215980 PMCID: PMC8875727 DOI: 10.3390/v14020387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Several countries have made unremitting efforts to develop an optimal vaccine in the fight against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the increasing occurrence of SARS-CoV-2 variants, current vaccines show decreased neutralizing activities, especially towards the Omicron variant. In this context, adding appropriate adjuvants to COVID-19 vaccines can substantially reduce the number of required doses and improve efficacy or cross-neutralizing protection. We mainly focus on research progress and achievements associated with adjuvanted COVID-19 subunit and inactivated vaccines. We further compare the advantages and disadvantages of different adjuvant formulations in order to provide a scientific reference for designing an effective strategy for future vaccine development.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China;
- Correspondence: (N.Z.); (S.J.)
| | - Kangchen Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China;
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
- Correspondence: (N.Z.); (S.J.)
| |
Collapse
|
20
|
Du JJ, Zhou SH, Cheng ZR, Xu WB, Zhang RY, Wang LS, Guo J. MUC1 Specific Immune Responses Enhanced by Coadministration of Liposomal DDA/MPLA and Lipoglycopeptide. Front Chem 2022; 10:814880. [PMID: 35186882 PMCID: PMC8854779 DOI: 10.3389/fchem.2022.814880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Mucin 1 (MUC1), a well-known tumor-associated antigen and attractive target for tumor immunotherapy, is overexpressed in most human epithelial adenomas with aberrant glycosylation. However, its low immunogenicity impedes the development of MUC1-targeted antitumor vaccines. In this study, we investigated three liposomal adjuvant systems containing toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) and auxiliary lipids of different charges: cationic lipid dimethyldioctadecylammonium (DDA), neutral lipid distearoylglycerophosphocholine (DSPC) or anionic lipid dioleoylphosphatidylglycerol (DOPG), respectively. ELISA assay evidenced that the positively charged DDA/MPLA liposomes are potent immune activators, which induced remarkable levels of anti-MUC1 antibodies and exhibited robust Th1-biased immune responses. Importantly, the antibodies induced by DDA/MPLA liposomes efficiently recognized and killed MUC1-positive tumor cells through complement-mediated cytotoxicity. In addition, antibody titers in mice immunized with P2-MUC1 vaccine were significantly higher than those from mice immunized with P1-MUC1 or MUC1 vaccine, which indicated that the lipid conjugated on MUC1 antigen also played important role for immunomodulation. This study suggested that the liposomal DDA/MPLA with lipid-MUC1 is a promising antitumor vaccine, which can be used for the immunotherapy of various epithelial carcinomas represented by breast cancer.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zi-Ru Cheng
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
| | - Long-Sheng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, China
- *Correspondence: Long-Sheng Wang, ; Jun Guo,
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, China
- *Correspondence: Long-Sheng Wang, ; Jun Guo,
| |
Collapse
|
21
|
Hanna C, Maxwell JWC, Ismanto HS, Ashhurst A, Artner L, Rudrawar S, Britton W, Yamasaki S, Payne RJ. Synthetic Vaccines Targeting Mincle Through Conjugation of Trehalose Dibehenate. Chem Commun (Camb) 2022; 58:6890-6893. [DOI: 10.1039/d2cc02100e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent fusion of immunostimulatory adjuvants to immunogenic antigens is a promising strategy for the development of effective synthetic vaccines for infectious diseases. Herein, we describe the conjugation of a...
Collapse
|