1
|
Kumari S, Dhawale SC, Khan AA, Kale HB, Sathe BR, Gawande MB, Santosh MS. Innovative InAg-carbon nanocomposites: mesoporous design for OER enhancement. NANOSCALE 2025; 17:12245-12259. [PMID: 40261248 DOI: 10.1039/d5nr01088h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
To produce clean and sustainable hydrogen energy through water electrolysis, the sluggish oxygen evolution reaction (OER) needs to be accelerated sustainably by using stable and highly effective electrocatalysts. Bimetallic nanocomposites have been recently recognized as an interesting class of electrocatalysts because of their synergistic behaviour, tunable morphology, and high catalytic efficiency. Herein, InC, AgC, and InAgC nanocomposites were synthesised via a hydrothermal method using a mesoporous carbon support derived from the carbonisation of giant cane. The structural characterisation revealed that the InC composite has tetragonal In with a minor presence of cubic In2O3, whereas AgC and InAgC are well aligned with cubic Ag and tetragonal In. Electron microscopy revealed that InC has a 3D plate-like structure, while InAgC exhibits a spherical shape and is uniformly dispersed across the carbon surface. InAgC showed excellent activity and durability for the OER, with a notably low overpotential of 480 mV at a current density of 100 mA cm-2, a Tafel slope of 97 mV dec-1, and an oxygen production turnover frequency of 10.19 s-1. The chronoamperometric (i-t) study of InAgC at 1.58 V vs. RHE for 20 h in 1 M KOH indicates that the catalyst is highly stable for the OER in alkaline electrolytes. The electrochemical double-layer capacitance (Cdl) value in the non-faradaic potential region of InAgC is greater (52.14 mF cm-2) than those of mesoporous carbon (16.54 mF cm-2), AgC (33.10 mF cm-2), and InC (48.77 mF cm-2), which is attributed to InAgC having more accessible active sites for the OER. This work presents numerous possibilities for developing effective nanocomposites using giant cane as a natural carbon source.
Collapse
Affiliation(s)
- Sandhyawasini Kumari
- Coal to Hydrogen Energy for Sustainable Solutions (CHESS) Division, CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, PO: FRI, Dhanbad - 828108, Jharkhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Somnath C Dhawale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, 431004 MS, India
| | - Afaq Ahmad Khan
- GreenCat Laboratory, Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna 431213, Maharashtra, India.
| | - Bhaskar R Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar, 431004 MS, India
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna 431213, Maharashtra, India.
| | - M S Santosh
- Coal to Hydrogen Energy for Sustainable Solutions (CHESS) Division, CSIR - Central Institute of Mining and Fuel Research (CIMFR), Digwadih Campus, PO: FRI, Dhanbad - 828108, Jharkhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
2
|
Chiang NC, Ju TJ, Wang YC, Lin TP, Guo JH, Lin SD. Midtemperature CO 2 Deoxygenation to CO over Oxygen Vacancies of Doped CeO 2. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28163-28172. [PMID: 40311100 PMCID: PMC12086774 DOI: 10.1021/acsami.4c17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
CO2 capture and utilization are a must for easing the global warming caused by the use of fossil fuels. Previous studies demonstrate the possibility of thermal deoxygenation of CO2 to CO over the vacancies of CeO2. This study examines the influence of the dopant to CeO2 on the deoxygenation of CO2 to CO, wherein the examined dopants include Zr, Gd, Sm, and In. Only In-doped CeO2 exhibits significant reactivity for CO2 deoxygenation in our sequential temperature-programmed reduction (TPR) and CO2-TPRx (temperature-programmed reaction) tests up to 700 °C. In0.5Ce0.5Oy after H2-TPR demonstrates a deoxygenation onset temperature as low as 400 °C and it can maintain a stable performance in cycle tests. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses indicate that In exsolutes from the fluorite framework during TPR and the exsoluted In0 become oxidized in the subsequent CO2 deoxygenation reaction. XPS indicates that the redox of Ce also occurs during TPR-CO2-TPRx with In0.5Ce0.5Oy. In2O3 by itself demonstrates a higher deoxygenation onset temperature, a lower per gram deoxygenation capacity, and a poorer stability than In0.5Ce0.5Oy under the same test conditions, while CeO2 is inactive. The results suggest a synergy between exsoluted In and the fluorite substrate, leading to the observed deoxygenation activity of In-doped CeO2.
Collapse
Affiliation(s)
- Nan-Chian Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Tz-Jie Ju
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Yi-Cheng Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Tzu-Peng Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Jia-Han Guo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Shawn D. Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Zhang S, Zhang X, Yang J, Liu K, Zhao J, Guo S, Zhang L. Synergy of Cu-doping and in situ reconstruction on Bi 2O 2CO 3 for promoting CO 2 electroreduction over a wide pH range. Chem Commun (Camb) 2025; 61:1219-1222. [PMID: 39704140 DOI: 10.1039/d4cc05306k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A one-pot hydrothermal reaction was proposed to synthesize Cu-doped Bi2O2CO3. Doping Cu with smaller electronegativity than that of Bi and in situ electrochemical reconstruction on Bi2O2CO3 optimize the hybridization between Bi 6p of Bi2O2CO3 and O 2p of *OCHO, acquiring FEHCOO- of ∼100% at a current density of >100 mA cm-2 over a wide pH range.
Collapse
Affiliation(s)
- Shengnan Zhang
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao 266071, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Road, Jimo District, Qingdao 266237, China
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao 266071, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Road, Jimo District, Qingdao 266237, China
| | - Jiatai Yang
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao 266071, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Road, Jimo District, Qingdao 266237, China
| | - Kang Liu
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao 266071, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Road, Jimo District, Qingdao 266237, China
| | - Jingwen Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Shaojun Guo
- Laoshan Laboratory, 168 Wenhai Middle Road, Jimo District, Qingdao 266237, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China.
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Hydrogen Energy Key Materials and Technologies of Shandong Province, Qingdao University, Qingdao 266071, P. R. China.
- Laoshan Laboratory, 168 Wenhai Middle Road, Jimo District, Qingdao 266237, China
| |
Collapse
|
4
|
Zhang J, Yang X, Xu G, Biswal BK, Balasubramanian R. Accumulation of Long-Lived Photogenerated Holes at Indium Single-Atom Catalysts via Two Coordinate Nitrogen Vacancy Defect Engineering for Enhanced Photocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309205. [PMID: 38733334 DOI: 10.1002/adma.202309205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/05/2024] [Indexed: 05/13/2024]
Abstract
Visible-light-driven photocatalytic oxidation by photogenerated holes has immense potential for environmental remediation applications. While the electron-mediated photoreduction reactions are often at the spotlight, active holes possess a remarkable oxidation capacity that can degrade recalcitrant organic pollutants, resulting in nontoxic byproducts. However, the random charge transfer and rapid recombination of electron-hole pairs hinder the accumulation of long-lived holes at the reaction center. Herein, a novel method employing defect-engineered indium (In) single-atom photocatalysts with nitrogen vacancy (Nv) defects, dispersed in carbon nitride foam (In-Nv-CNF), is reported to overcome these challenges and make further advances in photocatalysis. This Nv defect-engineered strategy produces a remarkable extension in the lifetime and an increase in the concentration of photogenerated holes in In-Nv-CNF. Consequently, the optimized In-Nv-CNF demonstrates a remarkable 50-fold increase in photo-oxidative degradation rate compared to pristine CN, effectively breaking down two widely used antibiotics (tetracycline and ciprofloxacin) under visible light. The contaminated water treated by In-Nv-CNF is completely nontoxic based on the growth of Escherichia coli. Structural-performance correlations between defect engineering and long-lived hole accumulation in In-Nv-CNF are established and validated through experimental and theoretical agreement. This work has the potential to elevate the efficiency of overall photocatalytic reactions from a hole-centric standpoint.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Xuan Yang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Guofang Xu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
5
|
Shi J, Yang F, Zhao X, Ren X, Tang Y, Li S. Spin-polarized p-block antimony/bismuth single-atom catalysts on defect-free rutile TiO 2(110) substrate for highly efficient CO oxidation. Phys Chem Chem Phys 2024; 26:16459-16465. [PMID: 38832399 DOI: 10.1039/d4cp00352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Developing high-loading spin-polarized p-block-element-based single-atom catalysts (p-SACs) upon defect-free substrates for various chemical reactions wherein spin selection matters is generally considered a formidable challenge because of the difficulty of creating high densities of underpinning stable defects and the delocalized electronic features of p-block elements. Here our first-principles calculations establish that the defect-free rutile TiO2(110) wide-bandgap semiconducting anchoring support can stabilize and localize the wavefunctions of p-block metal elements (Sb and Bi) via strong ionic bonding, forming spin-polarized p-SACs. Cooperated by the underlying d-block Ti atoms via a delicate spin donation-back-donation mechanism, the p-block single-atom reactive center Sb(Bi) exhibits excellent catalysis for spin-triplet O2 activation and CO oxidation in alignment with Wigner's spin selection rule, with a low rate-limiting reaction barrier of ∼0.6 eV. This work is crucial in establishing high-loading reactive centers of high-performance p-SACs for various important physical processes and chemical reactions, especially wherein the spin degree of freedom matters, i.e., spin catalysis.
Collapse
Affiliation(s)
- Jinlei Shi
- College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Fengyuan Yang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xingju Zhao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xiaoyan Ren
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yanan Tang
- College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Shunfang Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
6
|
Liu Z, Han X, Liu J, Chen S, Deng S, Wang J. In Situ Reconstruction of Scalable Amorphous Indium-Based Metal-Organic Framework for CO 2 Electroreduction to Formate over an Ultrawide Potential Window. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28655-28663. [PMID: 38776450 DOI: 10.1021/acsami.4c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Amorphous metal-organic frameworks (aMOFs) are highly attractive for electrocatalytic applications due to their exceptional conductivity and abundant defect sites, but harsh preparation conditions of "top-down" strategy have hindered their widespread use. Herein, the scalable production of aMIL-68(In)-NH2 was successfully achieved through a facile "bottom-up" strategy involving ligand competition with 2-methylimidazole. Multiple in situ and ex situ characterizations reveal that aMIL-68(In)-NH2 evolutes into In/In2O3-x as the genuine active sites during the CO2 electrocatalytic reduction (CO2RR) process. Moreover, the retained amino groups could enhance the CO2 adsorption. As expected, the reconstructed catalyst demonstrates high formate Faradaic efficiency values (>90%) over a wide potential range of 800 mV in a flow cell, surpassing most top-ranking electrocatalysts. Density functional theory calculations reveal that the abundant oxygen vacancies in aMIL-68(In)-NH2 induce more local charges around electroactive sites, thereby promoting the formation of HCOO* intermediates. Furthermore, 16 g of samples can be readily prepared in one batch and exhibit almost identical CO2RR performances. This work offers a feasible batch-scale strategy to design amorphous MOFs for the highly efficient electrolytic CO2RR.
Collapse
Affiliation(s)
- Ziyun Liu
- School of Resources & Environment, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xinxin Han
- School of Resources & Environment, Nanchang University, Nanchang 330031, People's Republic of China
| | - Junhui Liu
- School of Chemistry & Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shixia Chen
- School of Chemistry & Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States of America
| | - Jun Wang
- School of Chemistry & Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
7
|
Zhang QM, Wang ZY, Zhang H, Liu XH, Zhang W, Zhao LB. Micro-kinetic modelling of the CO reduction reaction on single atom catalysts accelerated by machine learning. Phys Chem Chem Phys 2024; 26:11037-11047. [PMID: 38526740 DOI: 10.1039/d4cp00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electrochemical CO2 transformation to fuels and chemicals is an effective strategy for conversion of renewable electric energy into storable chemical energy in combination with reducing green-house gas emission. Metal-nitrogen-carbon (M-N-C) single atom catalysts (SAC) have shown great potential in the electrochemical CO2 reduction reaction (CO2RR). However, exploring advanced SACs with simultaneously high catalytic activity and high product selectivity remains a great challenge. In this study, density functional theory (DFT) calculations are combined with machine learning (ML) for rapid and high-throughput screening of high performance CO reduction catalysts. Firstly, the electrochemical properties of 99 M-N-C SACs were calculated by DFT and used as a database. By using different machine learning models with simple features, the investigated SACs were expanded from 99 to 297. Through several effective indicators of catalyst stability, inhibition of the hydrogen evolution reaction, and CO adsorption strength, 33 SACs were finally selected. The catalytic activity and selectivity of the remaining 33 SACs were explored by micro-kinetic simulation based on Marcus theory. Among all the studied SACs, Mn-NC2, Pt-NC2, and Au-NC2 deliver the best catalytic performance and can be used as potential catalysts for CO2/CO conversion to hydrocarbons with high energy density. This effective screening method using a machine learning algorithm can promote the exploration of CO2RR catalysts and significantly reduce the simulation cost.
Collapse
Affiliation(s)
- Qing-Meng Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Zhao-Yu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Hao Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Xiao-Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu-Bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
9
|
Zhu X, Xu Y, Ran L, Chen S, Qiu X. Three-Dimensional Porous Indium Single-Atom Catalysts with Improved Accessibility for CO 2 Reduction to Formate. Inorg Chem 2024; 63:3893-3900. [PMID: 38349182 DOI: 10.1021/acs.inorgchem.3c04273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-atom catalysts (SACs) present substantial potential in electrocatalytic CO2 reduction reactions; however, inferior accessibility of single-atom sites to CO2 limits the overall CO2RR performances. Herein, we propose to improve the accessibility between In sites and CO2 through the construction of a three-dimensional (3D) porous indium single-atom catalyst (In1/NC-3D). The NaCl template-mediated synthesis strategy generates the unique 3D porous nanostructure of In1/NC-3D. Multiple characterizations validate that In1/NC-3D exhibits increased exposure of active sites and enhanced CO2 transport/adsorption capacity compared to the bulk In1/NC, thus improving accessibility of active sites to CO2. As a result, the In1/NC-3D presents superior CO2RR performance to the bulk In1/NC, with a partial current density of formate of 67.24 mA cm-2 at -1.41 V, relative to a reversible hydrogen electrode (vs RHE). The CO2RR performances with high formate selectivity at a large current density also outperform most reported In-based SACs. Importantly, the In1/NC-3D is demonstrated to maintain an FEformate of >82% at -66.83 mA·cm-2 over 21 h. This work highlights the design of a 3D porous single-atom catalyst for efficient CO2RR, promoting the development of advanced catalysts toward advanced energy conversion.
Collapse
Affiliation(s)
- Xinwang Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lan Ran
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Shanyong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong 511443, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
10
|
Zi X, Liu Q, Zhu L, Chen Q, Liao X, Mei Z, Wang X, Wang X, Liu K, Fu J, Liu M. Accurate assessment of electrocatalytic carbon dioxide reduction products at industrial-level current density. Chem Commun (Camb) 2023. [PMID: 38015474 DOI: 10.1039/d3cc04656g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During the electrocatalytic CO2 reduction reaction, the faradaic efficiency of products seriously deviates from 100% due to the misjudgment of outlet flow, especially at industrial-level large current density. In this work, several modified equations and internal standard methods are recommended to calibrate the thermal mass flowmeter and establish benchmarks for CO2 reduction performance assessment.
Collapse
Affiliation(s)
- Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Qiuwen Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Li Zhu
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Xiangqiong Liao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Ziwen Mei
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Xiaojian Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|
11
|
Zhu MN, Jiang H, Zhang BW, Gao M, Sui PF, Feng R, Shankar K, Bergens SH, Cheng GJ, Luo JL. Nanosecond Laser Confined Bismuth Moiety with Tunable Structures on Graphene for Carbon Dioxide Reduction. ACS NANO 2023; 17:8705-8716. [PMID: 37068128 DOI: 10.1021/acsnano.3c01897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Substrate-supported catalysts with atomically dispersed metal centers are promising for driving the carbon dioxide reduction reaction (CO2RR) to produce value-added chemicals; however, regulating the size of exposed catalysts and optimizing their coordination chemistry remain challenging. In this study, we have devised a simple and versatile high-energy pulsed laser method for the enrichment of a Bi "single atom" (SA) with a controlled first coordination sphere on a time scale of nanoseconds. We identify the mechanistic bifurcation routes over a Bi SA that selectively produce either formate or syngas when bound to C or N atoms, respectively. In particular, C-stabilized Bi (Bi-C) exhibits a maximum formate partial current density of -29.3 mA cm-2 alongside a TOF value of 2.64 s-1 at -1.05 V vs RHE, representing one of the best SA-based candidates for CO2-to-formate conversion. Our results demonstrate that the switchable selectivity arises from the different coupling states and metal-support interactions between the central Bi atom and adjacent atoms, which modify the hybridizations between the Bi center and *OCHO/*COOH intermediates, alter the energy barriers of the rate-determining steps, and ultimately trigger the branched reaction pathways after CO2 adsorption. This work demonstrates a practical and universal ultrafast laser approach to a wide range of metal-substrate materials for tailoring the fine structures and catalytic properties of the supported catalysts and provides atomic-level insights into the mechanisms of the CO2RR on ligand-modified Bi SAs, with potential applications in various fields.
Collapse
Affiliation(s)
| | - Haoqing Jiang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | | | | | | | - Renfei Feng
- Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, Saskatchewan S7N 2V3, Canada
| | | | | | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
12
|
Jing XT, Zhu Z, Chen LW, Liu D, Huang HZ, Tian WJ, Yin AX. Boosting CO 2 Electroreduction on Bismuth Nanoplates with a Three-Dimensional Nitrogen-Doped Graphene Aerogel Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20317-20324. [PMID: 37057844 DOI: 10.1021/acsami.3c02578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR), which uses renewable electricity to produce high-value-added chemicals, offers an alternative clean path to the carbon cycle. However, bismuth-based catalysts show great potential for the conversion of CO2 and water to formate, but their overall efficiency is still hampered by the weak CO2 adsorption, low electrical conductivity, and slow mass transfer of CO2 molecules. Herein, we report that a rationally modulated nitrogen-doped graphene aerogel matrix (NGA) can significantly enhance the CO2RR performance of bismuth nanoplates (BiNPs) by both modulating the electronic structure of bismuth and regulating the interface for chemical reaction and mass transfer environments. In particular, the NGA prepared by reducing graphene oxide (GO) with hydrazine hydrate (denoted as NGAhdrz) exhibits significantly enhanced strong metal-support interaction (SMSI), increased specific surface area, strengthened CO2 adsorption, and modulated wettability. As a result, the Bi/NGAhdrz exhibits significantly boosted CO2RR properties, with a Faradaic efficiency (FE) of 96.4% at a current density of 51.4 mA cm-2 for formate evolution at a potential of -1.0 V versus reversible hydrogen electrode (vs RHE) in aqueous solution under ambient conditions.
Collapse
Affiliation(s)
- Xiao-Ting Jing
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhejiaji Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Li-Wei Chen
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Di Liu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui-Zi Huang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wen-Jing Tian
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
13
|
Xu Y, Li W, Chen L, Li W, Feng W, Qiu X. Regulating the N-Coordination Structure of Fe-Fe Dual Sites as the Electrocatalyst for the O 2 Reduction Reaction in Metal-Air Batteries. Inorg Chem 2023; 62:5253-5261. [PMID: 36942791 DOI: 10.1021/acs.inorgchem.3c00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron-nitrogen coordinated catalysts are regarded as efficient catalysts for the oxygen (O2) reduction reaction (ORR), wherein the coordination environment of Fe sites is critical to the catalytic activity. Herein, we explored the effect of the nitrogen-coordination structure of dual-atomic Fe2 sites (i.e., Fe2-N6-C and Fe2-N4-C) on the performance of the ORR. The half-wave potential (E1/2) of Fe2-N6-C is 0.880 V vs RHE, outperforming that of the tetracoordinate Fe2-N4-C (0.851 V) and commercial Pt/C (0.850 V) in alkaline electrolytes. The Fe2-N6-C-based zinc-air battery delivers a maximum power density of (258.6 mW/cm2) and superior durability under 10 mA/cm2. Theoretical calculations unveil that the moieties of Fe2-N6 profits the d-electron rearrangement of the Fe2 sites. The electronic and geometrical structure of Fe2-N6 promotes the O2 molecules adsorbed on the Fe2 site and reduces the dissociation energy barrier of O2, benefiting fracture of O-O bonds and acceleration of the transformation of O2 to *OOH (the first step of the ORR process). Such exploration of modulating the local N-coordination environment of Fe2 dimers paves an in-depth insight to design and optimize dual-atomic catalysts.
Collapse
Affiliation(s)
- Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wenyuan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Long Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wenzhang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Hongshan Road 98, Changsha 410022, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
14
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
15
|
Zhang Y, Wang Q, Wang K, Liu Y, Zou L, Zhou Y, Liu M, Qiu X, Li W, Li J. Plasmonic Ag-decorated Cu 2O nanowires for boosting photoelectrochemical CO 2 reduction to multi-carbon products. Chem Commun (Camb) 2022; 58:9421-9424. [PMID: 35916216 DOI: 10.1039/d2cc03167a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of multi-carbon products on the Cu2O photocathode remains a great challenge. Herein, effective charge separation and surface catalytic reaction are achieved for photoelectrochemical CO2 reduction through plasmon metal (Ag) decoration on Cu2O nanowires. The Cu2O/Ag composite photocathode achieves a 47.7% faradaic efficiency for CH3COOH and the generation rate is 212.7 μmol cm-2 h-1 under illumination, which is about five times that in dark (44.4 μmol cm-2 h-1) at -0.7 V vs. RHE.
Collapse
Affiliation(s)
- Yanfang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qingmei Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Keke Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Luwei Zou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Yu Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xiaoqing Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China. .,Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, 410083, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
16
|
Song P, Zhu P, Su X, Hou M, Zhao D, Zhang J. Microenvironment Modulation in Carbon-Supported Single-Atom Catalysts for Efficient Electrocatalytic CO2 Reduction. Chem Asian J 2022; 17:e202200716. [PMID: 35979850 DOI: 10.1002/asia.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Indexed: 11/06/2022]
Abstract
The electrocatalytic CO 2 reduction reaction (ECRR) becomes an effective way to reduce excess CO 2 in the air and a promising strategy to maintain carbon balance. Carbon-supported single-atom catalysts (C-SACs) is a kind of cost savings and most promising catalysts for ECRR. For C-SACs, the key to achieving efficient ECRR performance is to adjusting the electronic structure of the central metal atoms by modulating their microenvironment of the catalysts. Not only the coordination numbers and hetero-atom coordination, but also the regulation of diatomic sites have a great influence on the performance of C-SACs. This review mainly focuses on recent studies for the microenvironment modulation in C-SACs for efficient ECRR. We hope that this review can contribute readers a comprehensive insight in the current research status of C-SACs for ECRR, as well as provide help for the rational design of C-SACs with better ECRR performance.
Collapse
Affiliation(s)
- Pengyu Song
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, 102488, Beijing, CHINA
| | - Pan Zhu
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, 102488, Beijing, CHINA
| | - Xiaoran Su
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, 102488, Beijing, CHINA
| | - Mengyun Hou
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, 102488, Beijing, CHINA
| | - Di Zhao
- Beijing Institute of Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Fangshan District, 102488, Beijing, CHINA
| | - Jiatao Zhang
- Beijing Institute of Technology, Research Center of Materials Science,School of Materials Science and Engineering, No.5 South Street of Zhongguancun, Haidian District, 100081, Beijing, CHINA
| |
Collapse
|