1
|
Ghosh M, Sarkar N. Exploring the World of Curcumin: Photophysics, Photochemistry, and Applications in Nanoscience and Biology. Chembiochem 2024; 25:e202400335. [PMID: 38954727 PMCID: PMC11610691 DOI: 10.1002/cbic.202400335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Curcumin is a bright yellow naturally occurring polyphenol which is the principal component of turmeric. It is used as herbal supplement, cosmetics ingredient, and food coloring agent. Over the years, the therapeutic properties of the natural product curcumin have gone unexploited but not unnoticed. Curcumin cannot be employed as a drug due to limitations such as low aqueous solubility and limited bioavailability. Many attempts have been made to overcome these limitations by confining the drug in various confined media to enhance its bioavailability. The biomolecule is emissive and undergoes fundamental excited state processes such as solvation dynamics and excited state intramolecular proton transfer (ESIPT). Curcumin based biomaterials and nanomaterials are also a fast advancing field where curcumin is an intrinsic component necessary for formation of these materials and no longer added as an external free drug. In this review, we will summarize the recent research on the photophysical and photochemical properties of curcumin and its excited state dynamics in various bio-mimicking systems. At the same time we wish to also incorporate the various applications of curcumin, especially in biology. Lastly due to the growing importance of materials science, we will briefly discuss some recent advances on curcumin based biomaterials and nanomaterials. We believe such a compilation of recent research surrounding curcumin will provide an overall understanding of its potentialities in different areas.
Collapse
Affiliation(s)
- Meghna Ghosh
- Department of ChemistryIndian Institute of TechnologyKharagpur, WB 721302India
| | - Nilmoni Sarkar
- Department of ChemistryIndian Institute of TechnologyKharagpur, WB 721302India
| |
Collapse
|
2
|
Losantos R, Prampolini G, Monari A. A Portrait of the Chromophore as a Young System-Quantum-Derived Force Field Unraveling Solvent Reorganization upon Optical Excitation of Cyclocurcumin Derivatives. Molecules 2024; 29:1752. [PMID: 38675572 PMCID: PMC11052401 DOI: 10.3390/molecules29081752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The study of fast non-equilibrium solvent relaxation in organic chromophores is still challenging for molecular modeling and simulation approaches, and is often overlooked, even in the case of non-adiabatic dynamics simulations. Yet, especially in the case of photoswitches, the interaction with the environment can strongly modulate the photophysical outcomes. To unravel such a delicate interplay, in the present contribution we resorted to a mixed quantum-classical approach, based on quantum mechanically derived force fields. The main task is to rationalize the solvent reorganization pathways in chromophores derived from cyclocurcumin, which are suitable for light-activated chemotherapy to destabilize cellular lipid membranes. The accurate and reliable decryption delivered by the quantum-derived force fields points to important differences in the solvent's reorganization, in terms of both structure and time scale evolution.
Collapse
Affiliation(s)
- Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy;
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| |
Collapse
|
3
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
4
|
Bera N, Layek S, Pramanik S, Nandi PK, Hazra R, Sarkar N. Ultrafast Dynamics of the Medicinal Pigment Curcumin inside the Imidazolium Surface Active Ionic Liquid Containing Giant Vesicles and White Light Generation via Triple-FRET Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11653-11663. [PMID: 37564012 DOI: 10.1021/acs.langmuir.3c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The naturally occurring yellow polyphenolic medicinal pigment curcumin shows ultrafast dynamics in the excited states. These ultrafast dynamics are strongly influenced by the rigidity of the environments of the systems. The present investigation unveils the ultrafast excited-state intramolecular hydrogen atom transfer (ESIHT) (which is involved in the antioxidant mechanism) and the solvation dynamics of curcumin inside the imidazolium surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) micelle, and giant vesicles after introducing sorbitan monoesters (Span 20 and Span 80) in the aqueous medium. Interestingly, the short hydrocarbon chain containing Span 20 forms smaller, less rigid vesicles, and the long hydrocarbon chain containing Span 80 forms larger, more rigid giant vesicles after being assembled with [C16mim]Cl. The ESIHT and the solvation dynamics are slower in Span 80, containing rigid vesicles, than that in Span 20, comprising less rigid vesicles. Finally, we have established a three-component fluorescence resonance energy transfer (Triple-FRET) system to generate white light (WL) in the micelle and giant vesicles. Here the hydrophobic dye 1,6-diphenyl-1,3,5-hexatriene (DPH) acts as the donor, and the hydrophilic anticancer drug doxorubicin hydrochloride (DOX) serves as the acceptor along with the intermediate donor, curcumin. At a specific combination of the concentrations of these dyes in a particular self-assembled system, WL is generated due to the triple-FRET phenomena.
Collapse
Affiliation(s)
- Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Shashwata Pramanik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ritwik Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
5
|
Ghosh M, Parida S, Khatoon H, Bera N, Mishra S, Sarkar N. Excited State Photophysics of Curcumin and its Modulation in Alkaline Non-Aqueous Medium. Chemphyschem 2023; 24:e202300174. [PMID: 37269184 DOI: 10.1002/cphc.202300174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
Curcumin, a well-known medicinal pigment, has seen limited applications in biology despite having great potential as a therapeutic drug. Deprotonation is one of the possible ways to enhance solubility of curcumin in polar solvent. Here, we have explored the effect of deprotonation on the ultrafast dynamics of this biomolecule with the help of the time-resolved fluorescence spectroscopic measurements using the femtosecond fluorescence upconversion technique. The excited state photophysics of fully deprotonated curcumin significantly differs from that of neutral curcumin. We have observed that the completely deprotonated curcumin not only has higher quantum yield, but also higher excited state lifetime and slower solvation dynamics in comparison to neutral curcumin. We propose solvation dynamics and intramolecular charge transfer as the excited state processes associated with the radiative decay of the completely deprotonated molecule, while ruling out the possibility of excited state proton exchange or proton transfer. Our results are well supported by time-dependent density-functional theory calculations. Lastly, we have also demonstrated the possibility of modulating the ultrafast dynamics of fully deprotonated curcumin using non-aqueous alkaline binary solvent mixtures. We believe our results will provide significant physical insight towards unveiling the excited state dynamics of this molecule.
Collapse
Affiliation(s)
- Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, WB, India
| | - Sanjukta Parida
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, WB, India
| | - Huma Khatoon
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, WB, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, WB, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, WB, India
| |
Collapse
|
6
|
Mavroskoufis A, Lohani M, Weber M, Hopkinson MN, Götze JP. A (TD-)DFT study on photo-NHC catalysis: photoenolization/Diels-Alder reaction of acid fluorides catalyzed by N-heterocyclic carbenes. Chem Sci 2023; 14:4027-4037. [PMID: 37063806 PMCID: PMC10094231 DOI: 10.1039/d2sc04732b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
A comprehensive mechanistic study on the N-heterocyclic carbene (NHC) catalyzed photoenolization/Diels-Alder (PEDA) reaction of acid fluorides was performed in the framework of (time-dependent) density functional theory ((TD)-DFT). The 1,5-hydrogen atom transfer (1,5-HAT) during photoenolization of an ortho-toluoyl azolium salt was found to be feasible via, first, singlet excitation and photoenolization, and then, after crossing to the triplet manifold, populating a biradical dienol which allows for the formation of two ortho-quinodimethane (o-QDM) isomers due to a low rotational barrier. The (Z)-isomer is mostly unproductive through sigmatropic rearrangement back to the starting material while the (E)-isomer reacts in a subsequent concerted Diels-Alder reaction likely as the deprotonated dienolate. The experimentally observed diastereoselectivity is correctly predicted by theory and is determined by a more favorable endo trajectory in the cycloaddition step. These findings demonstrate that ortho-toluoyl azolium species exhibit similar photophysical properties as structurally related benzophenones, highlighting the unique ability of the NHC organocatalyst to transiently alter the excited state properties of an otherwise photoinactive carboxylic acid derivative, thereby expanding the scope of classical carbonyl photochemistry.
Collapse
Affiliation(s)
- Andreas Mavroskoufis
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34-36 14195 Berlin Germany
| | - Manish Lohani
- Institut für Chemie und Biochemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Manuela Weber
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34-36 14195 Berlin Germany
| | - Matthew N Hopkinson
- Institut für Chemie und Biochemie, Freie Universität Berlin Fabeckstrasse 34-36 14195 Berlin Germany
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
| | - Jan P Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| |
Collapse
|
7
|
Delova A, Losantos R, Pecourneau J, Bernhard Y, Mourer M, Pasc A, Monari A. Perturbation of Lipid Bilayers by Biomimetic Photoswitches Based on Cyclocurcumin. J Chem Inf Model 2023; 63:299-307. [PMID: 36479861 DOI: 10.1021/acs.jcim.2c01152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of photoswitches which may be activated by suitable electromagnetic radiation is an attractive alternative to conventional photodynamic therapy. Here, we report all-atom molecular dynamics simulation of a biomimetic photoswitch derived from cyclocurcumin and experiencing E/Z photoisomerization. In particular, we show that the two isomers interact persistently with a lipid bilayer modeling a cellular membrane. Furthermore, the interaction with the membrane is strongly dependent on the concentration, and a transition between ordered and disordered arrangements of the photoswitches is observed. We also confirm that the structural parameters of the bilayer are differently affected by the two isomers and hence can be modulated through photoswitching, offering interesting perspectives for future applications.
Collapse
Affiliation(s)
| | - Raúl Losantos
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France.,Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | | | - Yann Bernhard
- Université de Lorraine CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Maxime Mourer
- Université de Lorraine CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Andreea Pasc
- Université de Lorraine CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
8
|
Pecourneau J, Losantos R, Gansmuller A, Parant S, Bernhard Y, Mourer M, Monari A, Pasc A. Tuning the competition between photoisomerization and photothermy in biomimetic cyclocurcumin analogues. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Pecourneau J, Losantos R, Delova A, Bernhard Y, Parant S, Mourer M, Monari A, Pasc A. Biomimetic Photo-Switches Softening Model Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15642-15655. [PMID: 36469419 DOI: 10.1021/acs.langmuir.2c02425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report the synthesis and characterization of a novel photo-switch based on biomimetic cyclocurcumin analogous and interacting with the lipid bilayer, which can be used in the framework of oxygen-independent light-induced therapy. More specifically, by using molecular dynamics simulations and free energy techniques, we show that the inclusion of hydrophobic substituents is needed to allow insertion in the lipid membrane. After having confirmed experimentally that the substituents do not preclude the efficient photoisomerization, we show through UV-vis and dynamic light scattering measurements together with compression isotherms that the chromophore is internalized in both lipid vesicles and monomolecular film, respectively, inducing their fluidification. The irradiation of the chromophore-loaded lipid aggregates modifies their properties due to the different organization of the two diastereoisomers, E and Z. In particular, a competition between a fast structural reorganization and a slower expulsion of the chromophore after isomerization can be observed in the kinetic profiles recorded during E to Z photoisomerization. This report paves the way for future investigations in the optimization of biomimetic photoswitches potentially useful in modern light-induced therapeutic strategies.
Collapse
Affiliation(s)
| | - Raúl Losantos
- Université de Lorraine and CNRS, L2CM UMR 7053, F-5400Nancy, France
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000Nancy, France
- Université Paris Cité and CNRS, ITODYS, F-75006Paris, France
- Department of Chemistry, CISQ, Universidad de La Rioja, 26006Logroño, Spain
| | | | - Yann Bernhard
- Université de Lorraine and CNRS, L2CM UMR 7053, F-5400Nancy, France
| | - Stéphane Parant
- Université de Lorraine and CNRS, L2CM UMR 7053, F-5400Nancy, France
| | - Maxime Mourer
- Université de Lorraine and CNRS, L2CM UMR 7053, F-5400Nancy, France
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000Nancy, France
- Université Paris Cité and CNRS, ITODYS, F-75006Paris, France
| | - Andreea Pasc
- Université de Lorraine and CNRS, L2CM UMR 7053, F-5400Nancy, France
| |
Collapse
|