1
|
Costa D, Rodrigues MS, Alves E, Barradas NP, Borges J, Vaz F. Tuning the Refractive Index Sensitivity of LSPR Transducers Based on Nanocomposite Thin Films Composed of Noble Metal Nanoparticles Dispersed in TiO 2. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7355. [PMID: 38068099 PMCID: PMC10707626 DOI: 10.3390/ma16237355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 05/31/2025]
Abstract
This work reports on the development of nanoplasmonic thin films consisting of Au, Ag, or Au-Ag nanoparticles dispersed in a TiO2 matrix and the optimization of the deposition parameters to tune their optical response. The thin films were produced by reactive DC magnetron sputtering of a Ti target with Au and/or Ag pellets placed on the erosion zone. The thicknesses (50 and 100 nm) of the films, the current density (75 and 100 A/m2) applied to the target (titanium), and the number of pellets placed on its surface were the deposition conditions that were used to tailor the optical (LSPR) response. The total noble metal content varied between 13 and 28 at.% for Au/TiO2 films, between 22 and 30 at.% for Ag/TiO2 films, and 8 to 29 at% for the Au-Ag/TiO2 systems with 1:1, 1:1.5, and 1:2 Au:Ag atomic ratios. After thermal annealing at 400 and 600 °C, LSPR bands were found for all films concerning the Au-TiO2 and Au-Ag/TiO2, while for Ag/TiO2, only for thin films with 28 and 30 at.% of Ag concentration. Refractive index sensitivity (RIS) was evaluated for Au and Au-Ag/TiO2 thin films. It was found that for bimetallic nanoparticles, the sensitivity can increase up to five times when compared to a monometallic nanoplasmonic system. Using Au-Ag/TiO2 thin films can decrease the cost of fabrication of LSPR transducers while improving their sensitivity.
Collapse
Affiliation(s)
- Diogo Costa
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal (M.S.R.); (F.V.)
| | - Marco S. Rodrigues
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal (M.S.R.); (F.V.)
| | - Eduardo Alves
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Nuno P. Barradas
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa EN10, 2695-066 Bobadela, Portugal;
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal (M.S.R.); (F.V.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal (M.S.R.); (F.V.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania
| |
Collapse
|
2
|
Zhu J, Xiong J. Logic operation and all-optical switch characteristics of graphene surface plasmons. OPTICS EXPRESS 2023; 31:36677-36690. [PMID: 38017813 DOI: 10.1364/oe.501242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023]
Abstract
Terahertz logic gates play a crucial role in optical signal processing and THz digitization. In this paper, we propose a design strategy for graphene-based metamaterial THz all-optical logic gate devices based on the induced transparency effect of surface isolated. Theoretically, we realize Boolean operations by coupling of a hexagonal graphene resonant cavity with dual embedded rotatable ellipses. Based on the coupled mode theory, the elliptical rotation angle of the resonator is an important factor affecting the PIT phenomenon. We control the logic input by adjusting the rotation angles of the two embedded ellipses. The analysis results show that: under the incidence of y-polarized light, the ellipse deflection angle of 0° represents the input signal '0', and the ellipse deflection angle of 30° represents the input signal '1'. Through numerical simulation, the structure realizes two logical operations of NAND and AND. Under the incidence of x-polarized light, the ellipse deflection angle of 0° represents the input signal '0', and the ellipse deflection angle of 90° represents the input signal '1'. Through numerical simulation, the structure realizes three logical operations of NAND, XNOR and OR. Finally, we analyze the performance of the logic gates by extinction ratio. The extinction ratio of the logic gate is up to 10.38 dB when performing OR Boolean operations. Numerically simulated all-optical logic gates can be key components of optical processing and telecommunication equipment.
Collapse
|
3
|
Jiang J, Xu W, Wu Y, Duan G, Xu C, Zhao Q, Zhu H, Zhang X, Wang BX. Four-band terahertz metamaterial absorber based on Dirac semimetal for a refractive index sensing application. APPLIED OPTICS 2023; 62:4706-4715. [PMID: 37707169 DOI: 10.1364/ao.488472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 09/15/2023]
Abstract
We design a four-band narrow-band near-perfect absorber based on bulk Dirac semimetal (BDS) metamaterial in the terahertz region. The absorber has a top-to-bottom three-layer structure of a BDS layer, an insulating dielectric slab, and a gold layer. The BDS is flexible and tunable, allowing the Fermi energy level to be adjusted by changing the applied bias voltage, thus changing the absorption characteristics of the absorber. We use the time-domain finite-difference method to simulate the absorption characteristics of the absorber, which could achieve four discrete near-perfect absorption peaks at 0.98 THz, 1.70 THz, 2.02 THz, and 2.36 THz. The absorber is polarization sensitive, and the conversion between four-band absorption and three-band absorption is achieved by changing the incident polarization angle. We also change the structure of the absorber to study the absorption characteristics and break the structural symmetry to achieve a larger number of absorption peaks. Besides, the sensing performance of four-band narrow-band absorption is analyzed, and the maximum sensitivity of the absorber is 112.78 GHz/RIU. The device should have vast application prospects for bio-detection and high-sensitivity biosensing detection.
Collapse
|
4
|
Guo H, Chen Y, Wu Q, Wang J, He Y, Cao Y, Li M. A Multi-Frequency Omnidirectional Antenna Based on a Ring-Shaped Structure. MICROMACHINES 2023; 14:mi14050994. [PMID: 37241618 DOI: 10.3390/mi14050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
A multi-frequency microstrip antenna loaded with a ring-like structure has been proposed. The radiating patch on the antenna surface consists of three split-ring resonator structures, and the ground plate consists of a bottom metal strip and three ring-shaped metals with regular cuts to form a defective ground structure. The proposed antenna works in six different frequency bands covering 1.10, 1.33, 1.63, 1.97, 2.08, and 2.69 GHz and works entirely when connected to 5G NR (FR1, 0.45-3 GHz), 4GLTE (1.6265-1.6605 GHz), Personal Communication System (1.85-1.99 GHz), Universal Mobile Telecommunications System (1.92-2.176 GHz), WiMAX (2.5-2.69 GHz), and other communications frequency bands. Moreover, such antennas also have stable omnidirectional radiation properties across different operating frequency bands. This antenna meets the needs of portable multi-frequency mobile devices and provides a theoretical approach for the development of multi-frequency antennas.
Collapse
Affiliation(s)
- Honglei Guo
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
- The Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- The Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- College of Instrumentation and Intelligent Future Technology, North University of China, Taiyuan 030051, China
| | - Yu Chen
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
- The Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- The Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- College of Instrumentation and Intelligent Future Technology, North University of China, Taiyuan 030051, China
| | - Qiannan Wu
- The Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- The Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- College of Instrumentation and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- School of Semiconductor and Physics, North University of China, Taiyuan 030051, China
| | - Jianyang Wang
- The Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- The Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- College of Instrumentation and Intelligent Future Technology, North University of China, Taiyuan 030051, China
| | - Yu He
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
| | - Yonghong Cao
- The Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- The Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- College of Instrumentation and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- School of Aeronautics and Astronautics, North University of China, Taiyuan 030051, China
| | - Mengwei Li
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
- The Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- The Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- College of Instrumentation and Intelligent Future Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Wu F, Shi P, Yi Z, Li H, Yi Y. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum. MICROMACHINES 2023; 14:mi14050985. [PMID: 37241609 DOI: 10.3390/mi14050985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Solar energy is currently a very popular energy source because it is both clean and renewable. As a result, one of the main areas of research now is the investigation of solar absorbers with broad spectrum and high absorption efficiency. In this study, we create an absorber by superimposing three periodic Ti-Al2O3-Ti discs on a W-Ti-Al2O3 composite film structure. We evaluated the incident angle, structural components, and electromagnetic field distribution using the finite difference in time domain (FDTD) method in order to investigate the physical process by which the model achieves broadband absorption. We find that distinct wavelengths of tuned or resonant absorption may be produced by the Ti disk array and Al2O3 through near-field coupling, cavity-mode coupling, and plasmon resonance, all of which can effectively widen the absorption bandwidth. The findings indicate that the solar absorber's average absorption efficiency can range from 95.8% to 96% over the entire band range of 200 to 3100 nm, with the absorption bandwidth of 2811 nm (244-3055 nm) having the highest absorption rate. Additionally, the absorber only contains tungsten (W), titanium (Ti), and alumina (Al2O3), three materials with high melting points, which offers a strong assurance for the absorber's thermal stability. It also has a very high thermal radiation intensity, reaching a high radiation efficiency of 94.4% at 1000 K, and a weighted average absorption efficiency of 98.3% at AM1.5. Additionally, the incidence angle insensitivity of our suggested solar absorber is good (0-60°) and polarization independence is good (0-90°). These benefits enable a wide range of solar thermal photovoltaic applications for our absorber and offer numerous design options for the ideal absorber.
Collapse
Affiliation(s)
- Fuyan Wu
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Pengcheng Shi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hailiang Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Lai R, Shi P, Yi Z, Li H, Yi Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. MICROMACHINES 2023; 14:mi14050953. [PMID: 37241576 DOI: 10.3390/mi14050953] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
This paper introduces a novel metamaterial absorber based on surface plasmon resonance (SPR). The absorber is capable of triple-mode perfect absorption, polarization independence, incident angle insensitivity, tunability, high sensitivity, and a high figure of merit (FOM). The structure of the absorber consists of a sandwiched stack: a top layer of single-layer graphene array with an open-ended prohibited sign type (OPST) pattern, a middle layer of thicker SiO2, and a bottom layer of the gold metal mirror (Au). The simulation of COMSOL software suggests it achieves perfect absorption at frequencies of fI = 4.04 THz, fII = 6.76 THz, and fIII = 9.40 THz, with absorption peaks of 99.404%, 99.353%, and 99.146%, respectively. These three resonant frequencies and corresponding absorption rates can be regulated by controlling the patterned graphene's geometric parameters or just adjusting the Fermi level (EF). Additionally, when the incident angle changes between 0~50°, the absorption peaks still reach 99% regardless of the kind of polarization. Finally, to test its refractive index sensing performance, this paper calculates the results of the structure under different environments which demonstrate maximum sensitivities in three modes: SI = 0.875 THz/RIU, SII = 1.250 THz/RIU, and SIII = 2.000 THz/RIU. The FOM can reach FOMI = 3.74 RIU-1, FOMII = 6.08 RIU-1, and FOMIII = 9.58 RIU-1. In conclusion, we provide a new approach for designing a tunable multi-band SPR metamaterial absorber with potential applications in photodetectors, active optoelectronic devices, and chemical sensors.
Collapse
Affiliation(s)
- Runing Lai
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Pengcheng Shi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hailiang Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Liu H, Wu B, Yang B, Ai Q, Xie M, Wu X. Gradient index effect assisted anisotropic broadband absorption in α-MoO 3 metamaterial. APPLIED OPTICS 2023; 62:2711-2719. [PMID: 37133110 DOI: 10.1364/ao.483299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As an excellent natural hyperbolic material (HM), α-M o O 3 has a larger hyperbolic bandwidth and longer polariton lifetime than other HMs, which makes it an ideal candidate for broadband absorbers. In this work, we theoretically and numerically investigated the spectral absorption of an α-M o O 3 metamaterial using the gradient index effect. The results show that the absorber has an average spectral absorbance of 99.99% at 12.5-18 µm at transverse electric polarization. When the incident light is transverse magnetic polarization, the broadband absorption region of the absorber is blueshifted, and a similar strong absorption is achieved at 10.6-12.2 µm. By simplifying the geometric model of the absorber using equivalent medium theory, we find that the broadband absorption is caused by the refractive index matching of the metamaterial to the surrounding medium. The electric field and power dissipation density distributions of the metamaterial were calculated to clarify the location of the absorption. Moreover, the influence of geometric parameters of pyramid structure on broadband absorption performance was discussed. Finally, we investigated the effect of polarization angle on the spectral absorption of the α-M o O 3 metamaterial. This research contributes to developing broadband absorbers and related devices based on anisotropic materials, especially in solar thermal utilization and radiation cooling.
Collapse
|
8
|
Zhu W, Yi Y, Yi Z, Bian L, Yang H, Zhang J, Yu Y, Liu C, Li G, Wu X. High confidence plasmonic sensor based on photonic crystal fibers with a U-shaped detection channel. Phys Chem Chem Phys 2023; 25:8583-8591. [PMID: 36883940 DOI: 10.1039/d2cp04605a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In order to improve the performance of optical fiber sensing and expand its application, a photonic crystal fiber (PCF) plasmonic sensor with a U-shaped channel based on surface plasmon resonance (SPR) is proposed. We have studied the general influence rules of structural parameters such as the radius of the air hole, the thickness of the gold film and the number of U-shaped channels using COMSOL based on the finite element method. The dispersion curves and loss spectrum of the surface plasmon polariton (SPP) mode and the Y-polarization (Y-pol) mode as well as the distribution of the electric field intensity (normE) under various conditions are studied using the coupled mode theory. The maximum refractive index (RI) sensitivity achieved in the RI range of 1.38-1.43 is 24.1 μm RIU-1, which corresponds to a full width at half maximum (FWHM) of 10.0 nm, a figure of merit (FOM) of 2410 RIU-1 and a resolution of 4.15 × 10-6 RIU. The results show that the proposed sensor combines the SPR effect, which is extremely sensitive to changes in the RI of the surrounding medium and realizes real-time detection of the external environment by analyzing the light signal modulated by the sensor. In addition, the detection range and sensitivity can be extended by adjusting the structural parameters. The proposed sensor has a simple structure with excellent sensing performance, which provides a new idea and implementation method for real-time detection, long-range measurement, complex environment monitoring and highly integrated sensing, and has a strong potential practical value.
Collapse
Affiliation(s)
- Wanlai Zhu
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process TestingTechnology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yingting Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process TestingTechnology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Liang Bian
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process TestingTechnology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hua Yang
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China
| | - Yang Yu
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Gongfa Li
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwen Wu
- Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of science and Technology, Wuhan 430081, China
| |
Collapse
|
9
|
Li W, Ma J, Zhang H, Cheng S, Yang W, Yi Z, Yang H, Zhang J, Wu X, Wu P. Tunable broadband absorber based on a layered resonant structure with a Dirac semimetal. Phys Chem Chem Phys 2023; 25:8489-8496. [PMID: 36883439 DOI: 10.1039/d2cp05562g] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
With the development of science and technology, intermediate infrared technology has gained more and more attention in recent years. In the research described in this paper, a tunable broadband absorber based on a Dirac semimetal with a layered resonant structure was designed, which could achieve high absorption (more than 0.9) of about 8.7 THz in the frequency range of 18-28 THz. It was confirmed that the high absorption of the absorber comes from the strong resonance absorption between the layers, and the resonance of the localised surface plasmon. The absorber has a gold substrate, which is composed of three layers of Dirac semimetal and three layers of optical crystal plates. In addition, the resonance frequency of the absorber can be changed by adjusting the Fermi energy of the Dirac semimetal. The absorber also shows excellent characteristics such as tunability, absorption stability at different polarisation waves and incident angles, and has a high application value for use in radar countermeasures, biotechnology and other fields.
Collapse
Affiliation(s)
- Wenxin Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Jing Ma
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Huafeng Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Zao Yi
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China.
- Joint Laboratory for Extreme Conditions Matter Properties, State Key Laboratory of EnvironmentFriendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hua Yang
- School of Science, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong, 030619, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou, 362000, China
| |
Collapse
|
10
|
Patel SK, Surve J, Parmar J, Aliqab K, Alsharari M, Armghan A. SARS-CoV-2 detecting rapid metasurface-based sensor. DIAMOND AND RELATED MATERIALS 2023; 132:109644. [PMID: 36575667 PMCID: PMC9780024 DOI: 10.1016/j.diamond.2022.109644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We have proposed a novel approach to detect COVID-19 by detecting the ethyl butanoate which high volume ratio is present in the exhaled breath of a COVID-19 infected person. We have employed a refractive index sensor (RIS) with the help of a metasurface-based slotted T-shape perfect absorber that can detect ethyl butanoate present in exhaled breath of COVID-19 infected person with high sensitivity and in-process SARS-CoV-2. The optimized structure of the sensor is obtained by varying several structure parameters including structure length and thickness, slotted T-shape resonator length, width, and thickness. Sensor's performance is evaluated based on numerous factors comprising of sensitivity, Q factor, detection limit, a figure of merit (FOM), detection accuracy, and other performance defining parameters. The proposed slotted T-shape RIS achieved the largest sensitivity of 2500 nm/RIU, Q factor of 131.06, a FOM of 131.58 RIU-1, detection limit of 0.0224 RIU.
Collapse
Affiliation(s)
- Shobhit K Patel
- Department of Computer Engineering, Marwadi University, Rajkot, Gujarat - 360003, India
| | - Jaymit Surve
- Department of Electrical Engineering, Marwadi University, Rajkot, Gujarat - 360003, India
| | - Juveriya Parmar
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 1400 R St., NE 68588, USA
| | - Khaled Aliqab
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Meshari Alsharari
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ammar Armghan
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
11
|
Li Y, Xu Y, Jiang J, Cheng S, Yi Z, Xiao G, Zhou X, Wang Z, Chen Z. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial. Phys Chem Chem Phys 2023; 25:3820-3833. [PMID: 36645136 DOI: 10.1039/d2cp05368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A periodic patterned graphene-based terahertz metamaterial comprising three transverse graphene strips and one longitudinal continuous graphene ribbon is proposed to achieve a dynamically tunable quadruple plasmon-induced transparency (PIT) effect. Further analysis of the magnetic field distribution along the x-direction shows that the quadruple-PIT window can be produced by the strong destructive interference between the bright mode and the dark mode. The spectral response characteristics of the quadruple-PIT effect are numerically and theoretically investigated, and the results obtained by the finite-difference time-domain (FDTD) simulation fit well with that by the coupled mode theory (CMT) calculation. In addition, two hepta-frequency asynchronous switches are achieved by tuning the Fermi energy of the graphene, and their maximum modulation depths are 98.9% and 99.7%, corresponding to the insertion losses of 0.173 dB and 0.334 dB, respectively. Further studies show that polarization light has a significant impact on the quadruple-PIT, resulting in a polarization-sensitive switch being realized with a maximum modulation depth of 99.7% and a minimum insertion loss of 0.048 dB. In addition, when the Fermi energy is equal to 1.2 eV, the maximum time delay and group refractive index of the quadruple-PIT can be respectively as high as 1.065 ps and 3194, and the maximum delay-bandwidth product reaches 1.098, which means that excellent optical storage is achieved. Thus, our proposed quadruple-PIT system can be used to design a terahertz multi-channel switch and optical storage.
Collapse
Affiliation(s)
- Yuhui Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Yiping Xu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Jiabao Jiang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guohui Xiao
- Jiangxi Province Key Laboratory of Optoelectronics and Communications, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Xianwen Zhou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Ziyi Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Zhanyu Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
12
|
Machine learning assisted hepta band THz metamaterial absorber for biomedical applications. Sci Rep 2023; 13:1792. [PMID: 36720922 PMCID: PMC9889771 DOI: 10.1038/s41598-023-29024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
A hepta-band terahertz metamaterial absorber (MMA) with modified dual T-shaped resonators deposited on polyimide is presented for sensing applications. The proposed polarization sensitive MMA is ultra-thin (0.061 λ) and compact (0.21 λ) at its lowest operational frequency, with multiple absorption peaks at 1.89, 4.15, 5.32, 5.84, 7.04, 8.02, and 8.13 THz. The impedance matching theory and electric field distribution are investigated to understand the physical mechanism of hepta-band absorption. The sensing functionality is evaluated using a surrounding medium with a refractive index between 1 and 1.1, resulting in good Quality factor (Q) value of 117. The proposed sensor has the highest sensitivity of 4.72 THz/RIU for glucose detection. Extreme randomized tree (ERT) model is utilized to predict absorptivities for intermediate frequencies with unit cell dimensions, substrate thickness, angle variation, and refractive index values to reduce simulation time. The effectiveness of the ERT model in predicting absorption values is evaluated using the Adjusted R2 score, which is close to 1.0 for nmin = 2, demonstrating the prediction efficiency in various test cases. The experimental results show that 60% of simulation time and resources can be saved by simulating absorber design using the ERT model. The proposed MMA sensor with an ERT model has potential applications in biomedical fields such as bacterial infections, malaria, and other diseases.
Collapse
|
13
|
Chang Q, Liu Z, Liu Z, Fu G, Liu X, Liu G. Silicon-based asymmetric dimer-resonator grating for narrowband perfect absorption and sensing. OPTICS EXPRESS 2023; 31:4190-4198. [PMID: 36785393 DOI: 10.1364/oe.480524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
In this work, a method for designing an ultra-narrowband absorber platform is presented with asymmetric silicon-based dimer-resonators grating. Within the infrared range of 3000 ∼ 4000 nm, two narrowband absorption peaks with absorptivity greater than 99% are produced by the absorber. Moreover, during the optical sensing, such an absorber platform shows high-performance sensitivity factors for the absorption wavelengths at λ1 = 3468 nm (S = 3193 nm/RIU, FOM = 532) and at λ2 = 3562 nm (S = 3120 nm/RIU, FOM = 390). Strong scattering coupling and the magnetic resonances supported in this silicon based grating produce the high absorption. Otherwise, additional methods such as the polarization and incident angles are used to further tune the absorption responses in the intensity and wavelengths, indicating the feasibility for artificial manipulations. The achieved ultra-sharp perfect absorption and the related sensitive response hold the silicon based resonant scheme with wide applications in bio-sensing, spectral filtering and other fields.
Collapse
|
14
|
Zhang YG, Zhang R, Liang LJ, Yao HY, Yan X, Huang CC, Ying KH. Multifunctional terahertz absorber based on the Dirac semimetal and vanadium dioxide. APPLIED OPTICS 2023; 62:813-819. [PMID: 36821288 DOI: 10.1364/ao.478846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
In this paper, a multifunctional terahertz (THz) absorber based on Dirac semimetal and vanadium dioxide (V O 2) is proposed. By modulating the temperature of V O 2, the absorber can be switched between the narrow band and wide band. When V O 2 is in the metallic state, the absorber has a broadband absorption effect with a bandwidth of approximately 4 THz. It has the advantages of insensitivity to polarization and wide-angle absorption. When V O 2 is in the insulating state, the absorber has two absorption peaks with absorptivity exceeding 90% and sensitivities of 297.7 and 402 GHz/RIU, and thus can be used as a highly sensitive sensor for cell detection. When the Fermi level of the Dirac semimetal is changed, the absorption characteristics can be modulated. The absorber has broad application prospects in multifunctional modulated devices.
Collapse
|
15
|
He X, Lin F, Liu F, Shi W. 3D Dirac semimetals supported tunable terahertz BIC metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4705-4714. [PMID: 39634750 PMCID: PMC11501556 DOI: 10.1515/nanoph-2022-0285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 12/07/2024]
Abstract
Based on the 3D Dirac semimetals (DSM) supported tilted double elliptical resonators, the tunable propagation properties of quasi-bound in continuum (BIC) resonance have been investigated in the THz regime, including the effects of rotation angles, DSM Fermi level, and the configuration of resonators. The results manifest that by altering the rotation angle of elliptical resonator, an obvious sharp BIC transmission dip is observed with the Q-factor of more than 60. The DSM Fermi level affects the BIC resonance significantly, a sharp resonant dip is observed if Fermi level is larger than 0.05 eV, resulting from the contributions of reflection and absorption. If Fermi level changes in the range of 0.01-0.15 eV, the amplitude and frequency modulation depths are 92.75 and 44.99%, respectively. Additionally, with the modified configurations of elliptical resonators, e.g. inserting a dielectric hole into the elliptical resonator, another transmission dip resonance is excited and indicates a red shift with the increase of the permittivity of the dielectric filling material. The results are very helpful to understand the mechanisms of DSM plasmonic structures and develop novel tunable THz devices, such as modulators, filters, and sensors in the future.
Collapse
Affiliation(s)
- Xiaoyong He
- Department of Physics, Mathematics & Science College, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
- Shanghai Key Lab for Astrophysics, No. 100 Guilin Road, Shanghai200234, China
| | - Fangting Lin
- Department of Physics, Mathematics & Science College, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
- Shanghai Key Lab for Astrophysics, No. 100 Guilin Road, Shanghai200234, China
| | - Feng Liu
- Department of Physics, Mathematics & Science College, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
- Shanghai Key Lab for Astrophysics, No. 100 Guilin Road, Shanghai200234, China
| | - Wangzhou Shi
- Department of Physics, Mathematics & Science College, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China
- Shanghai Key Lab for Astrophysics, No. 100 Guilin Road, Shanghai200234, China
| |
Collapse
|
16
|
Wang X, Lin J, Yan Z, Yi Z, Yu J, Zhang W, Qin F, Wu X, Zhang J, Wu P. Tunable high-sensitivity sensing detector based on Bulk Dirac semimetal. RSC Adv 2022; 12:32583-32591. [PMID: 36425681 PMCID: PMC9661490 DOI: 10.1039/d2ra05402g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
This paper proposes a tunable sensing detector based on Bulk Dirac semimetals (BDS). The bottom-middle-top structure of the detector is a metal-dielectric-Dirac semimetal. The designed detector is simulated in the frequency domain by the finite element method (FEM). And the simulation results indicate that the detector achieves three perfect absorption peaks with absorptivity greater than 99.8% in the range of 2.4-5.2 THz. We analyze the cause of the absorption peak by using random phase approximation theory. The device exhibits good angular insensitivity in different incident angle ranges, and the three absorption peaks can reach 90% absorption rate when the incident angle is in the ranges of 0-60°. And when adjusting the Fermi level of BDS in the ranges of 0.1-0.5 eV, our detector can realize the frequency regulation of the ultra-wide range of 3.90-4.56 THz and realize multi-frequency controllable sensing while maintain the absorption efficiency above 96%. The detector has maximum sensitivity S of 238.0 GHz per RIU when the external environment of the refractive index changes from 1.0 to 1.8, and the maximum detection accuracy is 6.5. The device has broad development prospects in the field of space detection and high-sensitivity biosensing detection.
Collapse
Affiliation(s)
- Xingyu Wang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Jiangchuan Lin
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Zhiyang Yan
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Jiaxin Yu
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Wei Zhang
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, Key Laboratory of Testing Technology for Manufacturing Process in Ministry of Education, Southwest University of Science and Technology Mianyang 621010 China
| | - Feng Qin
- Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics Mianyang 621900 China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Jianguo Zhang
- Department of Physics and Electronic Engineering, Jinzhong University Jinzhong 030619 China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
17
|
Li Q, Bi K, Niu Y, Zhou S, Tan L, Mu J, Han S, Zhang S, Geng W, Mei L, Chou X. Modulation of graphene THz absorption based on HAuCl 4 doping method. OPTICS EXPRESS 2022; 30:40482-40490. [PMID: 36298980 DOI: 10.1364/oe.475103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Graphene is an attractive material for terahertz (THz) absorbers because of its tunable Fermi-Level (EF). It has become a research hotspot to modulate the EF of graphene and THz absorption of graphene. Here, a sandwich-structured single layer graphene (SLG)/ Polyimide (PI)/Au THz absorber was proposed, and top-layer graphene was doped by HAuCl4 solutions. The EF of graphene was shifted by HAuCl4 doping, which was characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Raman tests. The results showed that the EF is shifted about 0.42 eV under 100 mM HAuCl4 doping, the sheet resistance is reduced from 1065 Ω/sq (undoped) to 375 Ω/sq (100 mM). The corresponding absorbance was increased from 40% to 80% at 0.65 THz and increased from 50% to 90% at 2.0 THz under 100 mM HAuCl4 doping. Detailed studies showed that the absorption came from a sandwich structure that meets the impedance matching requirements and provided a thin resonant cavity to capture the incident THz waves. In addition, not only the absorber can be prepared simply, but its results in experiments and simulations agree as well. The proposed device can be applied to electromagnetic shielding and imaging, and the proposed method can be applied to prepare other graphene-based devices.
Collapse
|
18
|
Wang D, Zhu W, Yi Z, Ma G, Gao X, Dai B, Yu Y, Zhou G, Wu P, Liu C. Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. OPTICS EXPRESS 2022; 30:39055-39067. [PMID: 36258455 DOI: 10.1364/oe.470386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A surface plasmon resonance (SPR) sensor comprising photonic crystal fiber (PCF) is designed for magnetic field and temperature dual-parameter sensing. In order to make the SPR detection of magnetic field and temperature effectively, the two open ring channels of the proposed sensor are coated with gold and silver layers and filled with magnetic fluid (MF) and Polydimethylsiloxane (PDMS), respectively. The sensor is analyzed by the finite element method and its mode characteristics, structure parameters and sensing performance are investigated. The analysis reveals when the magnetic field is a range of 40-310 Oe and the temperature is a range of 0-60 °C, the maximum magnetic field sensitivity is 308.3 pm/Oe and temperature sensitivity is 6520 pm/°C. Furthermore, temperature and magnetic field do not crosstalk with each other's SPR peak. Its refractive index sensing performance is also investigated, the maximum sensitivity and FOM of the left channel sensing are 16820 nm/RIU and 1605 RIU-1, that of the right channel sensing are 13320 nm/RIU and 2277 RIU-1. Because of its high sensitivity and special sensing performance, the proposed sensor will have potential application in solving the problems of cross-sensitivity and demodulation due to nonlinear changes in sensitivity of dual-parameter sensing.
Collapse
|
19
|
Zhang Z, Zhang Q, Li B, Zang J, Cao X, Zhao X, Xue C. Double Fano Resonance and Independent Regulation Characteristics in a Rectangular-like Nanotetramer Metasurface Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3479. [PMID: 36234607 PMCID: PMC9565657 DOI: 10.3390/nano12193479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Fano resonance, which is based on a plasmonic metasurface, has many potential applications in various fields, such as biochemical sensors, slow light effect, and integrated optical circuits. In this study, a rectangular-like nanotetramer metasurface structure composed of four round-head nanorods was designed. The transmission spectrum, surface charge, and electrical field distributions of the proposed structure were simulated using the finite element method. A double Fano resonance profile was observed in the transmission spectrum. One of the Fano resonances was caused by the symmetry breaking and plasmon hybridization between the horizontal double rods, whereas the other resonance was due to the plasmonic modes' hybridization among four nanorods. These resonances could be independently tuned because of different formation mechanisms. The number of Fano resonances could be adjusted by changing the coupling distance between the horizontal and vertical rods. The results contributed to designing the highly sensitive sensors based on the plasmonic metasurface.
Collapse
Affiliation(s)
- Zhidong Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China
| | - Qingchao Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China
| | - Bo Li
- School of Software, North University of China, Taiyuan 030051, China
| | - Junbin Zang
- Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China
| | - Xiyuan Cao
- Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China
| | - Xiaolong Zhao
- School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan 030051, China
| |
Collapse
|
20
|
Zhou Y, Li L, He Z, Wang Y, Cui W, Yang Z, Lu S, Wu X, Bai L. Field Enhancement for the Composite MXene/Black Phosphorus-Based Metasurface. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3155. [PMID: 36144943 PMCID: PMC9505287 DOI: 10.3390/nano12183155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Both MXene and black phosphorus (BP), which actg as hot two-dimensional (2D) materials, have unique optical properties and important applications for nano-micro optical devices. Here, a composite MXene/BP-based metasurface, consisting of Ti3C2Tx and BP layers, is proposed for investigating the optical responses and electric field by using the finite-difference time-domain numerical simulation method in the microwave band. The research results show that the Fano resonance-like spectra can be observed when the coupling of surface plasmons (SPs) on the BP and MXene layers appears. Furthermore, the field enhancement, based on the Fano resonance-like optical responses, can be improved by an order of magnitude through adjusting the structural parameters and the polarization direction of incident light for the proposed metasurface. The findings may provide important theoretical insights into the design and realization of high-performance plasmonic devices.
Collapse
Affiliation(s)
- Yihui Zhou
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Lingqiao Li
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Zhihui He
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Yixuan Wang
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
- School of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
| | - Wei Cui
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Zhimin Yang
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Shaojun Lu
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Xiongxiong Wu
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| | - Lang Bai
- School of Physics and Electronic Information, Innovation Team of Smart Metamaterials for Weak Signal Detection, Yan’an University, Yan’an 716000, China
| |
Collapse
|
21
|
Yang J, Petrescu FIT, Li Y, Song D, Shi G. A Novel Bio-Inspired Ag/3D-TiO 2/Si SERS Substrate with Ordered Moth-like Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3127. [PMID: 36144914 PMCID: PMC9501013 DOI: 10.3390/nano12183127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This paper reports a novel method to fabricate a bio-inspired SERS substrate with low reflectivity, ultra-sensitivity, excellent uniformity, and recyclability. First, double layers of polystyrene spheres with different particle sizes were assembled on the surface of a silicon wafer to act as a moth-like template. Second, through the template sacrifice method, the TiO2 film with a three-dimensional moth-like eye structure was induced by the double-layer polystyrene spheres in the previous step, and its microscopic morphology showed a high degree of order. Finally, Ag nanoparticles were assembled on the TiO2 film to form a bio-inspired SERS substrate. This ordered bio-inspired structure can not only reduce reflection, but also reinforce the uniformity of hotspot density, which helps to improve the sensitivity and uniformity of the Raman signal. This bio-inspired SERS substrate can detect R6G molecules at a concentration as low as 1.0 × 10-10 mol/L, and its enhancement factor (EF) can reach 6.56 × 106. In addition, the composite of Ag and TiO2 can realize the photocatalytic degradation of R6G and then realize the recyclability of the SERS substrate.
Collapse
Affiliation(s)
- Jingguo Yang
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | - Ying Li
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dandan Song
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Wang Y, Xuan X, Wu S, Zhu L, Zhu J, Shen X, Zhang Z, Hu C. Reverse design of metamaterial absorbers based on an equivalent circuit. Phys Chem Chem Phys 2022; 24:20390-20399. [PMID: 35983852 DOI: 10.1039/d2cp01626e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a reverse design method useful for designing and analyzing metamaterial absorbers; we demonstrate its power by designing both a narrowband absorber and a wideband absorber. The method determines the structure of the absorber using an equivalent-circuit model. The narrowband metamaterial absorber structures were based on the equivalent-circuit model, and the narrowband metamaterial absorber designed using the method has an absorption fraction greater than 90% in a bandwidth of 500 nm centered at about 1450 nm. In order to extend the absorption bandwidth for the absorber, the narrowband absorber structure is adjusted based on the equivalent-circuit model, and the broadband metamaterial absorber structure is investigated. The numerical results show that the absorption bandwidth is substantially increased; the absorbance is greater than 90% for a band nearly reaching the limits of our experiment, from about 400 nm (near-ultraviolet) to about 2800 nm (deep infrared). The absorption spectrum of the wideband absorber is more sensitive to the angle of incident polarization due to the asymmetric structure, but the whole band shows polarization independence. For a large angle of 60° (TM polarization) oblique incidence, the average absorption of the broadband metamaterial absorber reaches 81%. The physical mechanism of the wideband high absorption is analyzed, which is mainly caused by Fabry-Perot resonance, surface plasmon resonance, local surface plasmon resonance, and the hybrid coupling among them. Our proposed design with high-broadband absorption has significant potential for thermoelectric and thermal emitters, solar thermal energy harvesting, and invisible device applications.
Collapse
Affiliation(s)
- Yang Wang
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| | - Xuefei Xuan
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| | - Shenbing Wu
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| | - Lu Zhu
- School of Information Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Jiabing Zhu
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| | - Xiaobo Shen
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| | - Zhipeng Zhang
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| | - Changjun Hu
- School of Electronic Engineering, Huainan Normal University, Huainan 232000, China.
| |
Collapse
|
23
|
Wang D, Yi Z, Ma G, Dai B, Yang J, Zhang J, Yu Y, Liu C, Wu X, Bian Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys Chem Chem Phys 2022; 24:21233-21241. [PMID: 36040374 DOI: 10.1039/d2cp02778j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a dual-parameter sensor based on surface plasmon resonance (SPR)-photonic crystal fiber (PCF) is proposed, which can be applied in detecting the magnetic field and temperature. In this sensor, two elliptical channels are designed on both sides of the fiber core. The left channel (Ch 1) is coated with gold film and filled with magnetic fluid (MF) to achieve a response to the magnetic field and temperature using SPR. The right channel (Ch 2) is coated with gold film as well as Ta2O5 film to improve the SPR sensing performance. Finally, Ch 2 is filled with polydimethylsiloxane (PDMS) to achieve a response to the temperature. The mode characteristics, structural parameters and sensing performance are investigated by the finite element method. The results show that when the magnetic field is in the range of 50-130 Oe, the magnetic field sensitivities of Ch 1 and Ch 2 are 65 pm Oe-1 and 0 pm Oe-1, respectively. When the temperature is in the range of 17.5-27.5 °C, the temperature sensitivities of Ch 1 and Ch 2 are 520 pm °C-1 and 2360 pm °C-1, respectively. By establishing and demodulating a sensing matrix, the sensor can not only measure the temperature and magnetic field simultaneously but also solve the temperature cross-sensitivity problem. In addition, when the temperature exceeds a certain value, the proposed sensor is expected to achieve dual-parameter sensing without a matrix. The proposed dual-parameter SPR-PCF sensor has a unique structure and excellent sensing performance, which are important for the simultaneous sensing of multiple basic physical parameters.
Collapse
Affiliation(s)
- Dongying Wang
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Guolu Ma
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Bo Dai
- Joint Laboratory for Extreme Conditions Matter Properties, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Junbo Yang
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China.
| | - Jianfa Zhang
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China.
| | - Yang Yu
- College of Liberal Arts and Sciences, Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China. .,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem And Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Qiang Bian
- Institute for Measurement and Sensor Technology, Technical University of Munich, Munich 80333, Germany
| |
Collapse
|
24
|
Shangguan Q, Chen Z, Yang H, Cheng S, Yang W, Yi Z, Wu X, Wang S, Yi Y, Wu P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22176483. [PMID: 36080942 PMCID: PMC9460058 DOI: 10.3390/s22176483] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 05/27/2023]
Abstract
The paper proposes an ultra-narrow band graphene refractive index sensor, consisting of a patterned graphene layer on the top, a dielectric layer of SiO2 in the middle, and a bottom Au layer. The absorption sensor achieves the absorption efficiency of 99.41% and 99.22% at 5.664 THz and 8.062 THz, with the absorption bandwidths 0.0171 THz and 0.0152 THz, respectively. Compared with noble metal absorbers, our graphene absorber can achieve tunability by adjusting the Fermi level and relaxation time of the graphene layer with the geometry of the absorber unchanged, which greatly saves the manufacturing cost. The results show that the sensor has the properties of polarization-independence and large-angle insensitivity due to the symmetric structure. In addition, the practical application of testing the content of hemoglobin biomolecules was conducted, the frequency of first resonance mode shows a shift of 0.017 THz, and the second resonance mode has a shift of 0.016 THz, demonstrating the good frequency sensitivity of our sensor. The S (sensitivities) of the sensor were calculated at 875 GHz/RIU and 775 GHz/RIU, and quality factors FOM (Figure of Merit) are 26.51 and 18.90, respectively; and the minimum limit of detection is 0.04. By comparing with previous similar sensors, our sensor has better sensing performance, which can be applied to photon detection in the terahertz band, biochemical sensing, and other fields.
Collapse
Affiliation(s)
- Qianyi Shangguan
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zihao Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
25
|
Cao M, Wang J, Yuen MMF, Yan D. Realization of Multifunctional Metamaterial Structure Based on the Combination of Vanadium Dioxide and Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2883. [PMID: 36014748 PMCID: PMC9413590 DOI: 10.3390/nano12162883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Combining tunable properties and various functionalities into a single metamaterial structure has become a novel research hotspot and can be used to tackle great challenges. The multifunctional metamaterial structure that combines absorption, linear-to-circular (LTC) polarization conversion, filtering and switching functions into a single metamaterial device was designed and investigated in this study. The switching of different functions can be achieved based on the phase transition of vanadium dioxide (VO2) and change of graphene chemical potential. When VO2 is in a metal state, the multi-frequency absorption and LTC polarization conversion can be achieved with different chemical potentials. When VO2 is in the insulator state and the polarization angle of incident wave is 45°, the device can be used to select or isolate the incident waves with different polarization states in the frequency region of 1.2-1.8 THz. Furthermore, when the chemical potentials are 0.05 eV and 1.2 eV, the corresponding transmissions of the TE-polarized wave demonstrate the opposite results, realizing the switching functions in the frequency region of 0.88-1.34 THz. In the frequency region above 2 THz, the multi-frequency rejection filter can be achieved. The designed switchable multifunctional metamaterial device can be widely implemented in radar monitoring and communication systems.
Collapse
Affiliation(s)
- Mingxuan Cao
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Junchao Wang
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Matthew M. F. Yuen
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dexian Yan
- Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
26
|
Wang D, Yu Y, Lu Z, Yang J, Yi Z, Bian Q, Zhang J, Qin S, Weng J, Yao S, Lu Y, Hu X, Meng Z. Design of photonic crystal fiber to excite surface plasmon resonance for highly sensitive magnetic field sensing. OPTICS EXPRESS 2022; 30:29271-29286. [PMID: 36299105 DOI: 10.1364/oe.459088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
To improve the sensing performance of optical fiber magnetic field sensor based on magneto-refractive effect, a D-shaped photonic crystal fiber-surface plasmon resonance (PCF-SPR) sensor based on magneto-refractive effect is proposed and its magnetic field sensing characteristics are investigated. The designed D-shaped PCF has a core-analyte-gold structure. Within the D-shaped PCF, the side polishing surface is coated with the gold film and the special hole is sandwiched between the core and the gold film. To realize the high magnetic field sensitivity for the fiber SPR magnetic field sensor, the special hole is filled with magnetic fluid (MF). In this paper, we analyze the mode transmission characteristics and magnetic field sensing characteristics of this fiber sensor by finite element method. We also obtain a general rule for the optimization of PCF-SPR sensors by analyzing the dispersion curves, the energy of the surface plasmon polariton mode and the core mode on the sensing performance of the designed fiber sensor. The maximum refractive index sensitivity and magnetic field sensitivity of the optimized fiber are 59714.3 nm/RIU and 21750 pm/mT (50-130 Oe), respectively. Compared with optical fiber magnetic field sensors based on magneto-refractive effect reported previously, the magnetic field sensitivity in this paper is nearly two orders of magnitude higher and it can initially achieve nT magnitude magnetic field resolution and testing capability. The proposed fiber sensor has the advantages of simple structure, easy production, high sensitivity, and strong environmental adaptability. It not only improves the sensing performance of optical fiber magnetic field sensors, but also provides an ideal alternative platform for biosensors like microfluidics because of its high refractive index sensitivity and the special structure.
Collapse
|
27
|
Alwareth H, Ibrahim IM, Zakaria Z, Al-Gburi AJA, Ahmed S, Nasser ZA. A Wideband High-Gain Microstrip Array Antenna Integrated with Frequency-Selective Surface for Sub-6 GHz 5G Applications. MICROMACHINES 2022; 13:mi13081215. [PMID: 36014136 PMCID: PMC9416536 DOI: 10.3390/mi13081215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022]
Abstract
This paper presents a wideband and high-gain rectangular microstrip array antenna with a new frequency-selective surface (FSS) designed as a reflector for the sub-6 5G applications. The proposed antenna is designed to meet the US Federal Communications Commission (FCC) standard for 5G in the mid-band (3.5–5 GHz) applications. The designed antenna configuration consists of 1 × 4 rectangular microstrip array antenna with an FSS reflector to produce a semi-stable high radiation gain. The modeled FSS delivered a wide stopband transmission coefficient from 3.3 to 5.6 GHz and promised a linearly declining phase over the mid-band frequencies. An equivalent circuit (EC) model is additionally performed to verify the transmission coefficient of the proposed FSS structure for wideband signal propagation. A low-cost FR-4 substrate material was used to fabricate the antenna prototype. The proposed wideband array antenna with an FSS reflector attained a bandwidth of 2.3 GHz within the operating frequency range of 3.5–5.8 GHz, with a fractional bandwidth of 51.12%. A high gain of 12.4 dBi was obtained at 4.1 GHz with an improvement of 4.4 dBi compared to the antenna alone. The gain variation was only 1.0 dBi during the entire mid-band. The total dimension of the fabricated antenna prototype is 10.32 λo × 4.25 λo ×1.295 λo at a resonance frequency of 4.5 GHz. These results make the presented antenna appropriate for 5G sub-6 GHz applications.
Collapse
Affiliation(s)
- Husam Alwareth
- Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (H.A.); (Z.Z.); (Z.A.N.)
| | - Imran Mohd Ibrahim
- Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (H.A.); (Z.Z.); (Z.A.N.)
- Correspondence: (I.M.I.); (A.J.A.A.-G.)
| | - Zahriladha Zakaria
- Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (H.A.); (Z.Z.); (Z.A.N.)
| | - Ahmed Jamal Abdullah Al-Gburi
- Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (H.A.); (Z.Z.); (Z.A.N.)
- Correspondence: (I.M.I.); (A.J.A.A.-G.)
| | - Sharif Ahmed
- Faculty of Engineering and Technology, Multimedia University (MMU), Ayer Keroh 75450, Malaysia;
| | - Zayed A. Nasser
- Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia; (H.A.); (Z.Z.); (Z.A.N.)
| |
Collapse
|
28
|
Wu P, Qu S, Zeng X, Su N, Chen M, Yu Y. High- Q refractive index sensors based on all-dielectric metasurfaces. RSC Adv 2022; 12:21264-21269. [PMID: 35975043 PMCID: PMC9344899 DOI: 10.1039/d2ra02176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Possessing fantastic abilities to freely manipulate electromagnetic waves on an ultrathin platform, metasurfaces have aroused intense interest in the academic circle. In this work, we present a high-sensitivity refractive index sensor excited by the guided mode of a two-dimensional periodic TiO2 dielectric grating structure. Numerical simulation results show that the optimized nanosensor can excite guided-mode resonance with an ultra-narrow linewidth of 0.19 nm. When the thickness of the biological layer is 20 nm, the sensitivity, Q factor, and FOM values of the nanosensor can reach 82.29 nm RIU-1, 3207.9, and 433.1, respectively. In addition, the device shows insensitivity to polarization and good tolerance to the angle of incident light. This demonstrates that the utilization of low-loss all-dielectric metasurfaces is an effective way to achieve ultra-sensitive biosensor detection.
Collapse
Affiliation(s)
- Pinghui Wu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Shuangcao Qu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Xintao Zeng
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Ning Su
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Musheng Chen
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Yanzhong Yu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
29
|
Frequency Scanning Dual-Mode Asymmetric Dual-OAM-Wave Generation Base on Broadband PB Metasurface. MICROMACHINES 2022; 13:mi13071117. [PMID: 35888934 PMCID: PMC9315772 DOI: 10.3390/mi13071117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022]
Abstract
Increasing information capacity is significant for high-speed communication systems in a congested radio frequency sequence. Vortex waves carrying mode orthogonal orbital angular momentum (OAM) have gained considerable attention in recent years, owing to their multiplexing quality. In this study, a broadband Pancharatnam-Berry (PB) metasurface element with a simple structure is proposed, which exhibits an efficient reflection of the co-polarized component and a full 2π phase variation in 10.5-21.5 GHz under circularly polarized wave incidence. By convolution and addition operations, the elaborate phase distribution is arranged and the corresponding metasurface-reflecting dual-mode asymmetric dual-OAM waves is constructed. Under continuous control of the working frequency, the OAM vortex beams with the topological charges 1 and -1 are steered to scan within the angle range of 11.9°-24.9° and 17.9°-39.1° at φ = 315° and 135° planes, respectively. The simulation and measurement results verified the feasibility of generating frequency-controlled asymmetric dual beams and the validity of dual-mode OAM characteristics, both in the near and far fields. This design approach has considerable potential in OAM wave multiplexing and wireless communication system transmission.
Collapse
|
30
|
Perfect Absorption of Fan-Shaped Graphene Absorbers with Good Adjustability in the Mid-Infrared. COATINGS 2022. [DOI: 10.3390/coatings12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper presents a graphene metamaterial absorber based on impedance matching. A finite difference in time domain (FDTD) method is used to achieve a theoretically perfect absorption in the mid-infrared band. A basis is created for the multiband stable high absorption of graphene in the mid-infrared. The designed graphene absorber is composed of graphene, a dielectric layer, a gold plane, and a silicon substrate, separately. The incident source of mid-infrared can be utilized to stimulate multiband resonance absorption peaks from 2.55 to 4.15 μm. The simulation results show that the absorber has three perfect resonance peaks exceeding 99% at λ1 = 2.67 μm, λ2 = 2.87 μm, and λ3 = 3.68 μm, which achieve an absorption efficiency of 99.67%, 99.61%, and 99.40%, respectively. Furthermore, the absorber maintains an excellent performance with a wide incident angle range of 0°–45°, and it also keeps the insensitive characteristic to transverse electric wave (TE) and transverse magnetic wave (TM). The results above indicate that our perfect graphene absorber, with its tunability and wide adaptability, has many potential applications in the fields of biosensing, photodetection, and photocell.
Collapse
|
31
|
Li L, Gao H, Yi Z, Wang S, Wu X, Li R, Yang H. Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128758] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Metamaterial Solar Absorber Based on Refractory Metal Titanium and Its Compound. COATINGS 2022. [DOI: 10.3390/coatings12070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metamaterials refers to a class of artificial materials with special properties. Through its unique geometry and the small size of each unit, the material can acquire unique electromagnetic field properties that conventional materials do not have. Based on these factors, we put forward a kind of high absorption near-ultraviolet to near-infrared electromagnetic wave absorber of the solar energy. The surface structure of the designed absorber is composed of TiN-TiO2-Al2O3 with rectangles and disks, and the substrate is Ti-Al2O3-Ti layer. In the study band range (0.1–3.0 μm), the solar absorber’s average absorption is up to 96.32%, and the designed absorber absorbs more than 90% of the electromagnetic wave with a wavelength width of 2.577 μm (0.413–2.990 μm). Meanwhile, the designed solar absorber has good performance under different angles of oblique incident light. Ultra-wideband solar absorbers have great potential in light absorption related applicaitions because of their wide spectrum high absorption properites.
Collapse
|
33
|
Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al2O3-Nickel Nanofilms. NANOMATERIALS 2022; 12:nano12132205. [PMID: 35808043 PMCID: PMC9268592 DOI: 10.3390/nano12132205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
In the traditional surface plasmon resonance sensor, the sensitivity is calculated by the usage of angular interrogation. The proposed surface plasmon resonance (SPR) sensor uses a diamagnetic material (Al2O3), nickel (Ni), and two-dimensional (2D) BlueP/WS2 (blue phosphorous-tungsten di-sulfide). The Al2O3 sheet is sandwiched between silver (Ag) and nickel (Ni) films in the Kretschmann configuration. A mathematical simulation is performed to improve the sensitivity of an SPR sensor in the visible region at a frequency of 633 nm. The simulation results show that an upgraded sensitivity of 332°/RIU is achieved for the metallic arrangement consisting of 17 nm of Al2O3 and 4 nm of Ni in thickness for analyte refractive indices ranging from 1.330 to 1.335. The thickness variation of the layers plays a curial role in enhancing the performance of the SPR sensor. The thickness variation of the proposed configuration containing 20 nm of Al2O3 and 1 nm of Ni with a monolayer of 2D material BlueP/WS2 enhances the sensitivity to as high as 374°/RIU. Furthermore, it is found that the sensitivity can be altered and managed by means of altering the film portions of Ni and Al2O3
Collapse
|
34
|
Alwadai N, Saleman N, Elqahtani ZM, Khan SUD, Majid A. Photonics with Gallium Nitride Nanowires. MATERIALS 2022; 15:ma15134449. [PMID: 35806573 PMCID: PMC9267457 DOI: 10.3390/ma15134449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
The surface plasmon resonance in low-dimensional semiconducting materials is a source of valuable scientific phenomenon which opens widespread prospects for novel applications. A systematic study to shed light on the propagation of plasmons at the interface of GaN nanowire is reported. A comprehensive analysis of the interaction of light with GaN nanowires and the propagation of plasmons is carried out to uncover further potentials of the material. The results obtained on the basis of calculations designate the interaction of light with nanowires, which produced plasmons at the interface that propagate along the designed geometry starting from the center of the nanowire towards its periphery, having more flux density at the center of the nanowire. The wavelength of light does not affect the propagation of plasmons but the flux density of plasmons appeared to increase with the wavelength. Similarly, an increment in the flux density of plasmons occurs even in the case of coupled and uncoupled nanowires with wavelength, but more increment occurs in the case of coupling. Further, it was found that an increase in the number of nanowires increases the flux density of plasmons at all wavelengths irrespective of uniformity in the propagation of plasmons. The findings point to the possibility of tuning the plasmonics by using a suitable number of coupled nanowires in assembly.
Collapse
Affiliation(s)
- Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.A.); (Z.M.E.)
| | - Nigza Saleman
- Department of Physics, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (N.S.); (A.M.)
| | - Zainab Mufarreh Elqahtani
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.A.); (Z.M.E.)
| | - Salah Ud-Din Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
- Correspondence:
| | - Abdul Majid
- Department of Physics, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (N.S.); (A.M.)
| |
Collapse
|
35
|
Mao Y, Wang J, Sun S, He M, Tian S, Liang E. Plasmon mode manipulation based on multi-layer hyperbolic metamaterials. OPTICS EXPRESS 2022; 30:22353-22363. [PMID: 36224934 DOI: 10.1364/oe.457014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
Metamaterial with hyperbolic dispersion properties can effectively manipulate plasmonic resonances. Here, we designed a hyperbolic metamaterial (HMM) substrate with a near-zero dielectric constant in the near-infrared region to manipulate the plasmon resonance of the nano-antenna (NA). For NA arrays, tuning the equivalent permittivity of HMM substrate by modifying the thickness of Au/diamond, the wavelength range of plasmon resonance can be manipulated. When the size of the NA changes within a certain range, the spectral position of the plasmon resonance will be fixed in a narrow band close to the epsilon-near-zero (ENZ) wavelength and produce a phenomenon similar to "pinning effect." In addition, since the volume plasmon polaritons (VPP) mode is excited, it will couple with the localized surface plasmon (LSP) mode to generate a spectrum splitting. Therefore, the plasmon resonance is significantly affected and can be precisely controlled by designing the HMM substrate.
Collapse
|
36
|
Xu M, Guo L, Zhang P, Qiu Y, Li Q, Wang J. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array. RSC Adv 2022; 12:16823-16834. [PMID: 35754914 PMCID: PMC9172566 DOI: 10.1039/d2ra02802f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Solar selective absorbers influence the photothermal efficiency of high-temperature solar thermal applications directly and significantly. In present work, a metasurface absorber consisting of an octagonal prism array is proposed, optimized and analyzed. Firstly, the structure parameters of the absorber are optimized, finding the optimal absorber achieves near-perfect spectrally-selectivity compared with the perfect solar absorber. The high solar absorptivity of 0.9591, low emissivity of 0.1594-0.3694, and high photothermal efficiency of 94.72-83.10% are achieved at 1073-1573 K and 1000 suns. Then, the mechanisms leading to the excellent spectral selectivity are investigated, suggesting that the coupling effects of multi-plasmon resonance modes and the impedance matching lead to the high solar absorptivity. Meanwhile, the impedance mismatching is the mechanism to minimize the emissivity in the mid-IR region. Moreover, whether the spectral absorptivity can be changed by structural parameters is investigated, suggesting that the excircle diameter of the first tungsten octagonal prism and the height of SiO2 under the octagonal prism can influence the spectral absorptivity obviously. Finally, the metasurface absorber is demonstrated to be highly insensitive to both polarization and incident angles. These results suggest that the proposed metasurface absorber should be suitable for high-temperature solar thermal devices.
Collapse
Affiliation(s)
- Mingpan Xu
- School of Energy Science and Engineering, Central South University Changsha Hunan 410083 China
| | - Lin Guo
- Energy Research Institute, Qilu University of Technology Jinan 250014 P. R. China
| | - Pengfei Zhang
- School of Energy Science and Engineering, Central South University Changsha Hunan 410083 China
| | - Yu Qiu
- School of Energy Science and Engineering, Central South University Changsha Hunan 410083 China
| | - Qing Li
- School of Energy Science and Engineering, Central South University Changsha Hunan 410083 China
| | - Jikang Wang
- School of Energy Science and Engineering, Central South University Changsha Hunan 410083 China
| |
Collapse
|
37
|
Zhao Q, Liu J, Yang H, Liu H, Zeng G, Huang B. High Birefringence D-Shaped Germanium-Doped Photonic Crystal Fiber Sensor. MICROMACHINES 2022; 13:826. [PMID: 35744440 PMCID: PMC9231219 DOI: 10.3390/mi13060826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
In this work, a surface plasmon resonance (SPR) sensor based on a D-shaped germanium-doped photonic crystal fiber (PCF) is proposed. The finite element method (FEM) is introduced to analyze the structure parameters, such as germanium-doped concentration, lattice pitch, and air hole size. In addition, the coupling properties and birefringence properties of PCF are also studied. The computer simulation results indicate that two different surface plasmon polariton (SPP) coupling modes are produced on the polished surface, covered with metal film, when the analyte refractive index (RI) is 1.34. Then, with the increase of the RI, the incompleteness of one of the coupling modes will be transformed into the complete coupling. The effect of germanium concentration on the birefringence is also analyzed. It has an optimal wavelength sensitivity of 5600 nm/RIU when the RI is 1.37. This sensor exhibits a maximum birefringence of 1.06 × 10-2 and a resolution of 1.78 × 10-5 RIU with high linearity.
Collapse
Affiliation(s)
- Qianhe Zhao
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.Z.); (H.L.); (G.Z.); (B.H.)
| | - Jin Liu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.Z.); (H.L.); (G.Z.); (B.H.)
| | - Haima Yang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Haishan Liu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.Z.); (H.L.); (G.Z.); (B.H.)
| | - Guohui Zeng
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.Z.); (H.L.); (G.Z.); (B.H.)
| | - Bo Huang
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Q.Z.); (H.L.); (G.Z.); (B.H.)
| |
Collapse
|
38
|
Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. NANOMATERIALS 2022; 12:nano12111799. [PMID: 35683655 PMCID: PMC9182140 DOI: 10.3390/nano12111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features.
Collapse
|
39
|
Xue Z, Yu Q, Zhong N, Zeng T, Tang H, Zhao M, Zhao Y, Tang B. Fiber optic sensor for nondestructive detection of microbial growth on a silk surface. APPLIED OPTICS 2022; 61:4463-4470. [PMID: 36256285 DOI: 10.1364/ao.456918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/27/2022] [Indexed: 06/16/2023]
Abstract
To nondestructively detect the mold growth process on silk, a coaxial concave reflection conical fiber optic sensor was developed using conical quartz fibers, fiber connectors, fiber couplers, and a plastic fixator. We established a theoretical model of this sensor and studied the influence of its structural parameters on its sensitivity, characterized the morphology of Aspergillus niger, and detected its growth process on a silk surface. A linear relationship between the sensor's output signal and the mold height was found. The sensor sensitivity, maximum detection error, and low limit of detection were 2.4 E-5 AU/µm, 7.83%, and 10 µm, respectively.
Collapse
|
40
|
Tunable Narrow-Band Filter Based on Long-Range Surface Plasmon Polariton Waveguide Bragg Grating. PHOTONICS 2022. [DOI: 10.3390/photonics9050344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A narrow-band Bragg grating filter based on a long-range surface plasmon polariton (LRSPP) waveguide is theoretically demonstrated. The three-dimensional Au stripe that is embedded in polymer SU-8 acts as both the waveguide and the heating electrode. With the eigen mode expansion and finite element method optimizations, the proposed filter shows a reflectivity of 0.578 and a 3 dB bandwidth of 1.1 nm. The central wavelength can be tuned from 1549.9 nm to 1544.3 nm by varying temperature from 25 °C to 75 °C, while maintaining the optical return loss at −2.5 dB. This proposed tunable filter has potential in on-chip light signal processing.
Collapse
|
41
|
The Optimization of Metal Nitride Coupled Plasmon Waveguide Resonance Sensors Using a Genetic Algorithm for Sensing the Thickness and Refractive Index of Diamond-like Carbon Thin Films. PHOTONICS 2022. [DOI: 10.3390/photonics9050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We theoretically designed the Kretschmann configuration coupled plasmon-waveguide resonance (CPWR) sensors, composed of thin films of metal nitrides. The thicknesses of the layers of the CPWR sensors were optimized using a genetic algorithm. The optimized CPWR sensors were applied to simultaneously measure the thickness and refractive index (RI) of diamond-like carbon (DLC) films. The field profiles and the sensitivity of the CPWR sensors in response to thin DLC films were studied using the finite-different time-domain technique and the transfer matrix method. The genetic algorithm method predicted that the two-mode CPWR sensors could simultaneously analyze the thickness and RI of the DLC films as thin as 1.0 nm at a wavelength of 1550 nm. The simulations showed that the angular sensitivity toward the refractive index changes of the DLC films of the optimized CPWR sensors was comparable to that of traditional CPWR sensors.
Collapse
|
42
|
A Review: The Functional Materials-Assisted Terahertz Metamaterial Absorbers and Polarization Converters. PHOTONICS 2022. [DOI: 10.3390/photonics9050335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
When metamaterial structures meet functional materials, what will happen? The recent rise of the combination of metamaterial structures and functional materials opens new opportunities for dynamic manipulation of terahertz wave. The optical responses of functional materials are greatly improved based on the highly-localized structures in metamaterials, and the properties of metamaterials can in turn be manipulated in a wide dynamic range based on the external stimulation. In the topical review, we summarize the recent progress of the functional materials-based metamaterial structures for flexible control of the terahertz absorption and polarization conversion. The reviewed devices include but are not limited to terahertz metamaterial absorbers with different characteristics, polarization converters, wave plates, and so on. We review the dynamical tunable metamaterial structures based on the combination with functional materials such as graphene, vanadium dioxide (VO2) and Dirac semimetal (DSM) under various external stimulation. The faced challenges and future prospects of the related researches will also be discussed in the end.
Collapse
|
43
|
Refractive Index Sensor Based on a Metal-Insulator-Metal Bus Waveguide Coupled with a U-Shaped Ring Resonator. MICROMACHINES 2022; 13:mi13050750. [PMID: 35630217 PMCID: PMC9144545 DOI: 10.3390/mi13050750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
In this study, a novel refractive index sensor structure was designed consisting of a metal-insulator-metal (MIM) waveguide with two rectangular baffles and a U-Shaped Ring Resonator (USRR). The finite element method was used to theoretically investigate the sensor’s transmission characteristics. The simulation results show that Fano resonance is a sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the successive wide-band mode. Next, the formation of broadband and narrowband is further studied, and finally the key factors affecting the performance of the sensor are obtained. The best sensitivity of this refractive-index sensor is 2020 nm/RIU and the figure of merit (FOM) is 53.16. The presented sensor has the potential to be useful in nanophotonic sensing applications.
Collapse
|
44
|
Immobilization of Streptavidin on a Plasmonic Au-TiO2 Thin Film towards an LSPR Biosensing Platform. NANOMATERIALS 2022; 12:nano12091526. [PMID: 35564234 PMCID: PMC9102245 DOI: 10.3390/nano12091526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
Abstract
Optical biosensors based on localized surface plasmon resonance (LSPR) are the future of label-free detection methods. This work reports the development of plasmonic thin films, containing Au nanoparticles dispersed in a TiO2 matrix, as platforms for LSPR biosensors. Post-deposition treatments were employed, namely annealing at 400 °C, to develop an LSPR band, and Ar plasma, to improve the sensitivity of the Au-TiO2 thin film. Streptavidin and biotin conjugated with horseradish peroxidase (HRP) were chosen as the model receptor–analyte, to prove the efficiency of the immobilization method and to demonstrate the potential of the LSPR-based biosensor. The Au-TiO2 thin films were activated with O2 plasma, to promote the streptavidin immobilization as a biorecognition element, by increasing the surface hydrophilicity (contact angle drop to 7°). The interaction between biotin and the immobilized streptavidin was confirmed by the detection of HRP activity (average absorbance 1.9 ± 0.6), following a protocol based on enzyme-linked immunosorbent assay (ELISA). Furthermore, an LSPR wavelength shift was detectable (0.8 ± 0.1 nm), resulting from a plasmonic thin-film platform with a refractive index sensitivity estimated to be 33 nm/RIU. The detection of the analyte using these two different methods proves that the functionalization protocol was successful and the Au-TiO2 thin films have the potential to be used as an LSPR platform for label-free biosensors.
Collapse
|
45
|
Suo Y, Zhang L, Li Y, Wu Y, Zhang J, Wen Q. Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper. MICROMACHINES 2022; 13:mi13050686. [PMID: 35630153 PMCID: PMC9147944 DOI: 10.3390/mi13050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/25/2023]
Abstract
In the world of terahertz bands, terahertz beam deflection has gradually attracted substantial attention, due to its great significance in wireless communications, high-resolution imaging and radar applications. In this paper, a low-reflection and fast-fabricated terahertz beam deflection device has been realized by utilizing graphene oxide paper. Using laser direct writing technology, graphene oxide has been patterned as a specific sample. The thickness of the graphene oxide-based terahertz devices is around 15–20 μm, and the processing takes only a few seconds. The experimental results show that the beam from this device can achieve 5.7° and 10.2° deflection at 340 GHz, while the reflection is 10%, which is only 1/5 of that of existing conventional devices. The proposed device with excellent performance can be quickly manufactured and applied in the fields of terahertz imaging, communication, and perception, enabling the application of terahertz technology.
Collapse
Affiliation(s)
- Yixin Suo
- Department of Electronic Science and Engineering, University Electronic Science and Technology of China, Chengdu 610054, China; (Y.S.); (L.Z.); (Y.L.); (Y.W.); (J.Z.)
| | - Luming Zhang
- Department of Electronic Science and Engineering, University Electronic Science and Technology of China, Chengdu 610054, China; (Y.S.); (L.Z.); (Y.L.); (Y.W.); (J.Z.)
- Institute of Advanced Millimeter-Wave Technology, University Electronic Science and Technology of China, Chengdu 610054, China
| | - Yihang Li
- Department of Electronic Science and Engineering, University Electronic Science and Technology of China, Chengdu 610054, China; (Y.S.); (L.Z.); (Y.L.); (Y.W.); (J.Z.)
| | - Yu Wu
- Department of Electronic Science and Engineering, University Electronic Science and Technology of China, Chengdu 610054, China; (Y.S.); (L.Z.); (Y.L.); (Y.W.); (J.Z.)
| | - Jian Zhang
- Department of Electronic Science and Engineering, University Electronic Science and Technology of China, Chengdu 610054, China; (Y.S.); (L.Z.); (Y.L.); (Y.W.); (J.Z.)
- Institute of Advanced Millimeter-Wave Technology, University Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiye Wen
- Department of Electronic Science and Engineering, University Electronic Science and Technology of China, Chengdu 610054, China; (Y.S.); (L.Z.); (Y.L.); (Y.W.); (J.Z.)
- Institute of Advanced Millimeter-Wave Technology, University Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence:
| |
Collapse
|
46
|
Grating Structure Broadband Absorber Based on Gallium Arsenide and Titanium. COATINGS 2022. [DOI: 10.3390/coatings12050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We designed a broadband absorber based on a multilayer grating structure composed of gallium arsenide and titanium. The basic unit is a grating structure stacked on top of a semiconductor of gallium arsenide and titanium metal. We used the finite difference time domain method to simulate the designed model and found that the absorber absorption efficiency exceeded 90% in the range from 736 nm to 3171 nm. The absorption efficiency near perfect absorption at 867 nm was 99.69%. The structure had good angle insensitivity, and could maintain good absorption under both the TE mode and TM mode polarized light when the incident angle of the light source changed from 0° to 50°. This kind of metamaterial grating perfect absorber is expected to be widely used in optical fields such as infrared detection, optical sensing, and thermal electronics.
Collapse
|
47
|
Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P. Thermal tuning of terahertz metamaterial absorber properties based on VO 2. Phys Chem Chem Phys 2022; 24:8846-8853. [PMID: 35356962 DOI: 10.1039/d2cp01070d] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel, structurally simple, multifunctional broadband absorber. It consists of a patterned vanadium dioxide film and a metal plate spaced by a dielectric layer. Temperature control allows flexible adjustment of the absorption intensity from 0 to 0.999. The modulation mechanism of the absorber stems from the thermogenic phase change properties of the vanadium dioxide material. The absorber achieves total reflection properties in the terahertz band when the vanadium dioxide is in the insulated state. When the vanadium dioxide is in its metallic state, the absorber achieves near-perfect absorption in the ultra-broadband range of 3.7 THz-9.7 THz. Impedance matching theory and the analysis of electric field are also used to illustrate the mechanism of operation. Compared to previous reports, our structure utilizes just a single cell structure (3 layers only), and it is easy to process and manufacture. The absorption rate and operating bandwidth of the absorber are also optimised. In addition, the absorber is not only insensitive to polarization, but also very tolerant to the angle of incidence. Such a design would have great potential in wide-ranging applications, including photochemical energy harvesting, stealth devices, thermal emitters, etc.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yao Luo
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China.
| | - Qianjv Song
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenxing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Chao Liu
- School of Physics and Electronics Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Pinghui Wu
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
48
|
Li L, Sun X, Xian T, Gao H, Wang S, Yi Z, Wu X, Yang H. Template-free synthesis of Bi 2O 2CO 3 hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic applications. Phys Chem Chem Phys 2022; 24:8279-8295. [PMID: 35319037 DOI: 10.1039/d1cp05952a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, we have adopted a one-step hydrothermal route to synthesize an interesting type of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanosheets. The effects of reaction time on the morphological and structural evolution, light absorption properties, photoelectrochemical performance, and photocatalytic performance of the prepared hierarchical nanotubes were investigated. Among the products synthesized at different reaction times, the 3-hour-derived Bi2O2CO3 hierarchical nanotubes were identified to possess the highest photocatalytic performance. To promote the photocatalytic application of the as-synthesized Bi2O2CO3 hierarchical nanotubes, their performance was systematically evaluated via the photodegradation of various organic pollutants (e.g., methyl orange (MO), rhodamine B (RhB), methylene blue (MB), ciprofloxacin (CIP), sulfamethoxazole (SMX) and tetracycline hydrochloride (TC)) and the photoreduction of Cr(VI) under simulated-sunlight irradiation. Furthermore, their photocatalytic performance was also evaluated by purifying simulated industrial wastewater (i.e., a MO/RhB/MB mixed solution) at different pH values and containing different inorganic anions. Based on the experimental data and density functional theory (DFT) calculations, the involved photocatalytic mechanism was discussed.
Collapse
Affiliation(s)
- Liexiao Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Xiaofeng Sun
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
| | - Tao Xian
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
| | - Huajing Gao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Shifa Wang
- School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing, Wanzhou 404000, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
49
|
Optical Transmission Plasmonic Color Filter with Wider Color Gamut Based on X-Shaped Nanostructure. PHOTONICS 2022. [DOI: 10.3390/photonics9040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extraordinary Optical Transmission Plasmonic Color Filters (EOT-PCFs) with nanostructures have the advantages of consistent color, small size, and excellent color reproduction, making them a suitable replacement for colorant-based filters. Currently, the color gamut created by plasmonic filters is limited to the standard red, green, blue (sRGB) color space, which limits their use in the future. To address this limitation, we propose a surface plasmon resonance (SPR) color filter scheme, which may provide a RGB-wide color gamut while exceeding the sRGB color space. On the surface of the aluminum film, a unique nanopattern structure is etched. The nanohole functions as a coupled grating that matches photon momentum to plasma when exposed to natural light. Metals and surfaces create surface plasmon resonances as light passes through the metal film. The plasmon resonance wavelength can be modified by modifying the structural parameters of the nanopattern to obtain varied transmission spectra. The International Commission on Illumination (CIE 1931) chromaticity diagram can convert the transmission spectrum into color coordinates and convert the spectrum into various colors. The color range and saturation can outperform existing color filters.
Collapse
|
50
|
Mao M, Wang J, Mu K, Fan C, Jia Y, Li R, Chen S, Liang E. Realizing PIT-like transparency via the coupling of plasmonic dipole and ENZ modes. OPTICS EXPRESS 2022; 30:8474-8481. [PMID: 35299299 DOI: 10.1364/oe.450423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Plasmon induced transparency (PIT), known as the coupling of plasmon modes in metamaterials, has attracted intensive research interests in photonic applications. In this work, a PIT-like transparency is realized via the strong coupling of plasmonic dipole and epsilon-near-zero (ENZ) mode. Two types of metasurfaces, namely the gold nanoantenna and dolmen-like metasurface, are designed with an integrated ENZ material aluminum doped zinc oxide (AZO) film. Simulations with the finite element method (FEM) demonstrate that single and double transparent windows are achieved respectively. The adjustments of the peak position and transmittance of transparent windows via the structure parameters and the AZO film thickness are further investigated. This work provides an alternative coupling scheme of realizing PIT-like transparency with simple metasurface design, and offers great potential for future metamaterial applications.
Collapse
|