1
|
Rezaeifard A, Doraghi F, Akbari F, Bari B, Kianmehr E, Ramazani A, Khoobi M, Foroumadi A. Organic Peroxides in Transition-Metal-Free Cyclization and Coupling Reactions (C-C) via Oxidative Transformation. ACS OMEGA 2025; 10:15852-15907. [PMID: 40321530 PMCID: PMC12044487 DOI: 10.1021/acsomega.4c11574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Transition-metal-free transformations are recognized as green and sustainable methods for constructing carbon-carbon bonds in organic synthesis. This review describes the application of six organic peroxides, including tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP), tert-butyl peroxybenzoate (TBPB), benzoyl peroxide (BPO), dialauroyl peroxide (DLP), and diguyl peroxide (DCP), in C-C bond construction, highlighting selected examples and mechanisms of challenging transformations. Each section concludes with a detailed overview of suitable reagents for various coupling reactions and strengths and weaknesses of the reported works. This work aims to inspire further innovations in transition-metal-free oxidative transformations, promoting sustainable and eco-friendly chemical processes and paving the way for new peroxide-based organic synthesis methods.
Collapse
Affiliation(s)
- Amin Rezaeifard
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Fatemeh Doraghi
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Fatemeh Akbari
- Department
of Chemistry, Uppsala University, Uppsala 751-05, Sweden
| | - Bahareh Bari
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Ebrahim Kianmehr
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Ali Ramazani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Mehdi Khoobi
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Department
of Radiopharmacy, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 11141-33314, Iran
| | - Alireza Foroumadi
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 11141-33314, Iran
| |
Collapse
|
2
|
Schlögl J, Brosius AL, Toraman AN, Wiesner A, Steinhauer S, Müller C, Riedel S. Halogenated Trityl Cations as Easy-to-Access Super Electrophiles. Angew Chem Int Ed Engl 2025; 64:e202423857. [PMID: 39815776 DOI: 10.1002/anie.202423857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Herein, we present the easy-to-access synthesis of the perfluorotrityl cation (15F+) with commercial GaCl3 and the further functionalization of the para-fluorine atoms of 15F+ via halodefluorination using trimethylsilyl halides TMSX (X=Cl, Br). This gives access to equally reactive halogenated trityl derivatives (p-3Cl12F+ and p-3Br12F+), which can be handled at room temperature. The impact of the para-exchange on the electronic structure is determined by NMR and UV/Vis spectroscopy. Finally, the new synthons' high hydride ion affinities are demonstrated computationally and experimentally by hydride abstraction from the short-chain, linear alkanes n-pentane and n-butane.
Collapse
Affiliation(s)
- Johanna Schlögl
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Amelie L Brosius
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Ahmet N Toraman
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Anja Wiesner
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Simon Steinhauer
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Carsten Müller
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstraße 34/36, 14195, Berlin, Germany
| |
Collapse
|
3
|
Wiencierz A, Lis T, Chmielewski PJ, Cybińska J, Stępień M. Heptannulated Perylene Diimides: Formation and Reactivity of Electron-Deficient Tropylium Cations and Heptafulvenes. Angew Chem Int Ed Engl 2025; 64:e202419899. [PMID: 39545351 PMCID: PMC11811681 DOI: 10.1002/anie.202419899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
The development of new π-conjugated motifs opens pathways to previously unexplored classes of organic semiconductors and functional dyes. In this study, five- and seven-membered carbocycles were fused at the ortho and bay regions of electron-deficient perylenes, starting from a common dialdehyde precursor. Structural analysis of the resulting perylene tetraesters, dianhydrides, and diimides (PDIs) revealed three distinct ring-fusion patterns and defined stereochemistry. The fused PDI cycloheptatrienes demonstrated susceptibility to acid-catalyzed transarylation, involving tropylium cation intermediates, which can be used preparatively. Under superacidic conditions, the PDI tropylium cations were directly observed and shown to undergo hydride-transfer reductions. Additionally, a fused PDI bis(heptafulvene) was synthesized by dehydrogenating a suitably substituted PDI cycloheptatriene. The final system contains two quinomethane units, which can be protonated to yield a stable tropylium-like dication.
Collapse
Affiliation(s)
- Agata Wiencierz
- Wydział ChemiiUniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50–383WrocławPoland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50–383WrocławPoland
| | - Piotr J. Chmielewski
- Wydział ChemiiUniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50–383WrocławPoland
| | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50–383WrocławPoland
- Polski Ośrodek Rozwoju Technologii (PORT), ul. Stabłowicka 147, 54–066WrocławPoland
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50–383WrocławPoland
| |
Collapse
|
4
|
Yáñez M, Mó O, Montero‐Campillo MM, Alkorta I, Elguero J. Hydride and halide abstraction reactions behind the enhanced basicity of Be and Mg clusters with nitrogen bases. J Comput Chem 2025; 46:e27509. [PMID: 39340246 PMCID: PMC11586690 DOI: 10.1002/jcc.27509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
In this study, we investigate the protonation effects on the structure, relative stability and basicity of complexes formed by the interaction of monomers and dimers of BeX2 and MgX2 (X = H, F) with NH3, CH2NH, HCN, and NC5H5 bases. Calculations were performed using the M06-2X/aug-cc-pVTZ formalism, along with QTAIM, ELF and NCI methods for electron density analysis and MBIE and LMO-EDA energy decomposition analyses for interaction enthalpies. The protonation of the MH2- and M2H4-Base complexes occurs at the negatively charged hydrogen atoms of the MH2 and M2H4 moieties through typical hydride abstraction reactions, while protonation at the N atom of the base is systematically less exothermic. The preference for the hydride transfer mechanism is directly associated with the significant exothermicity of H2 formation through the interaction between H- and H+, and the high hydride donor ability of these complexes. The basicity of both, MH2 and M2H4 compounds increases enormously upon association with the corresponding bases, with the increase exceeding 40 orders of magnitude in terms of ionization constants. Due to the smaller exothermicity of HF formation, the basicity of fluorides is lower than that of hydrides. In Be complexes, the protonation at the N atom of the base dominates over the fluoride abstraction mechanism. However, for the Mg complexes the fluoride abstraction mechanism is energetically the most favorable process, reflecting the greater facility of Mg complexes to lose F-.
Collapse
Affiliation(s)
- Manuel Yáñez
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid, Campus de Excelencia UAM‐CSICCantoblancoMadridSpain
| | - Otilia Mó
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid, Campus de Excelencia UAM‐CSICCantoblancoMadridSpain
| | - M. Merced Montero‐Campillo
- Departamento de Química, Módulo 13, Facultad de Ciencias, and Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid, Campus de Excelencia UAM‐CSICCantoblancoMadridSpain
| | - Ibon Alkorta
- Instituto de Química Médica, IQM‐CSICMadridSpain
| | - José Elguero
- Instituto de Química Médica, IQM‐CSICMadridSpain
| |
Collapse
|
5
|
Lee S, Jung S, Hyeon S, Kim K, Min SJ. DDQ-catalyzed oxidative α-allylation of isochromans under aerobic conditions. RSC Adv 2024; 14:39645-39652. [PMID: 39691218 PMCID: PMC11650363 DOI: 10.1039/d4ra07586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
The allylation of isochromans at the α-position via aerobic DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) catalysis is described. This process involves the DDQ oxidation of various isochromans under mild conditions to generate oxocarbenium intermediates, which are effectively stabilized in equilibration in the presence of acid before undergoing allylation. Molecular oxygen and tert-butyl nitrite are employed as an environmentally benign oxidant and mediator, respectively, in the catalytic cycle. The transformation of an allylated product to biologically active molecules has also been successfully demonstrated.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Applied Chemistry, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Sunhwa Jung
- Department of Applied Chemistry, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Suyeon Hyeon
- Department of Applied Chemistry, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Kyungmin Kim
- Department of Applied Chemistry, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| |
Collapse
|
6
|
Nava M, Zarnitsa LM, Riu MLY. The Coupling of Synthesis and Electrochemistry to Enable the Reversible Storage of Hydrogen as Metal Hydrides. PRECISION CHEMISTRY 2024; 2:563-569. [PMID: 39611025 PMCID: PMC11600345 DOI: 10.1021/prechem.4c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 11/30/2024]
Abstract
Given its high gravimetric energy density and status as a clean fuel when derived from renewables, hydrogen (H2) is considered a premier candidate for energy storage; however, its low volumetric density limits its broader application. Chemical storage through the reversible incorporation of H2 into chemical bonds offers a promising solution to its low volumetric density, circumventing subpar energy densities and substantial infrastructure investments associated with physical storage methods. Metal hydrides are promising candidates for chemical storage because of their high gravimetric capacity and tunability through nanostructuring and alloying. Moreover, metal hydride/H2 interconversion may be interfaced with electrochemistry, which offers potential solutions to some of the challenges associated with traditional thermochemical platforms. In this Perspective, we describe anticipated challenges associated with electrochemically mediated metal hydride/H2 interconversion, including thermodynamic efficiencies of metal hydride formation, sluggish kinetics, and electrode passivation. Additionally, we propose potential solutions to these problems through the design of molecular mediators that may control factors such as metal hydride solubility, particle morphology, and hydride affinity. Realization of an electrochemically mediated metal hydride/H2 interconversion platform introduces new tools to address challenges associated with hydrogen storage platforms and contributes toward the development of room-temperature hydrogen storage platforms.
Collapse
Affiliation(s)
- Matthew Nava
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Lina M. Zarnitsa
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Martin-Louis Y. Riu
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
7
|
Cheng Y, Rein J, Le N, Lin S. Oxoammonium-Catalyzed Ether Oxidation via Hydride Abstraction: Methodology Development and Mechanistic Investigation Using Paramagnetic Relaxation Enhancement NMR. J Am Chem Soc 2024; 146:31420-31432. [PMID: 39527468 PMCID: PMC12005942 DOI: 10.1021/jacs.4c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydride abstraction represents a promising yet underexplored approach in the functionalization of C-H bonds. In this work, we report the oxidation of α-C-H bonds of ethers via oxoammonium catalysis using 3-chloroperbenzoic acid (mCPBA) as the terminal chemical oxidant or by means of electrochemistry. Mechanistic studies revealed intricate equilibria and interconversion events between various catalytic intermediates in the presence of mCPBA, which alone however was incompetent to drive catalytic turnover. The addition of a small amount of strong acid HNTf2 or weakly coordinating salt NaSbF6 turned on catalytic turnover and promoted ether oxidation with excellent efficiency. NMR experiments leveraging paramagnetic relaxation enhancement effect allowed for quantification of open-shell catalytic intermediates in real time during the reaction course, which aided the identification of catalyst resting states and elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Yukun Cheng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jonas Rein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nguyen Le
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Kage M, Yamakoshi H, Tabata M, Ohashi E, Noguchi K, Watanabe T, Uchida M, Takada M, Ikeuchi K, Nakamura S. Oxidative generation of isobenzofurans from phthalans: application to the formal synthesis of (±)-morphine. Chem Sci 2024:d4sc05890a. [PMID: 39483252 PMCID: PMC11523798 DOI: 10.1039/d4sc05890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Treatment of phthalan derivatives with p-chloranil in dodecane in the presence of molecular sieves at 160-200 °C allowed the generation of unstabilized isobenzofurans, which underwent intramolecular Diels-Alder reaction to give endo cycloadducts exclusively. The cycloaddition turned out to be reversible, providing an equilibrium mixture of endo adducts when heating a substrate with a stereocenter on the tether. We also demonstrated the regioselective allylation of an oxygen-bridged cycloadduct upon exposure to EtAlCl2 in the presence of allyltrimethylsilane, and the conversion to Rice's intermediate completed a formal synthesis of (±)-morphine.
Collapse
Affiliation(s)
- Mirai Kage
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Manami Tabata
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Eisaku Ohashi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Kimihiro Noguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Takeshi Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Manato Uchida
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Minetatsu Takada
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Kazutada Ikeuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Seiichi Nakamura
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| |
Collapse
|
9
|
Yu J, Xia Y, Dey S, Zhu J, Cheung KS, Geib SJ, Wang YM. Iridium-Catalyzed Enantioselective Propargylic C-H Trifluoromethylthiolation and Related Processes. J Am Chem Soc 2024; 146. [PMID: 39352731 PMCID: PMC11487557 DOI: 10.1021/jacs.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
The trifluoromethylthio group (SCF3) has gained increasing prominence in the field of drug design and development due to its unique electronic properties, remarkable stability, and high lipophilicity, but its derivatives remain challenging to access, especially in an enantioselective manner. In this Communication, we present an enantioselective iridium-catalyzed trifluoromethylthiolation of the propargylic C(sp3)-H bonds of alkynes. This protocol demonstrates its efficacy across a diverse array of alkyne substrates, including B- and Si-protected terminal alkynes as well as those derived from natural products and pharmaceuticals, to give trifluoromethyl thioethers with good to excellent yield and stereoselectivity. Moreover, this protocol could be modified to access enantioenriched difluoromethyl and chlorodifluoromethyl thioethers (SCF2H and SCF2Cl derivatives), significantly expanding the space of synthetically accessible enantioenriched fluoroorganic compounds.
Collapse
Affiliation(s)
- Jiao Yu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Xia
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Shalini Dey
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jin Zhu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Kiu Sui Cheung
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yi-Ming Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Porras-Santos LF, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, López-Mendoza P, Sartillo-Piscil F. Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation. J Org Chem 2024; 89:11281-11292. [PMID: 39102649 PMCID: PMC11334189 DOI: 10.1021/acs.joc.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO+ forming a type of glycal-TEMPO+ mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π*(O═N+) orbital [LP(O1) → π*(C1═C2), π*(C1═C2) → σ*(C3-O3), and LP(O6) → π*(O═N+)]. This enables the formation of the respective Ferrier glycosyl cation, which is trapped by various nucleophiles. The extended hyperconjugation (or double hyperconjugation) toward the π*(O═N+) orbital, which confers the Lewis acid character of the TEMPO cation, was supported by natural bond orbital analysis at the M06-2X/6-311+G** level of theory.
Collapse
Affiliation(s)
- Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Jacinto Sandoval-Lira
- Departamento de Ciencias Básicas, TecNM campus Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, San Martín Texmelucan 74120, Puebla, Mexico
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| |
Collapse
|
11
|
Yang J, Wang Z, Zhang Y, Wang Y, Yao W, Gao K. gem-Difluoroalkylation of Cyclic Ethers Enabled by Cobalt-Catalyzed C(sp 3)-H Oxidation under Mild Conditions. Org Lett 2024; 26:6742-6747. [PMID: 39057194 DOI: 10.1021/acs.orglett.4c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Fluorinated rings have emerged as privileged structural modules in the fields of drug discovery and materials research. The incorporation of fluorine atoms into aromatic rings or heterocycles can lead to significant improvements in the physicochemical and biological properties of small molecules, making them valuable components in the design of new drugs and functional materials. Herein, we presented a cobalt-catalyzed C-H oxidation/gem-difluorination cascade reaction of readily available cyclic ethers with difluoroenoxysilanes, affording a series of gem-difluorinated analogues with moderate to high yields. The obtained products as versatile fluoroalkyl building blocks were showcased through divergent-oriented transformations.
Collapse
Affiliation(s)
- Jingjie Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Yiheng Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Yurong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| |
Collapse
|
12
|
Li B, Yu F, Chen W, Seidel D. Regioselective α-Phosphonylation of Unprotected Alicyclic Amines. Org Lett 2024; 26:5972-5977. [PMID: 38968591 PMCID: PMC11289722 DOI: 10.1021/acs.orglett.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Unprotected alicyclic amines undergo α-C-H bond phosphonylation via a two-stage one-pot process involving the oxidation of amine-derived lithium amides with simple ketone oxidants, generating transient imines which are then captured with phosphites or phosphine oxides. Amines with an existing α-substituent undergo regioselective α'-phosphonylation. Amine α-arylation and α'-phosphonylation can be combined, generating a difunctionalized product in a single operation.
Collapse
Affiliation(s)
- Bowen Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Fuchao Yu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Bisek B, Chaładaj W. Access to 2-Alkenyl-furans via a Cascade of Pd-Catalyzed Cyclization/Coupling Followed by Oxidative Aromatization with DDQ. J Org Chem 2024; 89:7275-7279. [PMID: 38700491 PMCID: PMC11110045 DOI: 10.1021/acs.joc.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
An unprecedented DDQ-mediated oxidative aromatization of 2-bezylidene-dihydrofurans yielding 2-alkenyl-furans is disclosed. Integration of this transformation with a prior Pd-catalyzed reaction of α-propargylic-β-ketoesters and (hetero)aryl halides into a one-pot cascade process opens a direct modular route to highly substituted 2-vinyl-furans. Experimental and computational studies reveal that the crucial step of the oxidative-aromatization involves facile hydride transfer from the dihydrofuran ring to the O-center of DDQ.
Collapse
Affiliation(s)
- Bartosz Bisek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
14
|
Dey S, Charlack AD, Durham AC, Zhu J, Wang Y, Wang YM. Synthesis of 1,3-Enynes by Iron-Catalyzed Propargylic C-H Functionalization: An Alkyne Analogue for the Eschenmoser Methenylation. Org Lett 2024; 26:3355-3360. [PMID: 38604973 PMCID: PMC11059102 DOI: 10.1021/acs.orglett.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
A two-step protocol for the conversion of alkyl-substituted alkynes to 1,3-enynes is reported. In this α-methenylation process, an iron-catalyzed propargylic C-H functionalization delivers tetramethylpiperidine-derived homopropargylic amines which undergo facile Cope elimination upon N-oxidation to afford the enyne products. A range of aryl alkyl and dialkyl acetylenes were found to be suitable substrates for this process, which constitutes an alkyne analogue for the Eschenmoser methenylation of carbonyl derivatives. In addition, a new bench-stable precatalyst for iron-catalyzed propargylic C-H functionalization is reported.
Collapse
Affiliation(s)
- Shalini Dey
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aaron D. Charlack
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C. Durham
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jin Zhu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yi-Ming Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
15
|
Dutta S, Kim JH, Bhatt K, Rickertsen DRL, Abboud KA, Ghiviriga I, Seidel D. Alicyclic-Amine-Derived Imine-BF 3 Complexes: Easy-to-Make Building Blocks for the Synthesis of Valuable α-Functionalized Azacycles. Angew Chem Int Ed Engl 2024; 63:e202313247. [PMID: 37909921 PMCID: PMC10835740 DOI: 10.1002/anie.202313247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
A new strategy to access α-functionalized alicyclic amines via their corresponding imine-BF3 complexes is reported. Isolable imine-BF3 complexes, readily prepared via dehydrohalogenation of N-bromoamines in a base-promoted/18-crown-6 catalyzed process followed by addition of boron trifluoride etherate, undergo reactions with a wide range of organometallic nucleophiles to afford α-functionalized azacycles. Organozinc and organomagnesium nucleophiles add at ambient temperatures, obviating the need for cryogenic conditions. In situ preparation of imine-BF3 complexes provides access to α-functionalized morpholines and piperazines directly from their parent amines in a single operation. α-Functionalized morpholines can be elaborated further, for instance by installing a second substituent in the α'-position.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jae Hyun Kim
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Carlson HM, Smith SR, Mosey RA. Direct Formation of C-C, C-N, and C-O Bonds in Dihydroquinazolines via Hypervalent Iodine(III)-Mediated sp 3 C-H Functionalization. J Org Chem 2024. [PMID: 38165125 DOI: 10.1021/acs.joc.3c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A hypervalent iodine(III)-mediated cross-dehydrogenative coupling reaction for the direct formation of C-C, C-N, and C-O bonds in dihydroquinazolines has been developed. This one-pot method allows for the synthesis of C4-disubstituted dihydroquinazolines as well as C4-spirolactam, spirolactone, and spiroindene dihydroquinazolines in moderate to high yields.
Collapse
Affiliation(s)
- Haley M Carlson
- Lake Superior State University, 650 W. Easterday Ave., Sault Sainte Marie, Michigan 49783, United States
| | - Sydney R Smith
- Lake Superior State University, 650 W. Easterday Ave., Sault Sainte Marie, Michigan 49783, United States
| | - R Adam Mosey
- Lake Superior State University, 650 W. Easterday Ave., Sault Sainte Marie, Michigan 49783, United States
| |
Collapse
|
17
|
Miller JL, Damodaran K, Floreancig PE. Nitrogen Heterocycle Synthesis through Hydride Abstraction of Acyclic Carbamates and Related Species: Scope, Mechanism, Stereoselectivity, and Product Conformation Studies. Chemistry 2023; 29:e202302977. [PMID: 37796745 DOI: 10.1002/chem.202302977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Acyliminium ions and related species are potent electrophiles that can be quite valuable in the synthesis of nitrogen-containing molecules. This manuscript describes a protocol to form these intermediates through hydride abstractions of easily accessible allylic carbamates, amides, and sulfonamides that avoids the reversibility that is possible in classical condensation-based routes. These intermediates are used in the preparation of a range of nitrogen-containing heterocycles, and in many cases high levels of stereocontrol are observed. Specifically areas of investigation include the impact of chemical structure on oxidation efficiency, the geometry of the intermediate iminium ions, the impact of a substrate stereocenter on stereocontrol, and an examination of transition state geometry.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
18
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
19
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|
20
|
Bormann N, Ward JS, Bergmann AK, Wenz P, Rissanen K, Gong Y, Hatz WB, Burbaum A, Mulks FF. Diiminium Nucleophile Adducts Are Stable and Convenient Strong Lewis Acids. Chemistry 2023; 29:e202302089. [PMID: 37427889 DOI: 10.1002/chem.202302089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Strong Lewis acids are essential tools for manifold chemical procedures, but their scalable deployment is limited by their costs and safety concerns. We report a scalable, convenient, and inexpensive synthesis of stable diiminium-based reagents with a Lewis acidic carbon centre. Coordination with pyridine donors stabilises these centres; the 2,2'-bipyridine adduct shows a chelation effect at carbon. Due to high fluoride, hydride, and oxide affinities, the diiminium pyridine adducts are promising soft and hard Lewis acids. They effectively produce acylpyridinium salts from carboxylates that can acylate amines to give amides and imides even from electronically intractable coupling partners.
Collapse
Affiliation(s)
- Niklas Bormann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Ann Kathrin Bergmann
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Paula Wenz
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P. O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Yiwei Gong
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Wolf-Benedikt Hatz
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexander Burbaum
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute for Organic Chemistry (iOC), RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
21
|
Bevernaege K, Tzouras NV, Poater A, Cavallo L, Nolan SP, Nahra F, Winne JM. Site selective gold(i)-catalysed benzylic C-H amination via an intermolecular hydride transfer to triazolinediones. Chem Sci 2023; 14:9787-9794. [PMID: 37736629 PMCID: PMC10510626 DOI: 10.1039/d3sc03683a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Triazolinediones are known as highly reactive dienophiles that can also act as electrophilic amination reagents towards enolisable C-H bonds (ionic pathway) or weak C-H bonds (free radical pathway). Here, we report that this C-H amination reactivity can be significantly extended and enhanced via gold(i)-catalysis. Under mild conditions, several alkyl-substituted aryls successfully undergo benzylic C-H aminations at room temperature. The remarkable site selectivity that is observed points towards strong electronic activation and deactivation effects, that go beyond a simple weakening of the C-H bond. The observed catalytic C-H aminations do not follow the expected trends for a free radical-type C-H amination and show complementarity to existing methods. Density functional theory (DFT) calculations and distinct experimental trends provide a clear mechanistic rationale for observed selectivity patterns, postulating a novel pathway for triazolinedione-induced aminations via a carbon-to-nitrogen hydride transfer.
Collapse
Affiliation(s)
- Kevin Bevernaege
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 B-9000 Ghent Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Spain
| | - Luigi Cavallo
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| | - Steven P Nolan
- Separation and Conversion Technology, VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Fady Nahra
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
- Separation and Conversion Technology, VITO (Flemish Institute for Technological Research) Boeretang 200 2400 Mol Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 B-9000 Ghent Belgium
| |
Collapse
|
22
|
Dutta S, Bhatt K, Cuffel F, Seidel D. Synthesis of Polycyclic Imidazoles via α-C-H/N-H Annulation of Alicyclic Amines. SYNTHESIS-STUTTGART 2023; 55:2343-2352. [PMID: 38314182 PMCID: PMC10836336 DOI: 10.1055/a-2022-1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secondary alicyclic amines are converted to their corresponding ring-fused imidazoles in a simple procedure consisting of oxidative imine formation followed by a van Leusen reaction. Amines with an existing α-substituent undergo regioselective ring-fusion at the α'-position. This method was utilized in a synthesis of fadrozole.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Fabian Cuffel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Yin K, Wei M, Wang Z, Luo W, Li L. Tertiary Amine-Mediated Reductions of Phosphine Oxides to Phosphines. Org Lett 2023; 25:5236-5241. [PMID: 37428151 DOI: 10.1021/acs.orglett.3c01690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The reduction of phosphine oxides without the use of highly reactive reductants represents a safer and more sustainable solution for recycling of organophosphorus compounds. Herein, we disclose an N,N,N',N'-tetramethylethylenediamine (TMEDA)-mediated reduction via an unusual intermolecular hydride transfer. Mechanistic studies suggest that TMEDA serves as a hydride donor, while the P(V) halophosphonium salt acts as the hydride acceptor. This methodology provides a scalable and efficient protocol to reduce phosphine oxides under mild conditions.
Collapse
Affiliation(s)
- Keshu Yin
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Zhenguo Wang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
24
|
Wang T, Wang WB, Fu YM, Zhu CF, Cheng LJ, You YE, Wu X, Li YG. Asymmetric Double Oxidative [3 + 2] Cycloaddition for the Synthesis of CF 3-Containing Spiro[pyrrolidin-3,2'-oxindole]. Org Lett 2023; 25:3152-3156. [PMID: 37083397 DOI: 10.1021/acs.orglett.3c01083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An asymmetric double oxidative [3 + 2] cycloaddition is reported. Oxidation of 3-((2,2,2-trifluoroethyl)amino)indolin-2-ones and β-aryl-substituted aldehydes simultaneously and subsequent asymmetric cycloaddition in the presence of the chiral amino catalyst generated highly functionalized chiral CF3-containing spiro[pyrrolidin-3,2'-oxindole] with four contiguous stereocenters stereoselectively, which is characterized by directly constructing two C-C bonds from four C(sp3)-H bonds. This new method features mild conditions, broad substrate scope, and excellent functional group compatibility.
Collapse
Affiliation(s)
- Tao Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wen-Bin Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lan-Jun Cheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang-En You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Chen ME, Gan ZY, Hu YH, Zhang FM. Tandem Oxidative Ritter Reaction/Hydration/Aldol Condensation of α-Arylketones with Propiolonitriles for the Construction of 3-Acyl-3-pyrrolin-2-ones. J Org Chem 2023; 88:3954-3964. [PMID: 36881939 DOI: 10.1021/acs.joc.2c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A novel tandem oxidative Ritter reaction/hydration/aldol condensation of α-arylketones with substituted propiolonitriles has been developed. This protocol conveniently affords a wide range of functionalized 3-acyl-3-pyrrolin-2-ones through the efficient construction of four chemical bonds, a C-N bond, a C═C bond, and two C═O bonds, and the formation of one ring bearing an aza-quaternary center, which is ascribed to the strategical introduction of functionalized nitriles to this transformation. A reaction mechanism was proposed based on some control experiments.
Collapse
Affiliation(s)
- Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhang-Yan Gan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yue-Hong Hu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
26
|
Liu L. Hydride-Abstraction-Initiated Catalytic Stereoselective Intermolecular Bond-Forming Processes. Acc Chem Res 2022; 55:3537-3550. [PMID: 36384272 DOI: 10.1021/acs.accounts.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereoselective intermolecular bond-forming reactions through the direct manipulation of ubiquitous yet inert C(sp3)-H bonds represent an important and long-standing goal in chemistry. In particular, developing such a stereoselective bimolecular transformation involving carbocation intermediates generated via site-selective hydride abstraction or formal hydride abstraction by organic oxidants would avoid the preinstallation of directing groups and is therefore attractive. Hydride-abstraction-initiated bimolecular transformations have received considerable attention, but existing examples lack stereoselective studies. Prevalent stereoselective studies typically suffer from the narrow substrate scope of specific and highly reactive N-aryl amines and diarylmethanes together with limited synthetic utility. This Account describes our recent advances in the development and synthetic application of hydride-abstraction-initiated stereoselective intermolecular C-C and C-H bond-forming processes with significantly expanded scopes involving structurally diverse N-acyl amines and ethers together with nitriles, esters, and perfluoroalkyl moieties.We first explored hydride-abstraction-initiated stereoselective intermolecular C-C bond-forming processes. Utilizing triarylmethyl cations or oxoammonium ions as hydride abstractors, we accomplished the diastereoselective oxidative C-H functionalization of structurally diverse N-acyl amines and ethers with a range of organoboranes and C-H components, efficiently installing a series of alkyl, alkenyl, aryl, and alkynyl species into the α-position of heteroatoms with good levels of diastereocontrol. Subsequently, we developed an "acetal pool" strategy as the toolbox to regulate the stability of cationic intermediates and the compatibility of organic oxidants with a delicate asymmetric catalysis system. Utilizing this strategy, we achieved the catalytic enantioselective oxidative C-H alkenylation, arylation, alkynylation, and alkylation of diverse N-acyl heterocycles with a range of boronates and C-H components. Simultaneously, we extended this strategy to the asymmetric oxidative C-H alkylation of ethers. Notably, the method allows solvents that are used daily, such as tetrahydrofuran, tetrahydropyran, and diethyl ether, to be facilely transformed to high-value-added optically pure bioactive molecules. We further expanded the scope of this challenging area from the C(sp3)-H bond adjacent to electron-donating heteroatoms to valuable electron-withdrawing functional groups including nitriles, esters, and perfluoroalkyl moieties for the stereoselective construction of single and vicinal quaternary carbon stereocenters, respectively.We studied hydride-abstraction-initiated catalytic asymmetric intermolecular C-H bond-forming processes, known as redox deracemization. Utilizing the acetal pool strategy, we reported the first redox deracemization of cyclic benzylic ethers. Later, we disclosed an aerobic one-pot deracemization of diverse α-amino acid derivatives with excellent functional group compatibility. We further achieved the deracemization of the tertiary stereogenic center adjacent to electron-withdrawing groups including perfluoroalkyl, cyano, and ester moieties, which are otherwise difficult to construct.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| |
Collapse
|
27
|
Jung S, Yoon S, Lee JK, Min SJ. Stereoselective Synthesis of Benzo[ a]quinolizidines via Aerobic DDQ-Catalyzed Allylation and Reductive Cyclization. ACS OMEGA 2022; 7:32562-32568. [PMID: 36120044 PMCID: PMC9476524 DOI: 10.1021/acsomega.2c04154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Stereoselective synthesis of C4-substituted benzo[a]quinolizidines via redox-controlled catalytic C-C-bond-forming reactions was carried out. Aerobic DDQ-catalyzed allylation of N-Cbz tetrahydroisoquinolines efficiently provided α-allylated products 5, which were transformed to enones 6 via cross-metathesis reactions using the second-generation Hoveyda-Grubbs catalyst. Palladium-catalyzed hydrogenation of 6 prompted alkene reduction, protecting group removal, and intramolecular reductive amination in one step to afford the desired benzo[a]quinolizidines 7 as single diastereomers.
Collapse
Affiliation(s)
- Sunhwa Jung
- Department
of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center
for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seungri Yoon
- Department
of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center
for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jae Kyun Lee
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sun-Joon Min
- Department
of Applied Chemistry, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center
for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department
of Chemical & Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
28
|
Yu F, Valles DA, Chen W, Daniel SD, Ghiviriga I, Seidel D. Regioselective α-Cyanation of Unprotected Alicyclic Amines. Org Lett 2022; 24:6364-6368. [PMID: 36036764 PMCID: PMC9548390 DOI: 10.1021/acs.orglett.2c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary alicyclic amines are converted to α-aminonitriles via addition of TMSCN to their corresponding imines, intermediates that are produced in situ via the oxidation of amine-derived lithium amides with simple ketone oxidants. Amines with an existing α-substituent undergo regioselective α'-cyanation even if the C-H bonds at that site are less activated. Amine α-arylation can be combined with α'-cyanation to generate difunctionalized products in a single operation.
Collapse
Affiliation(s)
- Fuchao Yu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Daniel A. Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
29
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|