1
|
Lee J, Heo D, Lee W, Seo J. Enhanced Catalytic Activity via Rapid Two-Electron Transfer in Low-Spin Fe(II) Complex and Spin-State Dependent Proton Reduction Pathways. J Am Chem Soc 2025. [PMID: 40267257 DOI: 10.1021/jacs.4c16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The growing interest in green hydrogen gas production has brought significant attention to the development of efficient proton reduction catalysts. A comprehensive understanding of proton and electron transfer processes within catalyst complexes is crucial for developing efficient catalysts. While the proton transfer process is influenced by the Brønsted acid used, electron transfer is an intrinsic property determined by the molecular orbitals and spin states of complexes. Complexes that rapidly transfer electrons are associated with high catalytic performance. In this study, we present a first example of low-spin FeII complex that utilizes the π* orbital of ligand for rapid two-electron transfer, resulting in exceptional catalytic performance for hydrogen gas evolution. The consecutive two-electron transfer rate was measured at 33.24 s-1, and in combination with proton transfer, the catalyst achieved an extraordinarily high turnover frequency (TOF) of 224,643 s-1 for hydrogen gas production. Conversely, a high-spin Fe(II) complex produced hydrogen gas at a relatively low TOF of 8848 s-1. These comparative experiments confirmed that the observed high catalytic efficiency is unique to the low-spin FeII complex, attributed to its distinct electron transfer mechanism.
Collapse
Affiliation(s)
- Jueun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Donguk Heo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Wonjung Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Junhyeok Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Ghosh S, Das CK, Uddin S, Stripp ST, Engelbrecht V, Winkler M, Leimkühler S, Brocks C, Duan J, Schäfer LV, Happe T. Protein Dynamics Affect O 2-Stability of Group B [FeFe]-Hydrogenase from Thermosediminibacter oceani. J Am Chem Soc 2025. [PMID: 40267305 DOI: 10.1021/jacs.4c18483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
In the pursuit of sustainable "green" energy generation, [FeFe]-hydrogenases have attracted significant attention due to their ability to catalyze hydrogen production. However, the sensitivity of these enzymes to O2 is a major obstacle for their application as biocatalysts in energy conversion technologies. In the search for an O2-stable [FeFe]-hydrogenase, we identified the hydrogenase ToHydA from Thermosediminibacter oceani that belongs to the rarely characterized Group B (M2a) [FeFe]-hydrogenases. Our findings demonstrate that ToHydA exhibits remarkable O2-stability, even under prolonged O2 exposure. By characterizing site-directed mutagenesis variants, we found that the highly conserved proton-transporting active site cysteine residue protects the H-cluster from O2-induced degradation by forming the Hinact state. The additional cysteine residue in the TSCCCP motif of ToHydA, a feature unique to Group B (M2a) [FeFe]-hydrogenases, enhances the flexibility of that motif and facilitates the formation of the Hinact state. Moreover, ToHydA possesses unique features, including the formation of an unusual Hinact resting state that distinguishes the enzyme from other [FeFe]-hydrogenases. Our atomistic molecular dynamics simulations reveal a previously unrecognized cluster of hydrophobic residues centered around the proton-transporting cysteine-bearing loop. This structural feature appears to be a common molecular characteristic in hydrogenases that form the O2-protected Hinact state. By exploiting these molecular features of ToHydA, future research can aim to rationally design hydrogenases that combine high catalytic activity with enhanced O2-stability to develop more efficient and durable catalysts.
Collapse
Affiliation(s)
- Subhasri Ghosh
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Chandan K Das
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Computational Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sarmila Uddin
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sven T Stripp
- Spectroscopy & Biocatalysis, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany
| | - Vera Engelbrecht
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Martin Winkler
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
- Electrobiotechnology, Technical University of Munich Campus Straubing for Biotechnology and Sustainability, 94315 Straubing, Germany
| | - Silke Leimkühler
- Molecular Enzymology, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany
| | - Claudia Brocks
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jifu Duan
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Lachmann MT, Duan Z, Rodríguez-Maciá P, Birrell JA. The missing pieces in the catalytic cycle of [FeFe] hydrogenases. Chem Sci 2024:d4sc04041d. [PMID: 39246377 PMCID: PMC11376134 DOI: 10.1039/d4sc04041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Hydrogen could provide a suitable means for storing energy from intermittent renewable sources for later use on demand. However, many challenges remain regarding the activity, specificity, stability and sustainability of current hydrogen production and consumption methods. The lack of efficient catalysts based on abundant and sustainable elements lies at the heart of this problem. Nature's solution led to the evolution of hydrogenase enzymes capable of reversible hydrogen conversion at high rates using iron- and nickel-based active sites. Through a detailed understanding of these enzymes, we can learn how to mimic them to engineer a new generation of highly active synthetic catalysts. Incredible progress has been made in our understanding of biological hydrogen activation over the last few years. In particular, detailed studies of the [FeFe] hydrogenase class have provided substantial insight into a sophisticated, optimised, molecular catalyst, the active site H-cluster. In this short perspective, we will summarise recent findings and highlight the missing pieces needed to complete the puzzle.
Collapse
Affiliation(s)
- Manon T Lachmann
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - Zehui Duan
- University of Oxford, Department of Chemistry, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Patricia Rodríguez-Maciá
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - James A Birrell
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| |
Collapse
|
4
|
Brocks C, Das CK, Duan J, Yadav S, Apfel UP, Ghosh S, Hofmann E, Winkler M, Engelbrecht V, Schäfer LV, Happe T. A Dynamic Water Channel Affects O 2 Stability in [FeFe]-Hydrogenases. CHEMSUSCHEM 2024; 17:e202301365. [PMID: 37830175 DOI: 10.1002/cssc.202301365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2 ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4FeH ) and a unique diiron moiety (2FeH ). Previous attempts to prevent O2 -induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH . In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH ) surrounding the H-cluster. As this hydrophilic path may be accessible for O2 molecules we applied site-directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH . These results reveal new strategies for improving the O2 stability of [FeFe]-hydrogenases by focusing on the O2 diffusion network near the active site.
Collapse
Affiliation(s)
- Claudia Brocks
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Chandan K Das
- Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Shanika Yadav
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Subhasri Ghosh
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, X-ray structure analysis of proteins, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Martin Winkler
- Electrobiotechnology, TUM Campus Straubing, Schulgasse 22, Straubing, 94315, Germany
| | - Vera Engelbrecht
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Lars V Schäfer
- Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
5
|
Duan J, Veliju A, Lampret O, Liu L, Yadav S, Apfel UP, Armstrong FA, Hemschemeier A, Hofmann E. Insights into the Molecular Mechanism of Formaldehyde Inhibition of [FeFe]-Hydrogenases. J Am Chem Soc 2023; 145:26068-26074. [PMID: 37983562 DOI: 10.1021/jacs.3c07800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
[FeFe]-hydrogenases are efficient H2 converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum, showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover. Kinetic assays via protein film electrochemistry show the CpI variant C299D is significantly less inhibited by HCHO, corroborating the structural results. By combining our data from protein crystallography, site-directed mutagenesis and protein film electrochemistry, a reaction mechanism involving the cofactor's amine base, the thiol group of C299 and HCHO can be deduced. In addition to the specific case of [FeFe]-hydrogenases, our study provides additional insights into the reactions between HCHO and protein molecules.
Collapse
Affiliation(s)
- Jifu Duan
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Astrit Veliju
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Oliver Lampret
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lingling Liu
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Energy, Electrosynthesis Group, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Anja Hemschemeier
- Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
6
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
7
|
Duan J, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway. Angew Chem Int Ed Engl 2023; 62:e202216903. [PMID: 36464641 PMCID: PMC10107461 DOI: 10.1002/anie.202216903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN- ) ligands. Extrinsic CO and CN- , however, inhibit hydrogenases. The mechanism by which CN- binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN- -treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Å allowed us to distinguish intrinsic CN- and CO ligands and to show that extrinsic CN- binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN- treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally.
Collapse
Affiliation(s)
- Jifu Duan
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - David J Burr
- Department of Physics, Experimental Biophysics and Space Sciences, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Sven T Stripp
- Department of Biophysics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Eckhard Hofmann
- Department of Biophysics, Faculty of Biology and Biotechnology, Protein Crystallography, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Thomas Happe
- Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS MEASUREMENT SCIENCE AU 2022; 2:517-541. [PMID: 36573075 PMCID: PMC9783092 DOI: 10.1021/acsmeasuresciau.2c00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/17/2023]
Abstract
The coupling of enzymes and/or intact bacteria with electrodes has been vastly investigated due to the wide range of existing applications. These span from biomedical and biosensing to energy production purposes and bioelectrosynthesis, whether for theoretical research or pure applied industrial processes. Both enzymes and bacteria offer a potential biotechnological alternative to noble/rare metal-dependent catalytic processes. However, when developing these biohybrid electrochemical systems, it is of the utmost importance to investigate how the approaches utilized to couple biocatalysts and electrodes influence the resulting bioelectrocatalytic response. Accordingly, this tutorial review starts by recalling some basic principles and applications of bioelectrochemistry, presenting the electrode and/or biocatalyst modifications that facilitate the interaction between the biotic and abiotic components of bioelectrochemical systems. Focus is then directed toward the methods used to evaluate the effectiveness of enzyme/bacteria-electrode interaction and the insights that they provide. The basic concepts of electrochemical methods widely employed in enzymatic and microbial electrochemistry, such as amperometry and voltammetry, are initially presented to later focus on various complementary methods such as spectroelectrochemistry, fluorescence spectroscopy and microscopy, and surface analytical/characterization techniques such as quartz crystal microbalance and atomic force microscopy. The tutorial review is thus aimed at students and graduate students approaching the field of enzymatic and microbial electrochemistry, while also providing a critical and up-to-date reference for senior researchers working in the field.
Collapse
Affiliation(s)
- Giada Bedendi
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Selmihan Sahin
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
9
|
Kumar N, Kaur‐Ghumaan S. Synthesis, Characterization and Electrochemical Studies of bis(Monothiolato) {FeFe} Complexes [Fe
2
(μ‐SC
6
H
4
‐OMe‐
m
)
2
(CO)
5
L] (L=CO, PCy
3
, PPh
3
). ChemistrySelect 2022. [DOI: 10.1002/slct.202203392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Naveen Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| | | |
Collapse
|
10
|
Senger M, Kernmayr T, Lorenzi M, Redman HJ, Berggren G. Hydride state accumulation in native [FeFe]-hydrogenase with the physiological reductant H2 supports its catalytic relevance. Chem Commun (Camb) 2022; 58:7184-7187. [PMID: 35670542 PMCID: PMC9219605 DOI: 10.1039/d2cc00671e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecules in solution may interfere with mechanistic investigations, as they can affect the stability of catalytic states and produce off-cycle states that can be mistaken for catalytically relevant species. Here we show that the hydride state (Hhyd), a proposed central intermediate in the catalytic cycle of [FeFe]-hydrogenase, can be formed in wild-type [FeFe]-hydrogenases treated with H2 in absence of other, non-biological, reductants. Moreover, we reveal a new state with unclear role in catalysis induced by common low pH buffers. Studies of enzymatic catalysis often rely on non-biological reagents, which may affect catalytic intermediates and produce off-cycle states. Here the influence of buffer and reductant on key intermediates of [FeFe]-hydrogenase are explored.![]()
Collapse
Affiliation(s)
- Moritz Senger
- Department of Chemistry, Physical Chemistry, Uppsala University, 75120 Uppsala, Sweden.
| | - Tobias Kernmayr
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| | - Marco Lorenzi
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| | - Holly J Redman
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| | - Gustav Berggren
- Department of Chemistry, Molecular Biomimetics, Uppsala University, 75120 Uppsala, Sweden.
| |
Collapse
|
11
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Ash PA, Kendall-Price SET, Evans RM, Carr SB, Brasnett AR, Morra S, Rowbotham JS, Hidalgo R, Healy AJ, Cinque G, Frogley MD, Armstrong FA, Vincent KA. The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chem Sci 2021; 12:12959-12970. [PMID: 34745526 PMCID: PMC8514002 DOI: 10.1039/d1sc01734a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Controlled formation of catalytically-relevant states within crystals of complex metalloenzymes represents a significant challenge to structure-function studies. Here we show how electrochemical control over single crystals of [NiFe] hydrogenase 1 (Hyd1) from Escherichia coli makes it possible to navigate through the full array of active site states previously observed in solution. Electrochemical control is combined with synchrotron infrared microspectroscopy, which enables us to measure high signal-to-noise IR spectra in situ from a small area of crystal. The output reports on active site speciation via the vibrational stretching band positions of the endogenous CO and CN- ligands at the hydrogenase active site. Variation of pH further demonstrates how equilibria between catalytically-relevant protonation states can be deliberately perturbed in the crystals, generating a map of electrochemical potential and pH conditions which lead to enrichment of specific states. Comparison of in crystallo redox titrations with measurements in solution or of electrode-immobilised Hyd1 confirms the integrity of the proton transfer and redox environment around the active site of the enzyme in crystals. Slowed proton-transfer equilibria in the hydrogenase in crystallo reveals transitions which are only usually observable by ultrafast methods in solution. This study therefore demonstrates the possibilities of electrochemical control over single metalloenzyme crystals in stabilising specific states for further study, and extends mechanistic understanding of proton transfer during the [NiFe] hydrogenase catalytic cycle.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester LE1 7RH UK
| | - Sophie E T Kendall-Price
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Rhiannon M Evans
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Stephen B Carr
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus Didcot UK
| | - Amelia R Brasnett
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Simone Morra
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Adam J Healy
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Department of Engineering Sciences, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Mark D Frogley
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
13
|
Silveira CM, Zuccarello L, Barbosa C, Caserta G, Zebger I, Hildebrandt P, Todorovic S. Molecular Details on Multiple Cofactor Containing Redox Metalloproteins Revealed by Infrared and Resonance Raman Spectroscopies. Molecules 2021; 26:4852. [PMID: 34443440 PMCID: PMC8398457 DOI: 10.3390/molecules26164852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin (LS) and catalytic high-spin (HS) hemes in nitrite reductases, (iii) different types of Fe-S clusters, such as 3Fe-4S and 4Fe-4S centers in di-cluster ferredoxins, and (iv) bi-metallic center and ET Fe-S clusters in hydrogenases. IR spectroscopy can provide unmatched molecular details on specific enzymes like hydrogenases that possess catalytic centers coordinated by CO and CN- ligands, which exhibit spectrally well separated IR bands. This article reviews the work on metalloproteins for which vibrational spectroscopy has ensured advances in understanding structural and mechanistic properties, including multiple heme-containing proteins, such as nitrite reductases that house a notable total of 28 hemes in a functional unit, respiratory chain complexes, and hydrogenases that carry out the most fundamental functions in cells.
Collapse
Affiliation(s)
- Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Giorgio Caserta
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Ingo Zebger
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Peter Hildebrandt
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| |
Collapse
|