1
|
Otaegui L, Urgin T, Zaiter T, Zussy C, Vitalis M, Pellequer Y, Acar N, Vigor C, Galano JM, Durand T, Givalois L, Béduneau A, Desrumaux C. Nose-to-brain delivery of DHA-loaded nanoemulsions: A promising approach against Alzheimer's disease. Int J Pharm 2025; 670:125125. [PMID: 39788398 DOI: 10.1016/j.ijpharm.2024.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Reduced docosahexaenoic acid (DHA) concentrations seem to be associated with an increased risk of Alzheimer's disease (AD), and DHA accretion to the brain across the blood-brain-barrier (BBB) can be modulated by various factors. Therefore, there is an urgent need to identify an efficient and non-invasive method to ensure brain DHA enrichment. In the present study, a safe and stable DHA-enriched nanoemulsion, designed to protect DHA against oxidation, was designed and administered intranasally in a transgenic mouse model of AD, the J20 mice. Intranasal treatment with nanoformulated DHA significantly improved well-being and working spatial memory in six-months-old J20 mice. These behavioral effects were associated with a reduction of amyloid deposition, oxidative stress, and neuroinflammation in brain tissues, which may be partially due to DHA-induced inactivation of the pleiotropic kinase GSK3β. In conclusion, intranasal DHA administration exhibited strong therapeutic effects and disease-modifying benefits in the J20 AD model. Given that DHA has already shown safety and tolerability in healthy human subjects, our results further support the need for clinical trials to assess the potential of this approach in Alzheimer's patients.
Collapse
Affiliation(s)
- Léa Otaegui
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Théo Urgin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Taghrid Zaiter
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Charleine Zussy
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Marie Galano
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Laurent Givalois
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; Laval University, Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Québec City (QC), Canada
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Catherine Desrumaux
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France.
| |
Collapse
|
2
|
Zhou XP, Sun LB, Liu WH, Zhu WM, Li LC, Song XY, Xing JP, Gao SH. The complex relationship between gut microbiota and Alzheimer's disease: A systematic review. Ageing Res Rev 2025; 104:102637. [PMID: 39662839 DOI: 10.1016/j.arr.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the central nervous system. Despite extensive research conducted on this disorder, its precise pathogenesis remains unclear. In recent years, the microbiota-gut-brain axis has attracted considerable attention within the field of AD. The gut microbiota communicates bidirectionally with the central nervous system through the gut-brain axis, and alterations in its structure and function can influence the progression of AD. Consequently, regulating the gut microbiota to mitigate the progression of AD has emerged as a novel therapeutic approach. Currently, numerous studies concentrate on the intrinsic relationship between the microbiota-gut-brain axis and AD. In this paper, we summarize the multifaceted role of the gut microbiota in AD and present detailed therapeutic strategies targeting the gut microbiota, including the treatment of AD with Traditional Chinese Medicine (TCM), which has garnered increasing attention in recent years. Finally, we discuss potential therapeutic strategies for modulating the gut microbiota to alleviate the progression of AD, the current challenges in this area of research, and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Xuan-Peng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Luan-Biao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wen-Hao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Wu-Ming Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Lin-Chun Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xin-Yuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong
| | - Jian-Peng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| | - Shuo-Hui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
3
|
Chen L, Zhuang Z, Duan H, Lv D, Hong S, Chen P, He B, Shen Z. Corilagin improves cognitive impairment in APP/PS1 mice by reducing Aβ generation and enhancing synaptic plasticity. Eur J Pharmacol 2024; 981:176893. [PMID: 39134295 DOI: 10.1016/j.ejphar.2024.176893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is closely associated with the neurotoxic effects of amyloid-β (Aβ), leading to synaptic damage, neuronal loss and cognitive dysfunction. Previous in vitro studies have demonstrated the potential of corilagin to counteract Aβ-induced oxidative stress, inflammatory injury, and β-site amyloid precursor protein cleaving enzyme-1 (BACE1) activity in Aβ production. However, the in vivo protective effects of corilagin on Alzheimer's disease remain unexplored. The purpose of this study was to investigate the protective effects of corilagin on APP/PS1 mice and the underlying mechanisms. The cognitive function of the mice was assessed by step-through passive avoidance and Morris water maze tests. Nissl staining was used to evaluate neuronal damage in the hippocampus. ELISA and Western blotting analyses were used to determine the associated protein expression. Transmission electron microscopy was utilized to observe the synaptic ultrastructure of hippocampal neurons. Golgi staining was applied to assess dendritic morphology and dendritic spine density in hippocampal pyramidal neurons. Immunohistochemistry and Western blotting were performed to examine the expression of synaptic-associated proteins. The results showed that corilagin improves learning and memory in APP/PS1 mice, reduces hippocampal neuron damage, inhibits BACE1 and reduces Aβ generation. It also improves synaptic plasticity and the expression of synaptic-associated proteins. Corilagin effectively reduces Aβ generation by inhibiting BACE1, ultimately reducing neuronal loss and enhancing synaptic plasticity to improve synaptic transmission. This study sheds light on the potential therapeutic role of corilagin in Alzheimer's disease.
Collapse
Affiliation(s)
- Linyi Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Zhujun Zhuang
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Hengqian Duan
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Di Lv
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China
| | - Shengxiong Hong
- Laboratory Animal Department, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Peng Chen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Bo He
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
5
|
Annevelink CE, Westra J, Sala-Vila A, Harris WS, Tintle NL, Shearer GC. A Genome-Wide Interaction Study of Erythrocyte ω-3 Polyunsaturated Fatty Acid Species and Memory in the Framingham Heart Study Offspring Cohort. J Nutr 2024; 154:1640-1651. [PMID: 38141771 PMCID: PMC11347816 DOI: 10.1016/j.tjnut.2023.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Cognitive decline, and more specifically Alzheimer's disease, continues to increase in prevalence globally, with few, if any, adequate preventative approaches. Several tests of cognition are utilized in the diagnosis of cognitive decline that assess executive function, short- and long-term memory, cognitive flexibility, and speech and motor control. Recent studies have separately investigated the genetic component of both cognitive health, using these measures, and circulating fatty acids. OBJECTIVES We aimed to examine the potential moderating effect of main species of ω-3 polyunsaturated fatty acids (PUFAs) on an individual's genetically conferred risk of cognitive decline. METHODS The Offspring cohort from the Framingham Heart Study was cross-sectionally analyzed in this genome-wide interaction study (GWIS). Our sample included all individuals with red blood cell ω-3 PUFA, genetic, cognitive testing (via Trail Making Tests [TMTs]), and covariate data (N = 1620). We used linear mixed effects models to predict each of the 3 cognitive measures (TMT A, TMT B, and TMT D) by each ω-3 PUFA, single nucleotide polymorphism (SNP) (0, 1, or 2 minor alleles), ω-3 PUFA by SNP interaction term, and adjusting for sex, age, education, APOE ε4 genotype status, and kinship (relatedness). RESULTS Our analysis identified 31 unique SNPs from 24 genes reaching an exploratory significance threshold of 1×10-5. Fourteen of the 24 genes have been previously associated with the brain/cognition, and 5 genes have been previously associated with circulating lipids. Importantly, 8 of the genes we identified, DAB1, SORCS2, SERINC5, OSBPL3, CPA6, DLG2, MUC19, and RGMA, have been associated with both cognition and circulating lipids. We identified 22 unique SNPs for which individuals with the minor alleles benefit substantially from increased ω-3 fatty acid concentrations and 9 unique SNPs for which the common homozygote benefits. CONCLUSIONS In this GWIS of ω-3 PUFA species on cognitive outcomes, we identified 8 unique genes with plausible biology suggesting individuals with specific polymorphisms may have greater potential to benefit from increased ω-3 PUFA intake. Additional replication in prospective settings with more diverse samples is needed.
Collapse
Affiliation(s)
- Carmen E Annevelink
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Jason Westra
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States
| | - Aleix Sala-Vila
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Cardiovascular Risk and Nutrition, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - William S Harris
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | - Nathan L Tintle
- Fatty Acid Research Institute (FARI), Sioux Falls, SD, United States; Department of Population Health Nursing Science, College of Nursing, University of Illinois Chicago, Chicago, IL, United States
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
6
|
Dai J, Pang M, Cai J, Liu Y, Qin Y. Integrated transcriptomic and metabolomic investigation of the genes and metabolites involved in swine follicular cyst formation. Front Vet Sci 2024; 10:1298132. [PMID: 38274662 PMCID: PMC10808629 DOI: 10.3389/fvets.2023.1298132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Follicular cysts are a common reproductive disorder in mammals that is usually caused by stress. However, the pathogenesis of follicular cysts in sows remains unclear. To provide new insights into the mechanisms of follicular cyst formation in pigs, we conducted a combined transcriptomic and metabolomic analysis on theca interna and mural granulosa cells of follicular cysts and mature follicles. We identified 2,533 up-regulated and 1,355 down-regulated genes in follicular cysts, compared with mature follicles. These differentially expressed genes were mainly found in signaling pathways related to tumor formation and cortisol synthesis and secretion as shown by Ingenuity Pathway Analysis, which predicted 4,362 upstream regulatory factors. The combined gene expression and pathway analysis identified the following genes as potential biomarkers for porcine follicular cysts: cytochrome P450 family 2 subfamily C polypeptide 18, L-lactate dehydrogenase, carbamoyl-phosphate synthase, fibroblast growth factor 7, integrin binding sialoprotein, interleukin 23 receptor, prolactin receptor, epiregulin, interleukin 1 receptor type II, arginine vasopressin receptor 1A, fibroblast growth factor 10, claudin 7, G Protein Subunit Gamma 3, cholecystokinin B receptor and cytosolic phospholipase A2. Metabolomics analysis found significant differences in 87 metabolites, which were enriched in unsaturated fatty acid biosynthesis, and sphingolipid signaling pathways. These results provide valuable information on the molecular mechanisms of follicular cyst formation, which may facilitate the development of new therapeutics to prevent and treat follicular cysts.
Collapse
Affiliation(s)
- Jiage Dai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyue Pang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jiabao Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
8
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Badesso S, Cartas-Cejudo P, Espelosin M, Santamaria E, Cuadrado-Tejedor M, Garcia-Osta A. Docosahexaenoic Acid Ameliorates Contextual Fear Memory Deficits in the Tg2576 Alzheimer's Disease Mouse Model: Cellular and Molecular Correlates. Pharmaceutics 2022; 15:pharmaceutics15010082. [PMID: 36678710 PMCID: PMC9866126 DOI: 10.3390/pharmaceutics15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the brain, is essential for successful aging. In fact, epidemiological studies have demonstrated that increased intake of DHA might lower the risk for developing Alzheimer's disease (AD). These observations are supported by studies in animal models showing that DHA reduces synaptic pathology and memory deficits. Different mechanisms to explain these beneficial effects have been proposed; however, the molecular pathways involved are still unknown. In this study, to unravel the main underlying molecular mechanisms activated upon DHA treatment, the effect of a high dose of DHA on cognitive function and AD pathology was analyzed in aged Tg2576 mice and their wild-type littermates. Transcriptomic analysis of mice hippocampi using RNA sequencing was subsequently performed. Our results revealed that, through an amyloid-independent mechanism, DHA enhanced memory function and increased synapse formation only in the Tg2576 mice. Likewise, the IPA analysis demonstrated that essential neuronal functions related to synaptogenesis, neuritogenesis, the branching of neurites, the density of dendritic spines and the outgrowth of axons were upregulated upon-DHA treatment in Tg2576 mice. Our results suggest that memory function in APP mice is influenced by DHA intake; therefore, a high dose of daily DHA should be tested as a dietary supplement for AD dementia prevention.
Collapse
Affiliation(s)
- Sara Badesso
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Maria Espelosin
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Correspondence: (M.C.-T.); (A.G.-O.)
| | - Ana Garcia-Osta
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Correspondence: (M.C.-T.); (A.G.-O.)
| |
Collapse
|
10
|
Ablinger I, Dressel K, Rott T, Lauer AA, Tiemann M, Batista JP, Taddey T, Grimm HS, Grimm MOW. Interdisciplinary Approaches to Deal with Alzheimer's Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022; 10:2922. [PMID: 36428494 PMCID: PMC9687885 DOI: 10.3390/biomedicines10112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Ablinger
- Speech and Language Therapy, Campus Bonn, SRH University of Applied Health Sciences, 53111 Bonn, Germany
| | - Katharina Dressel
- Speech and Language Therapy, Campus Düsseldorf, SRH University of Applied Health Sciences, 40210 Düsseldorf, Germany
| | - Thea Rott
- Interdisciplinary Periodontology and Prevention, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Anna Andrea Lauer
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Michael Tiemann
- Sport Science, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - João Pedro Batista
- Sport Science and Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tim Taddey
- Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Heike Sabine Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
11
|
Wang Y, Nong Y, Zhang X, Mai T, Cai J, Liu J, Lai KP, Zhang Z. Comparative plasma metabolomic analysis to identify biomarkers for lead-induced cognitive impairment. Chem Biol Interact 2022; 366:110143. [PMID: 36063854 DOI: 10.1016/j.cbi.2022.110143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Lead (Pb), an environmental neurotoxicant, is known to induce cognitive impairment. Neuroinflammation and oxidative stress in the brain tissue are common pathogenetic links to Pb-induced cognitive impairment. There are no existing biomarkers to evaluate Pb-reduced cognition. Plasma metabolites are the readout of the biological functions of the host, making it a potential biomarker for assessing heavy metal-induced cognitive impairment. METHODS The present report aims to identify the plasma metabolite changes under conditions of high plasma Pb levels and low cognition. RESULTS We conducted a comparative plasma metabolomic analysis on two groups of adults those with low plasma Pb level and high cognition vs. those with high plasma Pb level and low cognition and identified 20 dysregulated metabolites. In addition, we found a significant reduction in docosahexaenoic acid, glycoursodeoxycholic acid, and arachidonic acid, and significant induction of p-cresol sulfate and phenylacetyl-l-glutamine. Gene Ontology enrichment analysis highlighted the importance of these plasma metabolites in brain functions and neurodegenerative diseases such as Parkinson's disease. CONCLUSIONS The findings of this report provide novel insights into the use of plasma metabolites to assess metal-induced cognitive impairment.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yuan Nong
- Department of Neurology (Area Two), Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Xing Zhang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Tingyu Mai
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | | |
Collapse
|