1
|
George MY, Farag N, Menze ET, Elezaby RS, Salem NA, Elrahmany SK, Adel N, ElKhatib RM, Galal M, Assem H, Elkhouly R, Wesa MA, Hesham N, Hossam N, Ayoub IM. Intranasal delivery of blackberry-loaded Chitosan nanoparticles for antipsychotic potential in Ketamine-induced schizophrenia in rats. Sci Rep 2025; 15:16707. [PMID: 40368975 DOI: 10.1038/s41598-025-00918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
Schizophrenia is a neuropsychiatric disorder with limited treatment options that have unwanted side effects. Clozapine, an atypical antipsychotic, has been used for resistant schizophrenia. This study investigated the effect of anthocyanin-rich extract from Rubus fruticosus (RFE) loaded into chitosan nanoparticles against ketamine-induced schizophrenia in rats. The extract's phenolic and flavonoid content was measured using UPLC-ESI-MS/MS, revealing 9.42 ± 0.5 mg of gallic acid equivalent and 2.54 ± 0.02 mg of quercetin equivalent per g of extract, with 19 identified compounds, predominantly anthocyanin glycosides. Chitosan nanoparticles were prepared with chitosan and sodium tripolyphosphate at a ratio of 3:1 with particle size 194.49 ± 5.69 nm and encapsulation efficiency of 64.6 ± 1.12%. Rats were treated with ketamine to induce schizophrenia-like symptoms, and various groups received different treatments, including control, ketamine, ketamine + clozapine, ketamine + RFE, and a combination of clozapine/RFE. Clozapine and RFE treatments were initiated from day 8 to day 14. RFE treatment ameliorated positive, negative, and cognitive symptoms of schizophrenia while mitigating clozapine-induced side effects such as weight gain, hyperglycemia, hyperlipidemia, agranulocytosis, and liver dysfunction. RFE corrected oxidative stress as evidenced by its effect on catalase activity and reduced glutathione level. Additionally, RFE hindered neuroinflammation induced by ketamine and reduced the levels of Tumor Necrosis Factor-α. RFE also increased BDNF levels. This study demonstrates that RFE-loaded chitosan nanoparticles exhibit potent antipsychotic properties and enhance clozapine's therapeutic efficacy while minimizing its adverse effects. This could shed light on the integration of the use of natural products and advanced nano-based formulations to manage schizophrenia patients worldwide.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt.
| | - Nermeen Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Reham S Elezaby
- Department of Pharmaceutics, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Nayera A Salem
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Shereen K Elrahmany
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Nahed Adel
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Rana M ElKhatib
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Menna Galal
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Hams Assem
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Radwa Elkhouly
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Mariam Alkess Wesa
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Noha Hesham
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Nouran Hossam
- Drug Design Program Graduates, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassiya, Cairo, 11566, Egypt.
| |
Collapse
|
2
|
Huang Y, Zu D, Tian C, Xie J, Chen W, Fan H, Yu X, Lu H, Yang J, Lin F, Zheng J. Development of a magnetic beads-based ligand fishing method for screening SARS-CoV-2 NSP5 inhibitors from complex herbal mixtures: Rosmarinus officinalis as a case study. J Chromatogr A 2025; 1753:465956. [PMID: 40300453 DOI: 10.1016/j.chroma.2025.465956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
SARS-CoV-2 NSP5, a conserved protease essential for viral replication, represents a critical therapeutic target. Natural products provide diverse chemical scaffolds for antiviral development but remain underexploited. Traditional screening methods struggle to resolve specific inhibitors in complex herbal matrices due to selectivity and throughput limitations. To address these challenges, we developed an innovative magnetic beads-based ligand fishing strategy coupled with UPLC-Q-Exactive-Orbitrap-MS/MS for rapid discovery of SARS-CoV-2 NSP5 inhibitors from complex herbal matrices. Screening of 44 traditional Chinese medicinal extracts identified Rosmarinus officinalis as a potent inhibitor, exhibiting an IC50 of 19.90 ± 3.16 μg/mL against NSP5. Through ligand fishing and mass spectrometry analysis, 15 bioactive compounds were identified, including 8 diterpenoids (predominantly abietane-type) and 3 phenylpropanoids. Notably, rosmarinic acid demonstrated the strongest inhibition (IC50 = 5.784 ± 0.20 μM), surpassing the positive control ebselen in molecular docking studies. Structural characterization revealed that hydroxyl and carboxyl groups in diterpenoids formed critical hydrogen bonds with catalytic residues (Cys145, Ser144) of NSP5. This methodological advancement not only improved the accuracy of natural product screening but also facilitated the development of targeted antiviral strategies against SARS-CoV-2 and other emerging viral pathogens.
Collapse
Affiliation(s)
- Yujing Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China; College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Duntao Zu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chenjing Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Juntao Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wenlin Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxia Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huiqing Lu
- Clinical Research Department, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Jianni Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Fulong Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Degachi NEH, Ali-Rachedi F, Guehria I, Laoud A, Gheid A. Phytochemical and biological investigations of Salvia microphylla leaf extracts using LC-MS/MS. Nat Prod Res 2025:1-10. [PMID: 40114414 DOI: 10.1080/14786419.2025.2480665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
In this research, the total phenolics, antioxidant activity, and antibacterial susceptibility of Salvia microphylla leaf extracts were studied using solvents of varying polarity (n-hexane, dichloromethane, ethyl acetate, and 80% methanol). Total phenolic content (TPC) and total flavonoid content (TFC) were estimated using the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. Phytochemical analysis was conducted using the LC-ESI-MS/MS method. By using the FRAP and DPPH methods, the antioxidant activities were measured spectrophotometrically. The antimicrobial assay was done through the agar-well diffusion method against the Gram-negative and Gram-positive bacteria. All extracts showed potent antimicrobial activity, with the hexane extract displaying strong inhibitory effects. These findings indicate that S. microphylla leaf extracts contain promising bioactive compounds possessing antioxidant and antibacterial properties, suggesting further research to isolate and characterise these bioactive compounds and assess their in vivo effects.
Collapse
Affiliation(s)
- Nour El Houda Degachi
- Departement of chemistry, Water and Environment Science and Technology Laboratory, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Fahima Ali-Rachedi
- Departement of chemistry, Water and Environment Science and Technology Laboratory, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Ines Guehria
- Faculty of Science, Laboratory of Biochemistry and Biotechnology, University of Tunis El Manar, Tunis, Tunisia
| | - Aicha Laoud
- University of Salah Boubnider - Constantine 3, Constantine, Algeria
| | - Abdelhak Gheid
- Departement of chemistry, Water and Environment Science and Technology Laboratory, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| |
Collapse
|
4
|
Romano E, Domínguez-Rodríguez G, Mannina L, Cifuentes A, Ibáñez E. Sequential Obtention of Blood-Brain Barrier-Permeable Non-Polar and Polar Compounds from Salvia officinalis L. and Eucalyptus globulus Labill. with Neuroprotective Purposes. Int J Mol Sci 2025; 26:601. [PMID: 39859317 PMCID: PMC11765258 DOI: 10.3390/ijms26020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Eucalyptus globulus Labill. and Salvia officinalis L. for neuroprotective purposes. A sequential extraction process was applied, starting with supercritical CO2 extraction (SC-CO2) to obtain non-polar terpenoids, followed by pressurized natural deep eutectic solvent extraction (PLE-NaDES) to recover phenolic compounds from the SC-CO2 residue. PLE-NaDES extracts exhibited higher antioxidant and anticholinergic capacities than SC-CO2 extracts for both plants, with S. officinalis extracts being more bioactive than E. globulus extracts. A total of 21 terpenoids were identified using gas chromatography-mass spectrometry from E. globulus while 24 were detected from S. officinalis SC-CO2 extracts. In addition, 25 different phenolic compounds were identified in both plants using high-performance liquid chromatography coupled with mass spectrometry from PLE-NaDES extracts. The study of the permeability across the BBB showed limited permeability for non-polar compounds obtained by SC-CO2 from both plants; however, the more polar compounds obtained by PLE-NaDES showed high permeability, particularly for flavonoids in E. globulus and rosmarinic acid in S. officinalis. This study revealed, for the first time, the antioxidant and neuroprotective potential of S. officinalis and E. globulus extracts obtained using SC-CO2 followed by PLE-NaDES, as well as the high permeability of PLE-NaDES extracts when crossing the BBB to exert their protective effects. This research opens a new pathway for exploring alternatives to current drugs used in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Enrico Romano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (L.M.)
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (L.M.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Hussein HM, Abdel Kawy MA, Eltanany BM, Pont L, Benavente F, Fayez AM, Alnajjar R, Al-Karmalawy AA, Abdelmonem AR, Mohsen E. Cognitive-enhancing effect of Cordia dichotoma fruit on scopolamine-induced cognitive impairment in rats: metabolite profiling, in vivo, and in silico investigations. RSC Adv 2024; 14:40267-40286. [PMID: 39717818 PMCID: PMC11664333 DOI: 10.1039/d4ra06991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Many plants are reported to enhance cognition in amnesic-animal models. The metabolite profile of Cordia dichotoma fruit methanolic extract (CDFME) was characterized by LC-QTOF-MS/MS, and its total phenolics content (TPC) and total flavonoids content (TFC) were determined. In parallel, its cognitive-enhancing effect on scopolamine (SCOP)-induced AD in rats was evaluated. The TPC and TFC were 44.75 ± 1.84 mg gallic acid equiv. g-1 sample and 5.66 ± 0.67 mg rutin equiv. g-1 sample, respectively. In total, 81 metabolites were identified, including phenolic acids, lignans, coumarins, amino acids, fatty acids, and their derivatives, fatty acid amides, polar lipids, terpenoids, and others. The most abundant metabolites identified were quinic acid, caffeoyl-4'-hydroxyphenyllactate, rosmarinic acid, and oleamide. CDFME (200 mg kg-1) was found to significantly enhance recognition memory in the novel object recognition test. Furthermore, it nearly corrected acetylcholinesterase (AChE), acetylcholine, noradrenaline, and dopamine hippocampal levels, which changed due to SCOP. Further in silico validation of the in vivo results was conducted, focusing on the most abundant metabolites. Molecular docking showed that rosmarinic acid, caffeoyl-4'-hydroxyphenyllactate, sebestenoid C, and sagerinic acid exhibited the greatest affinity for receptor binding against AChE. However, molecular dynamics and mechanics calculations clarified that the complex of caffeoyl-4'-hydroxyphenyllactate with AChE was the most stable one. This study represents the first comprehensive metabolite profiling of CDFME to assess its cognition-enhancing effect both in vivo and in silico. These results demonstrate that CDFME protects against SCOP-induced cognitive impairment. Thus, additional preclinical and clinical studies on CDFME may provide an attractive approach in pharmacotherapy and AD prophylaxis.
Collapse
Affiliation(s)
- Hagar M Hussein
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mostafa A Abdel Kawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona Barcelona 08028 Spain
- Serra Húnter Program, Generalitat de Catalunya Barcelona 08007 Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona Barcelona 08028 Spain
| | - Ahmed M Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo 11835 Egypt
| | - Radwan Alnajjar
- Computer-Aided Drug Design (CADD) Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi Libya
- Department of Chemistry, Faculty of Science, University of Benghazi Benghazi Libya
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Azza R Abdelmonem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Engy Mohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| |
Collapse
|
6
|
Dab H, Ben Hamed S, Jery A, Chehidi A, Zourgui L. Effect of Salvia officinalis aqueous infusion on copper sulfate-induced inflammatory response and oxidative stress imbalance in mice liver and kidney. Drug Chem Toxicol 2024; 47:587-596. [PMID: 37357715 DOI: 10.1080/01480545.2023.2228516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Extracts of Salvia officinalis (S. officinalis) have been described to have many therapeutic properties. However, the effect of S. officinalis on copper sulfate toxicity has not been previously reported. The aim of this study was to investigate the toxicity of copper sulfate and the potential beneficial effects of S. officinalis aqueous infusion on proinflammatory response and antioxidant status. 56 male mice were used and equally divided into 6 groups: control group, copper sulfate treated group (40 mg/kg), S. officinalis aqueous infusion treated groups (200 mg/kg and 400 mg/kg) separately or in combination with copper. IL-6 (interleukine-6) and TNF-α (Tumor necrosis factor alpha) were assessed by Elisa. Catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities, malondialdehyde (MDA) and oxygen peroxide levels were determined. Serum biochemical parameters were analyzed. Copper enhanced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Lactate dehydrogenase (LDH) (p < 0.05). Copper enhances significantly IL-6, TNF-α and MDA levels in liver and kidney and reduced CAT, SOD and AChE activities (p < 0.05). Aqueous infusion of S. officinalis at 400 mg/kg abolished copper-induced changes in AST and ALT activity. S. officinalis aqueous infusion at 200 mg/kg reversed copper-induced IL-6 in kidney and TNF-α in liver at both doses. S. officinalis aqueous infusion at 400 mg/kg restored SOD in kidney and CAT and AChE activities in both liver and kidney. S. officinalis aqueous infusion may be useful in partially ameliorating tissue disorders induced by copper exposure such as inflammatory response, oxidative stress imbalance and organ dysfunction through its phenolic compounds and higher antioxidant capacity.
Collapse
Affiliation(s)
- Houcine Dab
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Said Ben Hamed
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, Tunisia
| | - Amel Jery
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Amel Chehidi
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Lazhar Zourgui
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| |
Collapse
|
7
|
El Khodary YA, Ayoub IM, Pério P, Bourgeade-Delmas S, Ibrahim N, El-Ahmady SH. A comparative untargeted metabolomic analysis and assessment of antiplasmodial potential of nine Albizia species. Arch Pharm (Weinheim) 2024; 357:e2300543. [PMID: 38412461 DOI: 10.1002/ardp.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
The genus Albizia is one of the richest genera in phenolics besides other classes of secondary metabolites including saponins, terpenes, and alkaloids with promising medicinal applications. In the current study, UHPLC-PDA-ESI-MS/MS-based metabolic profiling of leaves of Albizia lebbeck, Albizia julibrissin, Albizia odoratissima, Albizia procera, Albizia anthelmintica, Albizia guachapele, Albizia myriophylla, Albizia richardiana, and Albizia lucidior resulted in the tentative identification of 64 metabolites, mainly flavonoids, phenolic acids, saponins, and alkaloids. Some metabolites were identified in Albizia for the first time and could be used as species-specific chemotaxonomic markers, including: apigenin 7-O-dihydroferuloyl hexoside isomers, apigenin 7-O-pentosyl hexoside, quercetin 3-O-rutinoside 7-O-deoxyhexoside, quercetin 3,7-di-O-hexoside deoxyhexoside, quercetin 7-O-feruloyl hexoside, methyl myricetin 7-O-deoxyhexoside, kaempferol di-3-O-di-deoxyhexoside-7-O-hexoside, and kaempferol 3-O-neohesperidoside 7-O-hexoside. Comparative untargeted metabolomic analysis was undertaken to discriminate between species and provide a chemotaxonomic clue that can be used together with morphological and genetic analyses for more accurate classification within this genus. Moreover, the in vitro antiplasmodial activity was assessed and correlated to the metabolic profile of selected species. This was followed by a molecular docking study and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction of the identified budmunchiamine alkaloids, revealing promising interactions with the active site of lactate dehydrogenase of Plasmodium falciparum and good pharmacokinetics and pharmacodynamics, which could help in designing novel antimalarial drugs.
Collapse
Affiliation(s)
- Yosra A El Khodary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Pierre Pério
- Faculte des Sciences Pharmaceutiques, Pharma-Dev, UMR 152, Université de Toulouse III-Paul Sabatier, IRD, UPS, Toulouse, France
| | - Sandra Bourgeade-Delmas
- Faculte des Sciences Pharmaceutiques, Pharma-Dev, UMR 152, Université de Toulouse III-Paul Sabatier, IRD, UPS, Toulouse, France
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
8
|
Šobot AV, Janić M, Popović I, Lazarević-Pašti T, Momić T, Krstić A, Tričković JF. Aqueous sage leave extract attenuates inflammation and oxidant-induced genotoxicity in human peripheral blood mononuclear cells. Arh Hig Rada Toksikol 2024; 75:137-146. [PMID: 38963137 PMCID: PMC11223510 DOI: 10.2478/aiht-2024-75-3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024] Open
Abstract
Traditional medicine has used sage (Salvia officinalis L.) preparations for centuries to prevent and treat various inflammatory and oxidative stress-induced conditions. The aim of this in vitro study was to determine the bioactive properties of a sage leave extract obtained with environmentally friendly aqueous extraction and lyophilisation in primary human peripheral blood cells. To that end we measured the total phenolic and flavonoid content (TPC and TFC, respectively) with gas chromatography-mass spectrometry (GC-MS). Non-cytotoxic concentrations determined with the trypan blue assay were used to assess the antioxidant (DPPH, ABTS, and PAB assay), antigenotoxic (CBMN assay), immunomodulatory (IL-1β and TNF-α), and neuroprotective effects (AChE inhibition). The extract contained high TPC (162 mg GAE/g of dry extract) and TFC (39.47 mg QE/g of dry extract) concentrations, while β-thujone content was unexpectedly low (below 0.9 %). Strong radical-scavenging activity combined with glutathione reductase activation led to a decrease in basal and H2O2-induced oxidative stress and DNA damage. A decrease in TNF-α and increase in IL-1β levels suggest complex immunomodulatory response that could contribute to antioxidant and, together with mild AChE inhibition, neuroprotective effects. Overall, this study has demonstrated that aqueous sage leave extract reduces the levels of thujone, 1,8-cineole, pinene, and terpene ketones that could be toxic in high concentrations, while maintaining high concentrations of biologically active protective compounds which have a potential to prevent and/or treat inflammatory and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Ana Valenta Šobot
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Marijana Janić
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Iva Popović
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Tamara Lazarević-Pašti
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Tatjana Momić
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Aleksandar Krstić
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| | - Jelena Filipović Tričković
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Belgrade, Serbia
| |
Collapse
|
9
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
10
|
Mahmoud OA, Ayoub IM, Eldahshan OA, Singab ANB. The impact of seasonal variation on the composition of the volatile oil of Polyalthia suberosa (Roxb.) Thwaites leaves and evaluation of its acetylcholinesterase inhibitory activity. BMC Complement Med Ther 2024; 24:159. [PMID: 38609961 PMCID: PMC11015646 DOI: 10.1186/s12906-024-04443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Polyalthia suberosa (Roxb.) Thwaites (Annonaceae) is a medicinal plant that has been reported for its various pharmacological potentials, such as its anti-inflammatory, analgesic, antioxidant, and neuropharmacological activities. This study aimed to analyze the leaf essential oils of P. suberosa (PSLO) collected in different seasons, to evaluate the acetylcholinesterase inhibitory activity, and to corroborate the obtained results via in-silico molecular docking studies. METHODS The leaf essential oils of P. suberosa collected in different seasons were analyzed separately by GC/MS. The acetylcholinesterase inhibitory activity of the leaves oil was assessed via colorimetric assay. In-silico molecular docking studies were elucidated by virtual docking of the main compounds identified in P. suberosa leaf essential oil to the active sites in human acetylcholinesterase crystal structure. RESULTS A total of 125 compounds were identified where D-limonene (0.07 - 24.7%), α-copaene (2.25 - 15.49%), E-β-caryophyllene (5.17 - 14.42%), 24-noroleana-3,12-diene (12.92%), β-pinene (0.14 - 8.59%), and α-humulene (2.49-6.9%) were the most abundant components. Results showed a noteworthy influence of the collection season on the chemical composition and yield of the volatile oils. The tested oil adequately inhibited acetylcholinesterase enzyme with an IC50 value of 91.94 µg/mL. Additionally, in-silico molecular docking unveiled that palmitic acid, phytol, p-cymene, and caryophyllene oxide demonstrated the highest fitting scores within the active sites of human acetylcholinesterase enzyme. CONCLUSIONS From these findings, it is concluded that P. suberosa leaf oil should be evaluated as a food supplement for enhancing memory.
Collapse
Affiliation(s)
- Orchid A Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt.
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566-Abbassia, Cairo, Egypt.
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
11
|
Saeed Kotb S, Ayoub IM, El-Moghazy SA, Singab ANB. Phytochemical analysis of Pithecellobium dulce (Roxb) Benth Bark via UPLC-ESI-MS/MS and evaluation of its biological activity. Nat Prod Res 2024; 38:1424-1429. [PMID: 36318868 DOI: 10.1080/14786419.2022.2140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
The metabolites profile of Egyptian P. dulce bark was investigated using UPLC-ESI-MS/MS analysis with subsequent analysis of its cytotoxicity, antimicrobial, and antioxidant activities. Asides, in silico molecular docking study was performed for validation of cytotoxicity. P. dulce bark showed richness in polyphenolics and flavonoids, displaying 575.5 mg GAE/g extract (total phenolic content) and 310.82 mg CE/g extract (flavonoid content). A total of 29 compounds were tentatively identified. Proanthocyanidins and phenolic acids were the major classes observed. P. dulce bark possessed promising antioxidant and cytotoxic activities, however, it exhibited a weak antimicrobial activity. No antifungal activity was observed. In silico molecular docking revealed that daidzein compound achieved the best interaction energy score on the 5II2 of Gibbs free energy of -6.911 kcal/mol. This study revealed that P. dulce bark can be introduced as a potential source for valuable bioactive compounds that supporting its usage in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara Saeed Kotb
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Safaa A El-Moghazy
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Younis MM, Ayoub IM, George MY, Mostafa NM, Eldahshan OA. In vivo hepatoprotective and nephroprotective effects of Stenocarpus sinuatus leaf extract against ifosfamide-induced toxicity in rats. Arch Pharm (Weinheim) 2024; 357:e2300438. [PMID: 37984852 DOI: 10.1002/ardp.202300438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Ifosfamide (IFOS) is a broad-spectrum chemotherapeutic agent that has been extensively used for breast cancer and other solid tumors. Unfortunately, its use is associated with toxicities of several organs. Stenocarpus sinuatus is an Australian tree belonging to the Proteaceae family. In the current study, the phytochemical constituents of S. sinuatus methanol leaf extract (SSLE) were assessed. In addition, the protective effect of SSLE against IFOS-induced nephrotoxicity and hepatotoxicity was evaluated. Rats were randomly divided into six groups: control, IFOS (50 mg/kg), IFOS + SSLE (100 mg/kg), IFOS + SSLE (200 mg/kg), IFOS + SSLE (400 mg/kg), and SSLE (400 mg/kg). Hepatoprotective and nephroprotective potency of SSLE was assessed using different biochemical parameters. The phytochemical investigation resulted in the isolation of four flavonoid glycosides (kaempferol 3-O-β- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside, kaempferol 3-O-α-rhamnopyranoside, isorhamnetin 3-O-β- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside, and quercetin 3-O-β- d-glucopyranosyl-(1→2)-α- l-rhamnopyranoside) and a coumarin (scopoletin). This is the first report on the isolated compounds from the genus Stenocarpus. SSLE showed enhancement of kidney and liver functions and reduction of oxidative stress and inflammation. The histopathology of the investigated organs confirmed the protective effect of SSLE. In conclusion, SSLE is considered as a promising candidate that can be used in defense against the toxic effects of IFOS after further clinical trials.
Collapse
Affiliation(s)
- Mai M Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
13
|
Stylianopoulou E, Daviti A, Giourou V, Gerasimidi E, Nikolaou A, Kourkoutas Y, Grigoriou ME, Paleologou KE, Skavdis G. Assessment of the Anti-Amyloidogenic Properties of Essential Oils and Their Constituents in Cells Using a Whole-Cell Recombinant Biosensor. Brain Sci 2023; 14:35. [PMID: 38248250 PMCID: PMC10812981 DOI: 10.3390/brainsci14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Essential oils exhibit numerous medicinal properties, including antimicrobial, anti-inflammatory and antioxidant effects. Recent studies also indicate that certain essential oils demonstrate anti-amyloidogenic activity against β-amyloid, the protein implicated in Alzheimer's disease. To investigate whether the anti-aggregating properties of essential oils extend to α-synuclein, the protein involved in Parkinson's disease, we constructed and employed a whole-cell biosensor based on the split-luciferase complementation assay. We validated our biosensor by using baicalein, a known inhibitor of α-synuclein aggregation, and subsequently we tested eight essential oils commonly used in food and the hygienic industry. Two of them, citron and sage, along with their primary components, pure linalool (the main constituent in citron essential oil) and pure eucalyptol (1,8-cineole, the main constituent in sage essential oil), were able to reduce α-syn aggregation. These findings suggest that both essential oils and their main constituents could be regarded as potential components in functional foods or incorporated into complementary Parkinson's disease therapies.
Collapse
Affiliation(s)
- Electra Stylianopoulou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Anastasia Daviti
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Venetia Giourou
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Eleni Gerasimidi
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Maria E. Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Katerina E. Paleologou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
14
|
Awad HH, Desouky MA, Zidan A, Bassem M, Qasem A, Farouk M, AlDeab H, Fouad M, Hany C, Basem N, Nader R, Alkalleny A, Reda V, George MY. Neuromodulatory effect of vardenafil on aluminium chloride/D-galactose induced Alzheimer's disease in rats: emphasis on amyloid-beta, p-tau, PI3K/Akt/p53 pathway, endoplasmic reticulum stress, and cellular senescence. Inflammopharmacology 2023; 31:2653-2673. [PMID: 37460908 PMCID: PMC10518298 DOI: 10.1007/s10787-023-01287-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 09/26/2023]
Abstract
Dysregulation of protein homeostasis, proteostasis, is a distinctive hallmark of many neurodegenerative disorders and aging. Deleteriously, the accumulation of aberrant proteins in Alzheimer's disease (AD) is accompanied with a marked collapse in proteostasis network. The current study explored the potential therapeutic effect of vardenafil (VAR), a phosphodiesterase-5 inhibitor, in AlCl3/D-galactose (D-gal)-induced AD in rats and its possible underlying mechanisms. The impact of VAR treatment on neurobehavioral function, hippocampal tissue architecture, and the activity of the cholinergic system main enzymes were assessed utilizing VAR at doses of 0.3 mg/kg and 1 mg/kg. Additionally, the expression level of amyloid-beta and phosphorylated tau proteins in the hippocampus were figured out. Accordingly, VAR higher dose was selected to contemplate the possible underlying mechanisms. Intriguingly, VAR elevated the cyclic guanosine monophosphate level in the hippocampus and averted the repressed proteasome activity by AlCl3/D-gal; hence, VAR might alleviate the burden of toxic protein aggregates in AD. In addition, a substantial reduction in the activating transcription factor 6-mediated endoplasmic reticulum stress was demonstrated with VAR treatment. Notably, VAR counteracted the AlCl3/D-gal-induced depletion of nuclear factor erythroid 2-related factor 2 level. Moreover, the anti-senescence activity of VAR was demonstrated via its ability to restore the balance of the redox circuit. The modulation of phosphatidylinositol-3-kinase/protein kinase B/p53 pathway and the reduction of nuclear factor kappa B level, the key regulator of senescence-associated secretory phenotype mediators release, with VAR treatment were also elucidated. Altogether, these findings insinuate the possible therapeutic benefits of VAR in AD management.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Alaa Zidan
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariam Bassem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amaal Qasem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona Farouk
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy AlDeab
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Miral Fouad
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cherry Hany
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nada Basem
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rita Nader
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashrakat Alkalleny
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Verina Reda
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
15
|
Morid OF, Menze ET, Tadros MG, George MY. L-carnitine Modulates Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights to Oxidative Stress, Inflammation, Synaptic Plasticity, Liver/brain, and Kidney/brain Axes. J Neuroimmune Pharmacol 2023; 18:310-326. [PMID: 37140732 PMCID: PMC10577097 DOI: 10.1007/s11481-023-10062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Chemotherapy-induced cognitive impairment in cancer patients is known as "chemobrain". Doxorubicin and Cyclophosphamide are two chemotherapeutic agents used in combination to treat solid tumors. L-carnitine was reported for its anti-oxidant and anti-inflammatory activities. The goal of the present study was to elucidate the neuroprotective effect of L-carnitine against chemobrain induced by Doxorubicin and Cyclophosphamide in rats. Rats were divided into five groups: Control group; Doxorubicin (4mg/kg, IV) and Cyclophosphamide (40mg/kg, IV)-treated group; two L-carnitine-treated groups (150 and 300mg/kg, ip) with Doxorubicin and Cyclophosphamide; and L-carnitine alone-treated group (300mg/kg). Doxorubicin and Cyclophosphamide induced histopathological changes in rats' hippocampi and prefrontal cortices, as well as reduced memory as evidenced by behavioural testing. L-carnitine treatment showed opposite effects. In addition, chemotherapy treatment enhanced oxidative stress via reducing catalase and glutathione levels, and inducing lipid peroxidation. By contrast, L-carnitine treatment showed powerful antioxidant effects reversing chemotherapy-induced oxidative damage. Moreover, chemotherapy combination induced inflammation via their effect on nuclear factor kappa B (p65), interleukin-1β, and tumor necrosis factor-α. However, L-carnitine treatment corrected such inflammatory responses. Furthermore, Doxorubicin and Cyclophosphamide reduced synaptic plasticity via hindering expression of brain-derived neurotrophic factor, phosphorylated cyclase response element binding protein, synaptophysin, and postsynaptic density protein 95 whereas protein expression of such synaptic plasticity biomarkers was enhanced by L-carnitine treatment. Finally, acetylcholinesterase activity was found to be enhanced by chemotherapy treatment affecting rats' memory while L-carnitine treatment reduced acetylcholinesterase activity. L-carnitine also showed hepatoprotective and renal protective effects suggesting liver/brain and kidney/brain axes as possible mechanisms for its neuroprotective effects.
Collapse
Affiliation(s)
- Olivia Fayez Morid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
16
|
Hanna DMF, Youshia J, Fahmy SF, George MY. Nose to brain delivery of naringin-loaded chitosan nanoparticles for potential use in oxaliplatin-induced chemobrain in rats: impact on oxidative stress, cGAS/STING and HMGB1/RAGE/TLR2/MYD88 inflammatory axes. Expert Opin Drug Deliv 2023; 20:1859-1873. [PMID: 37357778 DOI: 10.1080/17425247.2023.2228685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.
Collapse
Affiliation(s)
- Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Ajmal MR. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response. Diseases 2023; 11:30. [PMID: 36810544 PMCID: PMC9944956 DOI: 10.3390/diseases11010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Proteins are central to life functions. Alterations in the structure of proteins are reflected in their function. Misfolded proteins and their aggregates present a significant risk to the cell. Cells have a diverse but integrated network of protection mechanisms. Streams of misfolded proteins that cells are continuously exposed to must be continually monitored by an elaborated network of molecular chaperones and protein degradation factors to control and contain protein misfolding problems. Aggregation inhibition properties of small molecules such as polyphenols are important as they possess other beneficial properties such as antioxidative, anti-inflammatory, and pro-autophagic properties and help neuroprotection. A candidate with such desired features is important for any possible treatment development for protein aggregation diseases. There is a need to study the protein misfolding phenomenon so that we can treat some of the worst kinds of human ailments related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
18
|
Comparative metabolic profiling of olive leaf extracts from twelve different cultivars collected in both fruiting and flowering seasons. Sci Rep 2023; 13:612. [PMID: 36635360 PMCID: PMC9837098 DOI: 10.1038/s41598-022-27119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Olea europaea is an economically significant crop native to Mediterranean countries. Its leaves exhibit several biological properties associated to their chemical composition. The aqueous ethanolic extracts of olive leaves from twelve different cultivars were analyzed by high performance liquid chromatography coupled to photodiode array and electrospray ionization mass spectrometry (HPLC/PDA/ESI-MS/MS). A total of 49 phytochemicals were identified in both positive and negative ionization modes. The identified compounds belonged to four classes of secondary metabolites including secoiridoids, flavonoids, pentacyclic triterpenoids and various phenolic compounds. Seasonal variation in chemical composition among the studied cultivars was apparent in autumn and spring. Secologanoside, oleuropein, hydroxy-oleuropein, demethyl oleuropein, gallocatechin, luteolin-O-hexoside, diosmetin, oleanolic acid and maslinic acid were detected in all cultivars in both seasons. Oleuropein-O-deoxyhexoside was tentatively identified for the first time in olive leaf extracts; detected only in the Spanish cultivar Picual (PIC) collected in spring. Also, dihydroxy-oxooleanenoic acid and hydroxy-oxooleanenoic acid, two bioactive pentacyclic triterpenes, were identified. Principle component analysis (PCA) showed good discrimination among the studied cultivars in terms of their botanical origin. This study is considered the first study for non-targeted metabolic profiling of different olive leaf cultivars cultivated in Egypt.
Collapse
|
19
|
George MY, El-Derany MO, Ahmed Y, Zaher M, Ibrahim C, Waleed H, Khaled H, Khaled G, Saleh A, Alshafei H, Alshafei R, Ahmed N, Ezz S, Ashraf N, Ibrahim SS. Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway. Expert Opin Drug Deliv 2023; 20:159-174. [PMID: 36446395 DOI: 10.1080/17425247.2023.2153831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVES The present study aims to formulate and evaluate the efficacy of chrysin-loaded nanoemulsion (CH NE) against lithium/pilocarpine-induced epilepsy in rats, as well as, elucidate its effect on main epilepsy pathogenesis cornerstones; neuronal hyperactivity, oxidative stress, and neuroinflammation. METHODS NEs were characterized by droplet size, zeta potential, pH, in vitro release, accelerated and long-term stability studies. Anti-convulsant efficacy of the optimized formula and underlying mechanisms involved were assessed and compared to that from CH suspension given orally at a 30 folds higher dose. RESULTS Optimized formula displayed a droplet size of 48.09 ± 0.83 nm, PDI 0.25 ± 0.011, sustained release, and good stability. CH treatment reduced seizures scoring, corrected behavioral and histological changes induced by Li/Pilo. Moreover, CH restored neurotransmitters balance and oxidative stress markers levels. Besides, CH induced microglia polarization from M1 to M2 hindering inflammation induced by Li/Pilo. Also, CH restored energy metabolism homeostasis via regulating protein expression of AMPK/SIRT-1/PGC-1α pathway markers. CH NE formulation was found to significantly enhance drug delivery to rats' hippocampus compared to CH suspension. CONCLUSION Our findings prove the therapeutic efficacy of CH NE at a lower dose which could be a potential brain targeting platform to combat epilepsy.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Yasmine Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Malvina Zaher
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Caroline Ibrahim
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Habiba Waleed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hajar Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehad Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Saleh
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Huda Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rahma Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nirmeen Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Ezz
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Ashraf
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Valorization of Pimenta racemosa Essential Oils and Extracts: GC-MS and LC-MS Phytochemical Profiling and Evaluation of Helicobacter pylori Inhibitory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227965. [PMID: 36432065 PMCID: PMC9695514 DOI: 10.3390/molecules27227965] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Pimenta racemosa is a commonly known spice used in traditional medicine to treat several ailments. In this study, comprehensive phytochemical profiling of the essential oils and methanol extracts of P. racemosa leaves and stems was performed, alongside assessing their potential Helicobacter pylori inhibitory activity in vitro and in silico. The essential oils were chemically profiled via GC-MS. Moreover, the methanol extracts were profiled using HPLC-PDA-ESI-MS/MS. The antibacterial activity of the essential oils and methanol extracts against H. pylori was determined by adopting the micro-well dilution method. GC-MS analysis unveiled the presence of 21 constituents, where eugenol represented the major component (57.84%) and (59.76%) in both leaves and stems of essential oils, respectively. A total of 61 compounds were annotated in both leaves and stems of P. racemosa methanolic extracts displaying richness in phenolic compounds identified as (epi)catechin and (epi)gallocatechin monomers and proanthocyanidins, hydrolyzable tannin derivatives (gallotannins), flavonoids, and phenolic acids. The stem essential oil showed the most promising inhibitory effects on H. pylori, exhibiting an MIC value of 3.9 µg/mL, comparable to clarithromycin with an MIC value of 1.95 µg/mL. Additionally, in silico molecular modeling studies revealed that decanal, eugenol, terpineol, delta-cadinene, and amyl vinyl showed potential inhibitory activity on H. pylori urease as demonstrated by high-fitting scores indicating good binding to the active sites. These findings indicate that P. racemosa comprises valuable phytochemical constituents with promising therapeutic effects, particularly the stem, an economic agro-industrial waste.
Collapse
|
21
|
Ethyl lauroyl arginate-based hydrophobic ion pair complex in lipid nanocapsules: A novel oral delivery approach of rosmarinic acid for enhanced permeability and bioavailability. Int J Pharm 2022; 630:122388. [PMID: 36375682 DOI: 10.1016/j.ijpharm.2022.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Limited oral bioavailability due to high hydrophilicity restricts the beneficial use of Rosmaranic acid (RM) that is characterized by many biological and pharmacological effects. The present work was addressed to extract RM from Rosmarinus officinalis L. leaves and then increase its lipophilicity and permeability through the application of hydrophobic ion pair (HIP) approach using ethyl lauroyl arginate (ELA) as a novel counter-ion. Different RM:ELA ratios were screened to optimize HIP formation process. The encapsulation of the optimized HIP into lipid nanocapsules (LNCs) was then achieved to facilitate oral administration. The results of % transmittance, % complexation efficiency (87.32 ± 0.19%) and partition coefficient revealed the successful formation of the HIP complex occurred at RM:ELA molar ratio of 1:2. The formed HIP was successfully loaded into spherical small sized (39.32 ± 0.18 nm) LNCs. The ex vivo permeability studies across porcine intestine showed that the cumulative RM amount permeated/area after 6 h from HIP and LNCs were 3.79 ± 0.57 and 5.71 ± 0.32 µg/cm2, respectively. Pharmacokinetic study results showed that the maximum RM concentrations in plasma (Cmax) can be arranged in a descending manner as follows; 61.33 ± 8.89 < 42.13 ± 11.22 < 20.96 ± 3.12 ng/ml attained after 4.80, 8.00 and 10.40 h in case of LNC, HIP and solution, respectively. Moreover, the HIP and LNC formulae showed higher total drug amounts in plasma reaching 1.46 and 1.88-fold relative to RM solution, respectively. In conclusion, the HIP complex and HIP loaded LNCs prosper in enhancing the permeability and absorption of the low permeable drugs.
Collapse
|
22
|
Zhussupova A, Zhumaliyeva G, Ogay V, Issabekova A, Ross SA, Zhusupova GE. Immunomodulatory Effects of Plant Extracts from Salvia deserta Schang. and Salvia sclarea L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2690. [PMID: 36297710 PMCID: PMC9610708 DOI: 10.3390/plants11202690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Medicines, their safety, effectiveness and quality are indispensable factors of national security, important on a global scale. The COVID-19 pandemic has once again emphasized the importance of improving the immune response of the body in the face of severe viral infections. Plants from the Salvia L. genus have long been used in traditional medicine for treatment of inflammatory processes, parasitic diseases, bacterial and viral infections. The aim of the current study was to evaluate the immunomodulatory effects of plant extracts LS-1, LS-2 from Salvia deserta Schang. and LS-3, LS-4 from Salvia sclarea L. plants growing in southern Kazakhstan by conventional and ultrasonic-assisted extraction, respectively. The cytotoxic effects of the named sage extracts on neonatal human dermal fibroblasts (HDFn) were evaluated using the MTT assay. Immunomodulatory effects of the studied extracts were compared by examining their influence on pro-inflammatory cytokine secretion and phagocytic activity of murine immune cells. Depending on the physiological state of the innate immune cells, sage extracts LS-2 and LS-3 had either a stimulating effect on inactivated macrophages or suppressed cytokine-producing activity in LPS-activated macrophages. The greatest increase in TNF-α secretion was found after treatment of spleen T lymphocytes with sage extract LS-2, obtained by ultrasonic-assisted extraction.
Collapse
Affiliation(s)
- Aizhan Zhussupova
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Gaziza Zhumaliyeva
- Department of Molecular Biology and Genetics, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Qorghalzhyn Highway 13/5, Astana 010000, Kazakhstan
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Qorghalzhyn Highway 13/5, Astana 010000, Kazakhstan
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan
| |
Collapse
|
23
|
Abdelbaset S, El-Kersh DM, Ayoub IM, Eldahshan OA. GC-MS profiling of Vitex pinnata bark lipophilic extract and screening of its anti-TB and cytotoxic activities. Nat Prod Res 2022:1-7. [PMID: 36110061 DOI: 10.1080/14786419.2022.2124512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tuberculosis is a highly infectious ailment worldwide. The emergence of multi-drug resistance and serious adverse effects of anti-TB drugs have led to the continuous search of natural candidates. This study aimed to analyse the chemical profile of Vitex pinnata (VP) bark lipophilic extract using GC-MS also evaluating its anti-TB and cytotoxic activities. GC-MS revealed a total of 81 compounds which representing 86% identified compounds. In vitro anti-TB of VP lipophilic extract was evaluated using the Microplate Alamar Blue Assay which exhibited MIC value of 62.5 µg/mL. In vitro cytotoxicity was evaluated using Water Soluble formazan assay recording IC50 > 100 and 200 µg/mL using Vero and A-549 cell lines, respectively. In silico docking study was performed on the major identified compounds, n-nonane showed the most favourable binding affinity (ΔG) equals to -33.34 Kcal/mol. The results obtained herein unravelled the potential use of VP n-hexane extract as a natural anti-TB.
Collapse
Affiliation(s)
- Safa Abdelbaset
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dina M. El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt
| | - Iriny M. Ayoub
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
24
|
Ibrahim N, Abbas H, El-Sayed NS, Gad HA. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep 2022; 12:13102. [PMID: 35907916 PMCID: PMC9338973 DOI: 10.1038/s41598-022-16592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55–66.13 nm), homogenous distribution (PDI of 0.207–0.249), and negatively charged Zeta potential (− 13.4 to − 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Gad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. .,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
| |
Collapse
|
25
|
Beltrán-Noboa A, Proaño-Ojeda J, Guevara M, Gallo B, Berrueta LA, Giampieri F, Perez-Castillo Y, Battino M, Álvarez-Suarez JM, Tejera E. Metabolomic profile and computational analysis for the identification of the potential anti-inflammatory mechanisms of action of the traditional medicinal plants Ocimum basilicum and Ocimum tenuiflorum. Food Chem Toxicol 2022; 164:113039. [PMID: 35461962 DOI: 10.1016/j.fct.2022.113039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022]
Abstract
Ocimum basilicum and Ocimum tenuiflorum are two basil species widely used medicinally as an anti-inflammatory, antimicrobial and cardioprotective agent. This study focuses on the chemical characterization of the majoritarian compounds of both species and their anti-inflammatory potential. Up to 22 compounds such as various types of salvianolic acids, derivatives of rosmaniric acid and flavones were identified in both plants. The identified compounds were very similar between both plants and are consistent with previous finding in other studies in Portugal and Italy. Based on the identified molecules a consensus target prediction was carried out. Among the main predicted target proteins, we found a high representation of the carbonic anhydrase family (CA2, CA7 and CA12) and several key proteins from the arachidonic pathway (LOX5, PLA2, COX1 and COX2). Both pathways are well related to inflammation. The interaction between the compounds and these targets were explored through molecular docking and molecular dynamics simulation. Our results suggest that some molecules present in both plants can induce an anti-inflammatory response through a non-steroidal mechanism of action connected to the carbon dioxide metabolism.
Collapse
Affiliation(s)
- Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - John Proaño-Ojeda
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Mabel Guevara
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Grupo de Investigación en Polifenoles. Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Blanca Gallo
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Luis A Berrueta
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yunierkis Perez-Castillo
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Escuela de Ciencias Físicas y Matemáticas. Universidad de Las Américas, Quito, Ecuador
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - José M Álvarez-Suarez
- Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Eduardo Tejera
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
26
|
Ortiz-Mendoza N, Aguirre-Hernández E, Fragoso-Martínez I, González-Trujano ME, Basurto-Peña FA, Martínez-Gordillo MJ. A Review on the Ethnopharmacology and Phytochemistry of the Neotropical Sages ( Salvia Subgenus Calosphace; Lamiaceae) Emphasizing Mexican Species. Front Pharmacol 2022; 13:867892. [PMID: 35517814 PMCID: PMC9061990 DOI: 10.3389/fphar.2022.867892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia is the most diverse genus within the mint family (Lamiaceae), many of its species are well-known due to their medicinal and culinary uses. Most of the ethnopharmacological and phytochemical studies on Salvia are centred on species from the European and Asian clades. However, studies about the most diverse clade, the Neotropical sages (Salvia subgenus Calosphace; 587 spp.), are relatively scarce. This review aims to compile the information on the traditional medicinal uses, pharmacological and phytochemistry properties of the Neotropical sages. To do so, we carried out a comprehensive review of the articles available in different online databases published from the past to 2022 (i.e., PubMed, Scopus, and Web of Science, among others) and summarized the information in tables. To uncover phylogenetic patterns in the distribution of four different groups of metabolites (mono-, sesqui-, di-, and triterpenes), we generated presence-absence matrices and plotted the tip states over a dated phylogeny of Salvia. We found several studies involving Mexican species of Salvia, but only a few about taxa from other diversity centres. The main traditional uses of the Mexican species of Calosphace are medicinal and ceremonial. In traditional medicine 56 species are used to treat diseases from 17 categories according to the WHO, plus cultural-bound syndromes. Pharmacological studies reveal a wide range of biological properties (e.g., antinociceptive, anti-inflammatory, anxiolytic, cytotoxic, and antidiabetic, etc.) found in extracts and isolated compounds of 38 Neotropical sages. From extracts of these species, at least 109 compounds have been isolated, identified and evaluated pharmacologically; 73 of these compounds are clerodanes, 21 abietanes, six flavonoids, five sesquiterpenoids, and four triterpenoids. The most characteristic metabolites found in the Neotropical sages are the diterpenes, particularly clerodanes (e.g., Amarisolide A, Tilifodiolide), that are found almost exclusively in this group. The Neotropical sages are a promising resource in the production of herbal medication, but studies that corroborate the properties that have been attributed to them in traditional medicine are scarce. Research of these metabolites guided by the phylogenies is recommended, since closely related species tend to share the presence of similar compounds and thus similar medicinal properties.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Francisco A. Basurto-Peña
- Jardin Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Martha J. Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
27
|
Younis MM, Ayoub IM, Mostafa NM, El Hassab MA, Eldehna WM, Al-Rashood ST, Eldahshan OA. GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070918. [PMID: 35406898 PMCID: PMC9002779 DOI: 10.3390/plants11070918] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/05/2023]
Abstract
Today, skin care products and cosmetic preparations containing natural ingredients are widely preferred by consumers. Therefore, many cosmetic brands are encouraged to offer more natural products to the market, such as plant extracts that can be used for their antiaging, antiwrinkle, and depigmentation properties and other cosmetic purposes. In the current study, the volatile constituents of the hexane-soluble fraction of a Stenocarpus sinuatus (family Proteaceae) leaf methanol extract (SSHF) were analyzed using GC/MS analysis. Moreover, the antiaging activity of SSHF was evaluated through in vitro studies of anti-collagenase, anti-elastase, anti-tyrosinase, and anti-hyaluronidase activities. In addition, an in silico docking study was carried out to identify the interaction mechanisms of the major compounds in SSHF with the active sites of the target enzymes. Furthermore, an in silico toxicity study of the identified compounds in SSHF was performed. It was revealed that vitamin E (α-tocopherol) was the major constituent of SSHF, representing 52.59% of the extract, followed by γ-sitosterol (8.65%), neophytadiene (8.19%), β-tocopherol (6.07%), and others. The in vitro studies showed a significant inhibition by SSHF of collagenase, elastase, tyrosinase, and hyaluronidase, with IC50 values of 60.03, 177.5, 67.5, and 38.8 µg/mL, respectively, comparable to those of the positive controls epigallocatechin gallate (ECGC, for collagenase, elastase, hyaluronidase) and kojic acid (for tyrosinase). Additionally, the molecular docking study revealed good acceptable binding scores of the four major compounds, comparable to those of ECGC and kojic acid. Besides, the SSHF identified phytoconstituents showed no predicted potential toxicity nor skin toxicity, as determined in silico. In conclusion, the antiaging potential of SSHF may be attributed to its high content of vitamin E in addition to the synergetic effect of other volatile constituents. Thus, SSHF could be incorporated in pharmaceutical skin care products and cosmetics after further studies.
Collapse
Affiliation(s)
- Mai M. Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
| | - Iriny M. Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt;
| | - Wagdy M. Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
- Correspondence:
| |
Collapse
|