1
|
Arancibia-Díaz A, Astudillo-Castro C, Altamirano C, Vergara-Castro M, Soto-Maldonado C, Córdova A, Fuentes P, Zúñiga-Hansen ME, Bravo J. Enhanced antioxidant capacity and yield of release of chlorogenic acids and derivates by solid-state fermentation of spent coffee ground under controlled conditions of aeration and moisturizing. Food Chem 2025; 479:143744. [PMID: 40068539 DOI: 10.1016/j.foodchem.2025.143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 04/09/2025]
Abstract
This study proposed investigates the role of forced aeration flow and humidification pulses during solid-state fermentation (SSF) of spent coffee grounds (SCG) in optimizing fungal growth, metabolic activity, and bioactive compound release. Five fermentation conditions with aeration flows (0.5-1.5 L/min) and moisturizing pulses (30-90 mL/d) were evaluated. Chlorogenic acid (CGA), caffeic acid (CA), and quinic acid (QA) were quantified via HPLC, while antioxidant activities (AA) were assessed using ORAC, DPPH, and FRAP methods. The highest CGA yield (76.1 ± 5.2 mg/g SCGinitial) occurred between days 8-13 under 0.5LA-30LM conditions, while QA peaked at 89.5 ± 4.8 mg/g SCGinitial during days 27-30 under 0.5LA-90HM. AA reached 79,000 μmol TEAC/100 g SCGinitial at late fermentation stages. Low aeration and controlled moisture enhanced fungal colonization, enzymatic hydrolysis, and bioactive compound recovery. These findings evidence the potential of SSF for SCG valorization and offer a framework for process optimization in industrial applications.
Collapse
Affiliation(s)
- Alejandra Arancibia-Díaz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Carolina Astudillo-Castro
- Escuela de Ingeniería en Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Mauricio Vergara-Castro
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile
| | - Carmen Soto-Maldonado
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Andrés Córdova
- Escuela de Ingeniería en Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Paloma Fuentes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Elvira Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| | - Javier Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma-Placilla, Valparaíso, Chile
| |
Collapse
|
2
|
Chen N, Dong W, Luo Q, Huang Y, Chen B, Wang H, Ren N, Luo LY, Li Y. The bioaccessibility and bioactivity of polyphenols from tsampa prepared from roasted highland barley flour solid-fermented by autochthonous lactic acid bacteria. Food Res Int 2025; 203:115817. [PMID: 40022343 DOI: 10.1016/j.foodres.2025.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
Tsampa, which is abundant in polyphenols, demonstrates significant bioactivity and potential health benefit. However, the bioaccessibility and potential bioactivity of polyphenols derived from tsampa prepared from autochthonous lactic acid bacteria solid-fermented roasted highland barley flour (F-RHBF) have not been investigated. This study aimed to evaluate the bioaccessibility and bioactivity of polyphenols from tsampa prepared from F-RHBF through in vitro digestion model, and additionally, to explore the protective effects of digested tsampa extract against oxidative stress damage by establishing H2O2 -induced oxidative stress injury model of HepG2 cells. The results indicated that tsampa prepared from F-RHBF exhibited excellent bioaccessibility and bioactivity of polyphenols, including antioxidant and digestive enzymes inhibitory activity, compared to tsampa prepared from unfermented RHBF (UF-RHBF). Furthermore, the digested extract of tsampa prepared from F-RHBF was more effective in protecting HepG2 cells from oxidative damage by reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC). These findings suggested that fermentation and in vitro digestion can improve the bioaccessibility and bioactivity of polyphenols from tsampa. Present findings pave the way toward applying fermented highland barley flour to design tsampa and novel functional foods.
Collapse
Affiliation(s)
- Nuo Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Wenming Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Qin Luo
- College of Agricultural and Food Engineering, Baise University, Baise 533000 China
| | - Yonghua Huang
- West Yunnan University of Applied Sciences College of Tea (Pu'er), Pu'er 665000 China
| | - Bi Chen
- College of Health, Kaili University, Kaili 556011 China
| | - Hu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Nannan Ren
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Ling Yuan Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201 China
| | - Yongqiang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201 China.
| |
Collapse
|
3
|
Wan X, Wang J, Zhang S, Zhang X, Shi X, Chen G. New insights into adlay seed bran polysaccharides: Effects of enzyme-assisted Aspergillus niger solid-state fermentation on its structural features, simulated gastrointestinal digestion, and prebiotic activity. Int J Biol Macromol 2025; 284:138101. [PMID: 39608551 DOI: 10.1016/j.ijbiomac.2024.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Adlay seed bran, typically discarded or used as animal feed, represents a significant resource waste. This study investigates the structural and physicochemical properties, in vitro digestive behavior, and fecal fermentation profiles of adlay seed bran polysaccharides (ASBPs) prepared using different methods. These methods include hot water extraction, Aspergillus niger solid-state fermentation (SSF), and enzyme-assisted SSF with β-glucosidase, cellulase, and xylanase, referred to as ASBP, ASBP-F, ASBP-GF, ASBP-CF, and ASBP-XF, respectively. Results showed that enzyme-assisted SSF with A. niger improved extraction efficiency and uniformity of ASBPs, increasing total neutral sugars, uronic acids, mannose, and galactose while reducing glucose content, molecular weight, and particle size. ASBP-CF had the best extraction rate, sugar content, lowest molecular weight, finest uniformity, and smallest particle size. In simulated digestion tests, all ASBP variants were stable in stomach and small intestine conditions but degradable by human fecal microbiota, showing varying fermentability levels. ASBPs increased Bacteroidetes populations, inhibited Proteobacteria growth, and enhanced short-chain fatty acid (SCFAs) production, with ASBP-CF showing the highest fermentability and prebiotic efficacy. ASBP-CF was particularly effective in promoting beneficial bacteria like Bacteroides and restraining harmful bacteria such as Escherichia_Shigella, producing more SCFAs during fermentation. These findings suggest that ASBP-CF has potential as a dietary supplement to improve gut health, presenting a high-value utilization strategy for adlay seed bran.
Collapse
Affiliation(s)
- Xiuping Wan
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Juxiang Wang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengyan Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
4
|
Liu H, Zhang H, Geng M, Shi D, Liu D, Jiao Y, Lei Z, Peng Y. The Impact of Cooking on Antioxidant and Enzyme Activities in Ruichang Yam Polyphenols. Foods 2024; 14:14. [PMID: 39796304 PMCID: PMC11719820 DOI: 10.3390/foods14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In this study, the total polyphenol content (TPC), total flavonoid content (TFC), and biological activity of yam polyphenols (including free phenolics, conjugated phenolics, and bound phenolics) were investigated during home cooking. Polyphenol components were preliminary detected in raw yam by HPLC, including 2, 4-dihydroxybenzoic acid, syringic acid, vanillic acid, 4-coumaric acid, and sinapic acid. TPC and TFC of soluble conjugated polyphenols were the main phenolic compounds in Ruichang yam. Compared with uncooked yam, cooking times of 80 min and 40 min increased the TPC and TFC of multiple types of polyphenols, while cooking reduced the TPC and TFC of AHP (acid-hydrolyzed soluble conjugated polyphenols). All yam polyphenols exhibited good α-Glucosidase inhibitory activity; α-Glucosidase inhibitory activity was significantly higher for a cooking time of 120 min. Only some types of polyphenols had lower pancreatic lipase half-inhibition concentrations than orlistat when cooked. The pancreatic lipase of FPs (free polyphenols), BHPs (alkali-hydrolyzed soluble conjugated polyphenols), and ABPs (acid-hydrolyzed insoluble bound polyphenols) was the stronges when cooking for 80 min, and the pancreatic lipase inhibitory activity of AHPs and BBPs (alkali-hydrolyzed insoluble bound polyphenols) was strongest when cooking for 40 min. Pearson's correlation coefficient analysis revealed that the TPC was positively correlated with the TFC, the IC50 value of α-Glucosidase was negatively correlated with the IC50 value of pancreatic lipase, and redox activity was positively correlated with the TPC and TFC, respectively.
Collapse
Affiliation(s)
- Haoping Liu
- College of Food science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Mengting Geng
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| | - Dingxin Shi
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| | - Dongsheng Liu
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| | - Yanxiao Jiao
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| | - Zhiqiang Lei
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| | - You Peng
- Jiangxi Ecological Chemical Engineering Technology Research Center, Jiujiang University, Jiujiang 332005, China; (M.G.); (D.S.); (D.L.); (Y.J.)
| |
Collapse
|
5
|
Cheng Y, Wang Y, Yuan T, Xie J, Yu Q, Chen Y. Polyphenol compounds contributing to the improved bioactivities of fermented Rubus chingii Hu. Food Res Int 2024; 197:115218. [PMID: 39593303 DOI: 10.1016/j.foodres.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
This research aims to evaluate the phenolic composition, antioxidant and enzyme inhibition activities of fermented Rubus chingii Hu wine, and explore the correlation between them. TPC (Total Phenolic content) and TFC (Total Flavonoid content) increased rapidly from 0 h to 72 h, followed by a slight decrease in TPC and a significant decrease in TFC. Fermentation could significantly increase the antioxidant activity and α-amylase/α-glucosidase enzyme inhibitory activity of Rubus chingii Hu. A total of 39 polyphenols and organic acids in fermented Rubus chingii Hu were identified by UPLC-ESI-Q-TOF-MS/MS and 11 of them were quantitatively analyzed. After fermentation, the contents of all the detected polyphenol compounds, except for quercetin and ellagic acid, significantly increased (p < 0.05). Correlation analysis showed that protocatechuic acid and catechin played an important role in the antioxidant activity of fermented Rubus chingii Hu, while protocatechuic acid and hypericin played an important role in the α-amylase inhibition activity. This study indicated that Rubus chingii Hu could be applided as a potential meterial for the wine production, and has the potential to be a functional food for promoting health.
Collapse
Affiliation(s)
- Yuhan Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| | - Tongji Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
6
|
Yan S, Ma JJ, Wu D, Huang GL, Yu XW, Wang YN. Value-added biotransformation of agricultural byproducts by cellulolytic fungi: a review. Crit Rev Biotechnol 2024:1-20. [PMID: 39582184 DOI: 10.1080/07388551.2024.2423152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024]
Abstract
Agricultural byproducts generally contain abundant bioactive compounds (e.g., cellulose/hemicellulose, phenolic compounds (PCs), and dietary fibers (DFs)), but most of them are neglected and underutilized. Owing to the complicated and rigid structures of agricultural byproducts, a considerable amount of bioactive compounds are entrapped in the polymer matrix, impeding their further development and utilization. In recent years, the prominent performance of cellulolytic fungi to grow and degrade agricultural byproducts has been applied to achieve efficient biotransformation of byproducts to high-value compounds, which is a green and sustainable strategy for the reutilization of agricultural byproducts. This review comprehensively summarizes recent progress in the value-added biotransformation of agricultural byproducts by cellulolytic fungi, including (1) direct utilization of agricultural byproducts for biochemicals and bioethanol production via a consolidated bioprocessing, (2) recovery and biotransformation of bounded PCs from agricultural byproducts for higher bioactive properties, as well as (3) modification and conversion of insoluble DF from agricultural byproducts to produce functional soluble DF. The functional enzymes, potential mechanisms, and metabolic pathways involved are emphasized. Moreover, promising advantages and current bottlenecks using cellulolytic fungi have also been elucidated, shedding further perspectives for sustainable and efficient reutilization of agricultural byproducts by cellulolytic fungi.
Collapse
Affiliation(s)
- Su Yan
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Jia-Jia Ma
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Dan Wu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Gui-Li Huang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Xiao-Wei Yu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yu-Ning Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| |
Collapse
|
7
|
Ran Y, Li F, Xu Z, Zeng K, Ming J. Recent advances in dietary polyphenols (DPs): antioxidant activities, nutrient interactions, delivery systems, and potential applications. Food Funct 2024; 15:10213-10232. [PMID: 39283683 DOI: 10.1039/d4fo02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dietary polyphenols (DPs) have garnered growing interest because of their potent functional properties and health benefits. Nevertheless, the antioxidant capabilities of these substances are compromised by their multifarious structural compositions. Furthermore, most DPs are hydrophobic and unstable when subjected to light, heat, and varying pH conditions, restricting their practical application. Delivery systems based on the interactions of DPs with food constituents such as proteins, polypeptides, polysaccharides, and metal ions are being created as a viable option to improve the functional activities and bioavailability of DPs. In this review, the latest discoveries on the dietary sources, structure-antioxidant activity relationships, and interactions with nutrients of DPs are discussed. It also innovatively highlights the application progress of polyphenols and their green nutraceutical delivery systems. The conclusion drawn is that the various action sites and structures of DPs are beneficial for predicting and designing polyphenols with enhanced antioxidant attributes. The metal complexation of polyphenols and green encapsulation systems display promising outcomes for stabilizing DPs during food processing and in vivo digestion. In the future, more novel targeted delivery systems of DPs for nutrient fortification and intervention should be developed. To expand their usage in customized food products, they should meet the requirements of specific populations for personalized food and nutrition.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Kaihong Zeng
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Liang J, Li H, Han M, Gao Z. Polysaccharide-polyphenol interactions: a comprehensive review from food processing to digestion and metabolism. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38965668 DOI: 10.1080/10408398.2024.2368055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Most studies on the beneficial effects of polyphenols on human health have focused on polyphenols extracted using aqueous organic solvents, ignoring the fact that a portion of polyphenols form complexes with polysaccharides. Polysaccharides and polyphenols are interrelated, and their interactions affect the physicochemical property, quality, and nutritional value of foods. In this review, the distribution of bound polyphenols in major food sources is summarized. The effect of food processing on the interaction between polyphenols and cell wall polysaccharides (CWP) is discussed in detail. We also focus on the digestion, absorption, and metabolic behavior of polysaccharide-polyphenol complexes. Different food processing techniques affect the interaction between CWP and polyphenols by altering their structure, solubility, and strength of interactions. The interaction influences the free concentration and extractability of polyphenols in food and modulates their bioaccessibility in the gastrointestinal tract, leading to their major release in the colon. Metabolism of polyphenols by gut microbes significantly enhances the bioavailability of polyphenols. The metabolic pathway and product formation rate of polyphenols and the fermentation characteristics of polysaccharides are affected by the interaction. Furthermore, the interaction exhibits synergistic or antagonistic effects on the stability, solubility, antioxidant and functional activities of polyphenols. In summary, understanding the interactions between polysaccharides and polyphenols and their changes in food processing is of great significance for a comprehensive understanding of the health benefits of polyphenols and the optimization of food processing technology.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Chen Q, Su J, Zhang Y, Li C, Zhu S. Phytochemical Profile and Bioactivity of Bound Polyphenols Released from Rosa roxburghii Fruit Pomace Dietary Fiber by Solid-State Fermentation with Aspergillus niger. Molecules 2024; 29:1689. [PMID: 38675509 PMCID: PMC11052053 DOI: 10.3390/molecules29081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient.
Collapse
Affiliation(s)
- Qing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- School of Food and Health, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Juan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
| | - Yue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| |
Collapse
|
10
|
Liang J, Yang S, Liu Y, Li H, Han M, Gao Z. Characterization and stability assessment of polyphenols bound to Lycium barbarum polysaccharide: Insights from gastrointestinal digestion and colon fermentation. Food Res Int 2024; 179:114036. [PMID: 38342549 DOI: 10.1016/j.foodres.2024.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanye Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Zhong J, Zhou D, Hu P, Cheng Y, Huang Y. Identification of the chemical composition of distiller's grain polyphenols and their effects on the fecal microbial community structure. Food Chem X 2023; 20:101001. [PMID: 38144726 PMCID: PMC10740074 DOI: 10.1016/j.fochx.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023] Open
Abstract
Distiller grains are the main by-products of Baijiu production and are usually discarded, ignoring their abundant functional phytochemicals. The free and bound polyphenols from distiller grains were extracted and their potential effect on modulating fecal microbiota was investigated using in vitro fecal fermentation. The results showed that 34 polyphenols were quantified from distiller grains. The antioxidant activity was positively correlated with quercetin, myricetin, epicatechin, and naringenin. The abundance of Bifidobacterium, Ruminobacterium, Lactobacillus, Akkermansia, and butyrate-producing bacteria was enhanced by distiller's grain polyphenols by approximately 10.66-, 6.39-, 7.83-, 2.59-, and 7.74-fold, respectively. Moreover, the production of short-chain fatty acids (SCFAs), especially acetic, butyric, and propionic acid, was promoted (increased 1.99-, 1.71-, and 1.34-fold, respectively). Correlated analysis revealed quercetin, daidzein, and kaempferol as the key polyphenols by analyzing the effects on gut microbiota and SCFAs. This study could provide a reference for converting distiller grains into high-nutrient functional food ingredients and feeds.
Collapse
Affiliation(s)
- Jiang Zhong
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Die Zhou
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Penggang Hu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| |
Collapse
|
12
|
Si J, Xie J, Zheng B, Xie J, Chen Y, Yang C, Sun N, Wang Y, Hu X, Yu Q. Release characteristic of bound polyphenols from tea residues insoluble dietary fiber by mixed solid-state fermentation with cellulose degrading strains CZ-6 and CZ-7. Food Res Int 2023; 173:113319. [PMID: 37803630 DOI: 10.1016/j.foodres.2023.113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 10/08/2023]
Abstract
The purpose of this work was to investigate the release characteristic of bound polyphenols (BP) from tea residues insoluble dietary fiber (IDF) by mixed solid-state fermentation (SSF) with cellulose degrading strains CZ-6 and CZ-7. The results implied that cellulase, β-glucosidase and filter paper lyase activities were strongly correlated with the BP content. The scanning electron microscop and fourier transform infrared spectroscopy manifested that the cellulose network of the IDF was decomposed and dissolve, forming more loose fibrous structure. Additionally, 28 polyphenols components were detected and their biotransformation pathways were preliminary speculated. Moreover, the BP obtained by mixed SSF produced prominent inhibitory activities against α-glucosidase and α-amylase, as well as exhibited significant scavenging effects on DPPH•, ABTS+• free radicals and ferric reducing antioxidant power. These findings could further promote the utilization of BP from agricultural by-products in a more natural and economical method, CZ-6 and CZ-7 strains provide a new approach to expound the release and conversion of BP.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Nan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|
13
|
Cui Y, Peng S, Deng D, Yu M, Tian Z, Song M, Luo J, Ma X, Ma X. Solid-state fermentation improves the quality of chrysanthemum waste as an alternative feed ingredient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117060. [PMID: 36587550 DOI: 10.1016/j.jenvman.2022.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Chrysanthemum waste (CW) is an agricultural and industrial by-product produced during chrysanthemum harvesting, drying, preservation, and deep processing. Although it is nutritious, most CW is discarded, wasting resources and contributing to serious environmental problems. This work explored a solid-state fermentation (SSF) strategy to improve CW quality for use as an alternative feed ingredient. Orthogonal experiment showed that the optimal conditions for fermented chrysanthemum waste (FCW) were: CW to cornmeal mass ratio of 9:1, Pediococcus cellaris + Candida tropicalis + Bacillus amyloliquefaciens proportions of 2:2:1, inoculation amount of 6%, and fermentation time of 10 d. Compared with the control group, FCW significantly increased the contents of crude protein, ether extract, crude fiber, acid detergent fiber, neutral detergent fiber, ash, calcium, phosphorus, and total flavonoids (p < 0.01), and significantly decreased pH and saponin content (p < 0.01). SSF improved the free and hydrolyzed amino acid profiles of FCW, increased the content of flavor amino acids, and improved the amino acid composition of FCW protein. Overall, SSF improved CW nutritional quality. FCW shows potential use as a feed ingredient, and SSF helps reduce the waste of chrysanthemum processing.
Collapse
Affiliation(s)
- Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Su Peng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Jingjing Luo
- Guangzhou Pastoral Agriculture and Forestry Co., Ltd, Guangzhou, 511300, China
| | - Xinyan Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China.
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
14
|
Si J, Yang C, Ma W, Chen Y, Xie J, Qin X, Hu X, Yu Q. Screen of high efficiency cellulose degrading strains and effects on tea residues dietary fiber modification: Structural properties and adsorption capacities. Int J Biol Macromol 2022; 220:337-347. [PMID: 35985395 DOI: 10.1016/j.ijbiomac.2022.08.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
In our study, two high efficiency cellulose degrading strains were screened, isolated and identified as Cochliobolus kusanoi and Aspergillus puulaauensis by 18S rDNA gene sequencing. In addition, the composite microbial system was constructed to develop the synergistic effect among different strains. Under the optimum conditions, the yield of soluble dietary fiber from tea residues by mixed fermentation method (MF-SDF) dramatically increased compared to single strain fermentation. The structural analysis demonstrated that all samples possessed the representative infrared absorption peaks of polysaccharides, whereas MF-SDF revealed more loose structure, lower crystallinity and smaller molecular size. For the adsorption capacities indexes, MF-SDF also owned the highest adsorbing capacity for the water molecule, oil molecule, cholesterol molecule and nitrite ion. Overall, our data showed that mixed fermentation method could be better choices to improve the functional properties of dietary fiber, and screening of cellulose degrading strains could provide new thinkings for the study of dietary fiber modification and realize high-quality utilization of crop residues.
Collapse
Affiliation(s)
- Jingyu Si
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Wenjie Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaoting Qin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, China.
| |
Collapse
|
15
|
Hu F, Qin Y, Zhou Y, Li L, Wang Y, Deng Z. Characterization of precipitation from citrus vinegar during ageing: chemical constituents, formation mechanism and anti-proliferative effect. Food Funct 2022; 13:4930-4940. [PMID: 35403181 DOI: 10.1039/d2fo00513a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precipitation formation commonly occurs in the ageing step of fermented citrus vinegar. Hitherto, the chemical characteristics and biological properties of precipitates remain unveiled. This study focused on investigating the chemical profile, formation mechanism and biological repurposing of precipitates. Nine principal components, two flavonoid glycosides and their aglycones along with five polymethoxyflavones (PMFs), were identified from a methanol extract of precipitates. Using hydrolysis models, we demonstrated that insoluble aglycones were generated through the breakage of glycosidic bonds in flavonoid glycosides under acidic condition. Moreover, soluble bound-PMFs were destroyed by yeast-acid hybrid catalysis to release insoluble free-PMFs to form precipitates. A methanol extract of precipitates exhibited a potent anti-proliferative effect on MCF-7 cells (IC50 = 0.032 μg μL-1) via inhibiting tubulin polymerization. This study will be helpful for the food industry to aid optimizing citrus vinegar brewing and for reutilizing precipitates for functional foods and health products. Furthermore, it also provides a green strategy of PMFs enrichment from citrus using an enzyme-acid hybrid system.
Collapse
Affiliation(s)
- Feifei Hu
- Key Laboratory of Functional Yeast, China National Light Industry & Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Lingyue Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Three Gorges University Medical College, China Three Gorges University, Yichang 443002, China
| | - Yingxi Wang
- Hubei Hanway Ecological Agriculture Group, Yidu 443302, China
| | - Zhangshuang Deng
- Key Laboratory of Functional Yeast, China National Light Industry & Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|