1
|
Yang Q, Mu Z, Ma X, Yang X, Fu B, Chang Z, Cheng S, Du M. Collagen peptides alleviate estrogen deficiency-induced osteoporosis by enhancing osteoblast differentiation and mineralization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3284-3295. [PMID: 39704042 DOI: 10.1002/jsfa.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Osteoporosis is a systemic skeletal disorder characterized by decreased bone mass and impaired bone microarchitecture because of an imbalance between bone resorption and formation. Existing pharmacological treatments often have significant side effects and mainly focus on inhibiting bone resorption. Other than inhibiting osteoclast-mediated bone resorption, the present study also investigates the potential role of sheepskin collagen peptide (SSCP) in bone formation by promoting osteoblast proliferation, differentiation and mineralization. RESULTS SSCP improved bone mineral density in ovariectomized mice by improving bone volume, trabecular thickness and trabecular number. Histological analysis and tartrate-resistant acid phosphatase (TRAP) staining revealed denser trabeculae and decreased osteoclast activity, accompanied by a normalized receptor activator of nuclear factor kappa-B ligand/osteoprotegerin ratio and reduced serum TRAP levels. SSCP promotes the proliferation, differentiation and mineralization of MC3T3-E1 osteoblast cells by upregulating osteogenic markers such as bone morphogenetic protein (BMO)-2, runt-related transcription factor (RUNX)-2 and β-catenin. SSCP enhanced bone formation and suppressed bone resorption by activating the WNT/β-catenin and BMP/Smad signaling pathways. CONCLUSION SSCP offers a dual modulatory approach to bone health, addressing both bone formation and resorption. Its activation of key osteogenic pathways and improvement in bone structural integrity highlight its therapeutic potential for managing osteoporosis and enhancing skeletal health. By activating key osteogenic pathways and normalizing bone metabolism markers, SSCP presents a promising therapeutic candidate for osteoporosis and other bone-related conditions. Further clinical studies are needed to confirm these findings and explore its potential applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhishen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot, China
| | - Xiaoyu Ma
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ximing Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Baifeng Fu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhihui Chang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Chen YJ, He YH, Lo YH, Yang HS, Abomughaid MM, Kumar KJS, Lin WT. Potato protein hydrolysate inhibits RANKL-induced osteoclast development by inhibiting osteoclastogenic genes via the NF-κB/MAPKs signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:3991-4003. [PMID: 38606910 DOI: 10.1002/tox.24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Animal Science and Biotechnology, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Yen-Hua He
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Yun-Hsin Lo
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Hong-Siang Yang
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology and Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
- Research and Development Division, Utopia Holiday Hotel Corporation, Taichung, Taiwan
| |
Collapse
|
3
|
Yang M, Gao Z, Cheng S, Wang Z, Ei-Seedi H, Du M. Novel Peptide Derived from Gadus morhua Stimulates Osteoblastic Differentiation and Mineralization through Wnt/β-Catenin and BMP Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9691-9702. [PMID: 38639219 DOI: 10.1021/acs.jafc.3c06700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3β, leading to the stabilization of β-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/β-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/β-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zengli Gao
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, P. R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala 75 123, Sweden
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Yang M, Su S, Cheng S, Wang Z, Du M. Absorption and transport properties of a codfish-derived peptide and its protective effect on bone loss in ovariectomized mice. Food Funct 2024; 15:3496-3506. [PMID: 38463011 DOI: 10.1039/d3fo04819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A potential osteogenic tetradecapeptide with the amino acid sequence GETNPADSKPGSIR (P-GM-2) was identified from Gadus morhua. The present study aimed to elucidate its absorption and transport properties using Caco-2/HT29-MTX co-culture monolayers and to evaluate its osteogenic activity using an ovariectomized mouse model. The results showed that P-GM-2 could cross Caco-2/HT29-MTX co-culture barriers intactly with an apparent permeability coefficient of 4.02 × 10-6 cm s-1via the TJ-mediated passive paracellular pathway. Pharmacokinetic results revealed that P-GM-2 was detectable in the blood of mice within 5 min of oral administration and reached its maximum concentration at 30 min. Furthermore, the oral administration of P-GM-2 for a duration of three months has been found to effectively regulate the secretion of key markers of bone turnover, thereby protecting against bone microstructure degeneration and bone loss in ovariectomized mice. Importantly, no toxicity related to the treatment was observed. Taken together, these findings offer valuable insights into the absorption and transport mechanisms of P-GM-2, highlighting its potential as a safe and effective active ingredient for preventing osteoporosis.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Shengpeng Su
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot 011500, P.R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Li H, Xia X, Cheng S, Zang J, Wang Z, Du M. Oyster (Crassostrea gigas) ferritin relieves lead-induced liver oxidative damage via regulating the mitophagy. Int J Biol Macromol 2023; 253:126965. [PMID: 37729985 DOI: 10.1016/j.ijbiomac.2023.126965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Lead can induce oxidative stress and increase lipid peroxidation in biofilms, leading to liver damage and physiological dysfunction. This study aimed to investigate how oyster ferritin (GF1) attenuates lead-induced oxidative damage to the liver in vitro and in vivo. Animal experiments have confirmed that lead exposure can lead to oxidative damage and lipid peroxidation of the liver, and ferritin can regulate the activity of antioxidant enzymes and alleviate pathological changes in the liver. At the same time, oyster ferritin can regulate the expression of oxidative stress-related genes and reduce the expression of inflammasome-related genes. In addition, lead can induce apoptosis and mitophagy, leading to overproduction of reactive oxygen species and cell death, which can be effectively alleviated by oyster ferritin. Overall, this study provides a theoretical foundation for the use of oyster ferritin as a means of mitigating and preventing lead-induced damage.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Ma W, Yang M, Wu C, Wang S, Du M. Bioinspired self-healing injectable nanocomposite hydrogels based on oxidized dextran and gelatin for growth-factor-free bone regeneration. Int J Biol Macromol 2023; 251:126145. [PMID: 37544566 DOI: 10.1016/j.ijbiomac.2023.126145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with great biocompatibility, biodegradability, and mechanical properties, combined with osteoconductivity, osteoinductivity, and osteointegration as biomaterials for bone regeneration without adding exogenous growth factors and cells are highly appealing but challenging. Here, inspired by organic-inorganic analogues of natural bone tissue and the adhesion chemistry of mussels, nanocomposite hydrogels with self-healing, injectable, adhesive, antioxidant, and osteoinductive properties (termed GO-PHA-CPs) were constructed by Schiff base cross-linking between dopamine-modified gelatin (Gel-DA) and oxidized dextran (ODex). Furthermore, the hydrogel network was enhanced by the introduction of polydopamine-functionalized nanohydroxyapatite (PHA) by improving the interfacial compatibility between the rigid inorganic particles and the flexible hydrogel matrix. Bioactive cod peptides (CPs) with osteogenic activity from Atlantic cod were further incorporated into the nanocomposite hydrogel. As a result, the multicomponent nanocomposite hydrogel favored the adhesion and spreading of MC3T3-E1 cells. The increased ALP activity suggested that GO-PHA-CPs hydrogels contributed to the osteogenic differentiation of MC3T3-E1 cells. The suitability of GO-PHA-CPs hydrogels for enhancing bone regeneration in vivo was further confirmed by the rat femoral defect model. Our results indicate that the multifunctional GO-PHA-CPs nanocomposite hydrogels without growth factors are a promising and effective candidate material for bone regeneration.
Collapse
Affiliation(s)
- Wuchao Ma
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Wen C, Wang D, Zhang Z, Liu G, Liang L, Liu X, Zhang J, Li Y, Xu X. Intervention Effects of Deer-Tendon Collagen Hydrolysates on Osteoporosis In Vitro and In Vivo. Molecules 2023; 28:6275. [PMID: 37687105 PMCID: PMC10488988 DOI: 10.3390/molecules28176275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Deer tendon, a deer processing byproduct, is an excellent protein source for the preparation of peptides for improving osteoporosis by its high protein content and high nutritional value. The optimal process of collagen acid extraction was implemented and the results showed that the acid concentration was 7%, the material-liquid ratio was 1:25, and the soaking time was 48 h. DTCHs could promote MC3T3-E1 cell proliferation and increase alkaline phosphatase activities in vitro. In addition, compared with the model group, the DTCHs treatment groups with an oral dosage of 350, 750, and 1500 mg/kg rat/day could significantly improve the shape, weight, bone mechanics, and alkaline phosphatase activities of tail-suspended mice. Bone microstructure and mineralization also recovered significantly in vivo. This result is expected to provide the structural and biological information for DTCHs-based functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (C.W.)
| |
Collapse
|
8
|
Salama RHM, Ali SS, Salama THM, Almged MA, Alsanory TA, Alsanory AA, Aboutaleb H, Ezzat GM. Dietary Effects of Nanopowder Eggshells on Mineral Contents, Bone Turnover Biomarkers, and Regulators of Bone Resorption in Healthy Rats and Ovariectomy-Induced Osteoporosis Rat Model. Appl Biochem Biotechnol 2023; 195:5034-5052. [PMID: 35895253 DOI: 10.1007/s12010-022-04038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Postmenopausal osteoporosis is a critical issue for female health worldwide. This current study was designed to evaluate the role of nanopowder eggshell (NPES) in healthy and ovariectomy-induced osteoporosis rats. Fifty-six female rats were divided into healthy rats (35) and ovariectomized rats (21). The healthy rats were subdivided into five groups (G1-G5) and received one of the following treatments: saline, 20 or 40 mg/kg of calcium carbonate, and 20 or 40 mg/kg of NPES. The 21 ovariectomized rats were divided into three groups (G6-G8) and received either saline, 40 mg/kg of calcium carbonate, or 40 mg/kg of NPES. Biochemical and histopathological assessments of bone formation and resorption were performed. Biomarkers of bone formation (calcium and osteocalcin (OCN)) and calcium content in left femur ashes were significantly higher in healthy rats given 40-mg/kg NPES than in healthy control rats and healthy rats given 40-mg/kg calcium carbonate. The ovariectomized groups had significantly lower levels of vitamin D3, OCN, and osteoprotegerin (OPG) than the healthy control. Alanine transaminase (ALT), alkaline phosphatase (ALP), and receptor activator of nuclear factor-κB ligand (RANKL) were significantly increased in the ovariectomized group than in the healthy control group. Treatment with NPES and calcium carbonate reduced liver enzymes in ovariectomized rats. NPES treatment significantly increased Vit D3, OCN, OPG, and bone ash mineral content (calcium, magnesium, zinc, and phosphorus) in ovariectomized rats. NPES also increased femur cortical thickness, osteoblast number, and collagen fiber. The current study suggests that NPES can modulate bone turnover biomarkers and increase bone trace elements. Moreover, NPES alleviates bone resorption in ovariectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Ragaa H M Salama
- Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Assiut University, Assiut, 71515, Egypt.
| | - Safaa S Ali
- Faculty of Medicine, Department of Histology, Assiut University, Assiut, Egypt
| | | | | | - Tasneem A Alsanory
- Faculty of Pharmacy, Department of Biochemistry, Assiut University, Assiut, Egypt
| | - Aya A Alsanory
- Department of Radiotherapy and Nuclear Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Hesham Aboutaleb
- Faculty of Medicine, Department of Obstetrics and Gynecology, Assiut University Hospital, Assiut, Egypt
| | - Ghada M Ezzat
- Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
9
|
Yang M, Cheng S, Ma W, Wu D, El-Seedi HR, Wang Z, Du M. Myosin heavy chain-derived peptide of Gadus morhua promotes proliferation and differentiation in osteoblasts and bone formation and maintains bone homeostasis in ovariectomized mice. Food Funct 2023. [PMID: 37183435 DOI: 10.1039/d2fo04083b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gadus morhua is an important commercial fish rich in nutrients required for daily metabolism. However, the regulation of G. morhua peptides (GMP) on osteoblast growth remains unclear. In order to clarify the regulatory effects of GMP on osteoblasts, the effects of GMP on the growth of MC3T3-E1 cells were investigated, and the osteogenic peptides were identified and screened. The results showed that GMP promoted the proliferation and differentiation of osteoblasts by regulating the BMP/WNT signaling pathway at concentrations of 1-100 μg mL-1. Molecular docking studies showed that a decapeptide, MNKKREAEFQ (P-GM-1), had a high affinity for integrins 3VI4 and 1L5G (-CDOCKER interaction energy: 161.30, 212.27 kcal mol-1). Additionally, the proliferation rate of MC3T3-E1 cells was increased by 27%, and ALP activity was significantly increased under P-GM-1 treatment (100 μg mL-1). Moreover, P-GM-1 promotes bone formation, maintains bone homeostasis, and prevents osteoporosis in ovariectomized mice by regulating the BMP/Smad signaling pathway. This study confirmed the potential of GMP in the regulation of bone mineral density and provided a certain theoretical basis for the development of anti-osteoporosis active factors from GMP.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Wuchao Ma
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Di Wu
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE 751 24 Uppsala, Sweden
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, Dalian Polytechnic, University, Dalian 116034, China.
| |
Collapse
|
10
|
Lara Aparicio SY, Laureani Fierro ÁDJ, Aranda Abreu GE, Toledo Cárdenas R, García Hernández LI, Coria Ávila GA, Rojas Durán F, Aguilar MEH, Manzo Denes J, Chi-Castañeda LD, Pérez Estudillo CA. Current Opinion on the Use of c-Fos in Neuroscience. NEUROSCI 2022; 3:687-702. [PMID: 39483772 PMCID: PMC11523728 DOI: 10.3390/neurosci3040050] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 11/03/2024] Open
Abstract
For years, the biochemical processes that are triggered by harmful and non-harmful stimuli at the central nervous system level have been extensively studied by the scientific community through numerous techniques and animal models. For example, one of these techniques is the use of immediate expression genes, which is a useful, accessible, and reliable method for observing and quantifying cell activation. It has been shown that both the c-fos gene and its protein c-Fos have rapid activation after stimulus, with the length of time that they remain active depending on the type of stimulus and the activation time depending on the stimulus and the structure studied. Fos requires the participation of other genes (such as c-jun) for its expression (during hetero-dimer forming). c-Fos dimerizes with c-Jun protein to form factor AP-1, which promotes the transcription of various genes. The production and removal of c-Fos is part of cellular homeostasis, but its overexpression results in increased cell proliferation. Although Fos has been used as a marker of cellular activity since the 1990s, which molecular mechanism participates in the regulation of the expression of this protein is still unknown because the gene and the protein are not specific to neurons or glial cells. For these reasons, this work has the objective of gathering information about this protein and its use in neuroscience.
Collapse
Affiliation(s)
- Sandra Yasbeth Lara Aparicio
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Av. Luis Castelazo S/N, Col. Industrial Las Ánimas, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | | | - Rebeca Toledo Cárdenas
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Luis Isauro García Hernández
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Genaro Alfonso Coria Ávila
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Fausto Rojas Durán
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | - Jorge Manzo Denes
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Lizbeth Donají Chi-Castañeda
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | |
Collapse
|