1
|
Aye SSS, Fang Z, Wu MCL, Lim KS, Ju LA. Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms. Biomater Sci 2025; 13:1131-1160. [PMID: 39834160 DOI: 10.1039/d4bm01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of in vitro thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.
Collapse
Affiliation(s)
- San Seint Seint Aye
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Zhongqi Fang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Mike C L Wu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Khoon S Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
2
|
Kawara S, Cunningham B, Bezer J, Kc N, Zhu J, Tang MX, Ishihara J, Choi JJ, Au SH. Capillary-Scale Hydrogel Microchannel Networks by Wire Templating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301163. [PMID: 37267935 DOI: 10.1002/smll.202301163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/08/2023] [Indexed: 06/04/2023]
Abstract
Microvascular networks are essential for the efficient transport of nutrients, waste products, and drugs throughout the body. Wire-templating is an accessible method for generating laboratory models of these blood vessel networks, but it has difficulty fabricating microchannels with diameters of ten microns and narrower, a requirement for modeling human capillaries. This study describes a suite of surface modification techniques to selectively control the interactions amongst wires, hydrogels, and world-to-chip interfaces. This wire templating method enables the fabrication of perfusable hydrogel-based rounded cross-section capillary-scale networks whose diameters controllably narrow at bifurcations down to 6.1 ± 0.3 microns in diameter. Due to its low cost, accessibility, and compatibility with a wide range of common hydrogels of tunable stiffnesses such as collagen, this technique may increase the fidelity of experimental models of capillary networks for the study of human health and disease.
Collapse
Affiliation(s)
- Shusei Kawara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Brian Cunningham
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Cancer Research UK Convergence Science Centre, London, SW7 2AZ, UK
| | - James Bezer
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Neelima Kc
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Jingwen Zhu
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - James J Choi
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Sam H Au
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Cancer Research UK Convergence Science Centre, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Größbacher G, Bartolf-Kopp M, Gergely C, Bernal PN, Florczak S, de Ruijter M, Rodriguez NG, Groll J, Malda J, Jungst T, Levato R. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300756. [PMID: 37099802 DOI: 10.1002/adma.202300756] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
Collapse
Affiliation(s)
- Gabriel Größbacher
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Csaba Gergely
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Paulina Núñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Núria Ginés Rodriguez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
4
|
Cameron TC, Randhawa A, Grist SM, Bennet T, Hua J, Alde LG, Caffrey TM, Wellington CL, Cheung KC. PDMS Organ-On-Chip Design and Fabrication: Strategies for Improving Fluidic Integration and Chip Robustness of Rapidly Prototyped Microfluidic In Vitro Models. MICROMACHINES 2022; 13:mi13101573. [PMID: 36295926 PMCID: PMC9609846 DOI: 10.3390/mi13101573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 05/31/2023]
Abstract
The PDMS-based microfluidic organ-on-chip platform represents an exciting paradigm that has enjoyed a rapid rise in popularity and adoption. A particularly promising element of this platform is its amenability to rapid manufacturing strategies, which can enable quick adaptations through iterative prototyping. These strategies, however, come with challenges; fluid flow, for example, a core principle of organs-on-chip and the physiology they aim to model, necessitates robust, leak-free channels for potentially long (multi-week) culture durations. In this report, we describe microfluidic chip fabrication methods and strategies that are aimed at overcoming these difficulties; we employ a subset of these strategies to a blood-brain-barrier-on-chip, with others applied to a small-airway-on-chip. Design approaches are detailed with considerations presented for readers. Results pertaining to fabrication parameters we aimed to improve (e.g., the thickness uniformity of molded PDMS), as well as illustrative results pertaining to the establishment of cell cultures using these methods will also be presented.
Collapse
Affiliation(s)
- Tiffany C. Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Avineet Randhawa
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jessica Hua
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Luis G. Alde
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Tara M. Caffrey
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Barreiro Carpio M, Dabaghi M, Ungureanu J, Kolb MR, Hirota JA, Moran-Mirabal JM. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front Bioeng Biotechnol 2021; 9:773511. [PMID: 34900964 PMCID: PMC8653950 DOI: 10.3389/fbioe.2021.773511] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julia Ungureanu
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Martin R. Kolb
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jose Manuel Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| |
Collapse
|