1
|
Prudinnik DS, Kussanova A, Vorobjev IA, Tikhonov A, Ataullakhanov FI, Barteneva NS. Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. Aging Dis 2025:AD.2024.0526. [PMID: 39012672 DOI: 10.14336/ad.2024.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is interrelated with changes in red blood cell parameters and functionality. In this article, we focus on red blood cells (RBCs) and provide a review of the known changes associated with the characterization of RBC deformability in aging and related pathologies. The biophysical parameters complement the commonly used biochemical parameters and may contribute to a better understanding of the aging process. The power of the deformability measurement approach is well established in clinical settings. Measuring RBCs' deformability has the advantage of relative simplicity, and it reflects the complex effects developing in erythrocytes during aging. However, aging and related pathological conditions also promote heterogeneity of RBC features and have a certain impact on the variance in erythrocyte cell properties. The possible applications of deformability as an early biophysical biomarker of pathological states are discussed, and modulating PIEZO1 as a therapeutic target is suggested. The changes in RBCs' shape can serve as a proxy for deformability evaluation, leveraging single-cell analysis with imaging flow cytometry and artificial intelligence algorithms. The characterization of biophysical parameters of RBCs is in progress in humans and will provide a better understanding of the complex dynamics of aging.
Collapse
Affiliation(s)
- Dmitry S Prudinnik
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aigul Kussanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Alexander Tikhonov
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Kordzadeh-Kermani V, Vahid M, Ashrafizadeh SN, Martinez-Chapa SO, Madou MJ, Madadelahi M. Low-cost optical sensors in electrified lab-on-a-disc platforms: liquid-phase boundary detection and automated diagnostics. MICROSYSTEMS & NANOENGINEERING 2025; 11:61. [PMID: 40195326 PMCID: PMC11977271 DOI: 10.1038/s41378-025-00896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation, as well as their wide range of applications, especially in separating blood plasma and manipulating two-phase flows. However, the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings. In this study, we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors (LDRs) as optical sensors in microfluidic devices, particularly centrifugal platforms. While LDRs are attractive for their potential use as photodetectors, their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems. Here, we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs. We integrated these LDRs into electrified Lab-on-a-Disc (eLOD) devices, with wireless connectivity to smartphones and laptops. This enables many applications, such as droplet/particle counting and velocity measurement, concentration analysis, fluidic interface detection in multiphase flows, real-time monitoring of sample volume on centrifugal platforms, and detection of blood plasma separation as an alternative to costly stroboscope devices, microscopes, and high-speed imaging. We used numerical simulations to evaluate various fluids and scenarios, which include rotation speeds of up to 50 rad/s and a range of droplet sizes. For the testbed, we used the developed eLOD device to analyze red blood cell (RBC) deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors' signals. In addition to sickle cell anemia, this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability, such as thalassemia, malaria, and diabetes.
Collapse
Affiliation(s)
- Vahid Kordzadeh-Kermani
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Maryam Vahid
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
| | | | - Marc J Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico.
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, USA.
| | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico.
| |
Collapse
|
3
|
Chang RT, Fisher MJ, Sumbria RK. Brain endothelial cells as phagocytes: mechanisms and implications. Fluids Barriers CNS 2025; 22:30. [PMID: 40170044 PMCID: PMC11959998 DOI: 10.1186/s12987-025-00637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Brain microvascular endothelial cells (BECs) lining the brain capillaries form the anatomical site of the blood-brain barrier (BBB), providing a highly selective barrier to support brain homeostasis and function. While the BBB acts as a barrier to immune cells and pathogens under normal conditions, BECs can facilitate their entry into the CNS via a phagocytosis-like mechanism. A similar process is now increasingly reported for a diverse set of cargos, resulting in the categorization of BECs as "non-professional" phagocytes and redefining the conventional view that these cells are functionally non-phagocytic. This review aims to summarize research demonstrating the capacity of BECs to phagocytose various cargos, including aged red blood cells (RBC), myelin debris, and embolic particles. Mechanistically, BEC phagocytosis can be triggered by the exposure of phosphatidylserine on RBC, expression of adhesion molecules such as ICAM-1 and VCAM-1 on BECs, cargo-opsonization, and/or involve BEC cytoskeleton remodeling. Phagocytic activity by BECs has significant clinical implications ranging from regulation of cerebral microvascular patency (particularly by contributing to and resolving capillary stalling), clearance of brain parenchymal debris, and brain parenchymal invasion by pathogens. Further, BEC phagocytosis of RBC, which represents a cell (RBC)-in-cell (BEC) phenomenon, is implicated in hemorrhagic lesions including cerebral microhemorrhages. This review aims to shed light on BEC phagocytosis as an important function within the brain microvascular system and will delve into the underlying mechanisms, discuss the clinical implications, and identify gaps in our understanding of this phenomenon.
Collapse
Affiliation(s)
- Rudy T Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Departments of Anatomy & Neurobiology and Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Chang GY, Cox CA, Kane EA, Tye GP, Fawcett P, Shaffer TH. Comparison of stress-induced hemolysis in neonatal intravenous catheters: Theoretical and experimental analysis of shear stress, exposure time, and index of hemolysis. J Neonatal Perinatal Med 2025:19345798251326071. [PMID: 40116425 DOI: 10.1177/19345798251326071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
BackgroundSeveral studies report hemolysis when packed red blood cells (PRBCs) are transfused through small-inner-diameter (ID) catheters using presence of biomarkers but do not address cause and amount of hemolysis. This study aims to determine the cause and index of hemolysis percent (IH%) when PRBCs are infused through small-ID catheters.MethodsThe IH% was calculated using Giersiepen's empirical power law, which describes a relationship between hemolysis and magnitude of shear stress and exposure time. Six- and 27-day-old PRBCs were infused through five catheters with IDs of 0.20 mm to 0.70 mm at infusion rates of 3 mL and 10 mL/hour. Shear stress and exposure time were calculated. Data were analyzed as a function of catheter ID, infusion rates, and blood age.ResultsThe study demonstrated that shear stress was supraphysiologic during laminar flow in catheters with IDs of 0.20 mm and 0.28 mm. These catheters' IH% were ∼117 times higher at 3 mL/hour and ∼75 times higher at 10 mL/hour than catheters with larger IDs of 0.48 mm, 0.51 mm, and 0.70 mm. For blood age, in catheters with IDs of 0.20 mm and 0.28 mm, IH% was ∼155 times higher at 6 days and ∼76 times higher at 27 days than in catheters with IDs of 0.48 mm, 0.51 mm, and 0.70 mm.ConclusionsThis study demonstrated that when RBCs are subjected to supraphysiologic shear stress in catheters with IDs of ≤0.28 mm, index of hemolysis is greater than in catheters with IDs ≥0.48 mm.
Collapse
Affiliation(s)
- Gordon Y Chang
- Children's Hospital of Philadelphia at Main Line Health, Philadelphia, PA, USA
- Main Line Health Neonatology, Bryn Mawr Hospital, Bryn Mawr, PA, USA
| | - Cynthia A Cox
- Main Line Health Neonatology, Bryn Mawr Hospital, Bryn Mawr, PA, USA
| | - Ellen A Kane
- Main Line Health Nursing, Bryn Mawr Hospital, Bryn Mawr, PA, USA
| | | | - Paul Fawcett
- Department of Research, Nemours Children's Health, Wilmington, DE, USA
| | - Thomas H Shaffer
- Center for Pediatric Lung Research, Nemours Children's Health, Wilmington, DE, USA
| |
Collapse
|
5
|
Spinelli S, Straface E, Gambardella L, Caruso D, Dossena S, Marino A, Morabito R, Remigante A. Iron Overload-Related Oxidative Stress Leads to Hyperphosphorylation and Altered Anion Exchanger 1 (Band 3) Function in Erythrocytes from Subjects with β-Thalassemia Minor. Int J Mol Sci 2025; 26:1593. [PMID: 40004059 PMCID: PMC11855117 DOI: 10.3390/ijms26041593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
β-thalassemia, a hereditary hemoglobinopathy, is caused by reduced or absent synthesis of the β-globin chains of hemoglobin. Three clinical conditions are recognized: β-thalassemia major, β-thalassemia intermedia, and β-thalassemia minor (β-Thal+). This latter condition occurs when an individual inherits a mutated β-globin gene from one parent. In erythrocytes from β-Thal+ subjects, the excess α-globin chains produce unstable α-tetramers, which can induce substantial oxidative stress leading to plasma membrane and cytoskeleton damage, as well as deranged cellular function. In the present study, we hypothesized that increased oxidative stress might lead to structural rearrangements in erythrocytes from β-Thal+ volunteers and functional alterations of ion transport proteins, including band 3 protein. The data obtained showed significant modifications of the cellular shape in erythrocytes from β-Thal+ subjects. In particular, a significantly increased number of elliptocytes was observed. Interestingly, iron overload, detected in erythrocytes from β-Thal+ subjects, provoked a significant production of reactive oxygen species (ROS), overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase, and glutathione depletion, resulting in (a) increased lipid peroxidation, (b) protein sulfhydryl group (-SH) oxidation. Iron overload-related oxidative stress affected Na+/K+-ATPase activity, which in turn may have contributed to impaired β-Thal+ erythrocyte deformability. As a result, alterations in the distribution of cytoskeletal proteins, including α/β-spectrin, protein 4.1, and α-actin, in erythrocytes from β-Thal+ subjects have been detected. Significantly, oxidative stress was also associated with increased phosphorylation and altered band 3 ion transport activity, as well as increased oxidized hemoglobin, which led to abnormal clustering and redistribution of band 3 on the plasma membrane. Taken together, these findings contribute to elucidating potential oxidative stress-related perturbations of ion transporters and associated cytoskeletal proteins, which may affect erythrocyte and systemic homeostasis in β-Thal+ subjects.
Collapse
Affiliation(s)
- Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.S.); (A.M.); (R.M.)
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.)
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.)
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, 98166 Messina, Italy;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.S.); (A.M.); (R.M.)
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.S.); (A.M.); (R.M.)
| | - Alessia Remigante
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98166 Messina, Italy
| |
Collapse
|
6
|
Braidotti N, Rizzo D, Ciubotaru CD, Sacco G, Bernareggi A, Cojoc D. Actin instability alters red blood cell mechanics and Piezo1 channel activity. Biomech Model Mechanobiol 2025:10.1007/s10237-024-01921-8. [PMID: 39776379 DOI: 10.1007/s10237-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume. In this study, we investigated how actin instability affects Piezo1 channel gating, in relation to RBC deformation and mechanical properties, using micropipette aspiration and optical tweezers. Actin instability, induced by 0.5 μM Cytochalasin-D (Cyt-D), led to a 22% reduction in the activation pressure. Additionally, we observed a decreasing trend in Young's modulus, membrane tension, and viscosity. By measuring the time required for cell shape recovery after deformation in an optical trap, we found that Cyt-D-treated RBC took approximately 14% longer to recover compared to untreated cells. The bimodal imaging feature of our experimental approach allowed us to simultaneously measure and correlate activation pressure with mechanical properties at the single-cell level. A significant correlation was found between these parameters in both treated and untreated RBC. Our findings demonstrate the influence of actin instability on both Piezo1 activation and RBC mechanics. These results offer new insights into the interplay between F-actin and Piezo1 in RBC mechanobiology.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Davide Rizzo
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127, Trieste, Italy
- Integrated Biology of Rare Tumors Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Catalin D Ciubotaru
- CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy
| | - Giuseppina Sacco
- CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127, Trieste, Italy
| | - Dan Cojoc
- CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.
| |
Collapse
|
7
|
Huang S, Chen J, Liu X, Xing C, Zhao L, Chan K, Lu G. Evaluation of the Pharmaceutical Activities of Chuanxiong, a Key Medicinal Material in Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1157. [PMID: 39338320 PMCID: PMC11434844 DOI: 10.3390/ph17091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Szechwan lovage rhizome (SLR, the rhizome of Ligusticum chuanxiong Hort., Chuanxiong in Chinese transliteration) is one Chinese materia medica (CMM) commonly used to activate blood circulation and remove blood stasis. SLR is applicable to most blood stasis syndromes. It has significant clinical efficacy in relation to human diseases of the cardiocerebrovascular system, nervous system, respiratory system, digestive system, urinary system, etc. Apart from China, SLR is also used in Singapore, Malaysia, the European Union, and the United States of America. However, the current chemical markers in pharmacopeia or monography for the quality assessment of SLR are not well characterized or specifically characterized, nor do they fully reflect the medicinal efficacy of SLR, resulting in the quality of SLR not being effectively controlled. CMM can only have medicinal efficacy when they are applied in vivo to an organism. The intensity of their pharmaceutical activities can more directly represent the quality of CMM. Therefore, the chemical constituents and pharmacological actions of SLR are reviewed in this paper. In order to demonstrate the medicinal efficacy of SLR in promoting blood circulation and removing blood stasis, bioassay methods are put forward to evaluate the pharmaceutical activities of SLR to improve hemorheology, hemodynamics, and vascular microcirculation, as well as its anti-platelet aggregation and anticoagulation properties. Through comprehensive analyses of these pharmaceutical properties, the quality and therapeutic value of SLR are ascertained.
Collapse
Affiliation(s)
- Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunxin Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Zhao
- Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, China;
| | - Kelvin Chan
- Centre for Natural Products Discovery, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 1797, Australia
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.H.); (J.C.); (X.L.); (C.X.)
- Research Institute of Chinese Medicines as Drug & Food, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Lamoureux ES, Cheng Y, Islamzada E, Matthews K, Duffy SP, Ma H. Biophysical profiling of red blood cells from thin-film blood smears using deep learning. Heliyon 2024; 10:e35276. [PMID: 39170127 PMCID: PMC11336426 DOI: 10.1016/j.heliyon.2024.e35276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Microscopic inspection of thin-film blood smears is widely used to identify red blood cell (RBC) pathologies, including malaria parasitism and hemoglobinopathies, such as sickle cell disease and thalassemia. Emerging research indicates that non-pathologic changes in RBCs can also be detected in images, such as deformability and morphological changes resulting from the storage lesion. In transfusion medicine, cell deformability is a potential biomarker for the quality of donated RBCs. However, a major impediment to the clinical translation of this biomarker is the difficulty associated with performing this measurement. To address this challenge, we developed an approach for biophysical profiling of RBCs based on cell images in thin-film blood smears. We hypothesize that subtle cellular changes are evident in blood smear images, but this information is inaccessible to human expert labellers. To test this hypothesis, we developed a deep learning strategy to analyze Giemsa-stained blood smears to assess the subtle morphologies indicative of RBC deformability and storage-based degradation. Specifically, we prepared thin-film blood smears from 27 RBC samples (9 donors evaluated at 3 storage time points) and imaged them using high-resolution microscopy. Using this dataset, we trained a convolutional neural network to evaluate image-based morphological features related to cell deformability. The prediction of donor deformability is strongly correlated to the microfluidic scores and can be used to categorize images into specific deformability groups with high accuracy. We also used this model to evaluate differences in RBC morphology resulting from cold storage. Together, our results demonstrate that deep learning models can detect subtle cellular morphology differences resulting from deformability and cold storage. This result suggests the potential to assess donor blood quality from thin-film blood smears, which can be acquired ubiquitously in clinical workflows.
Collapse
Affiliation(s)
- Erik S. Lamoureux
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - You Cheng
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - Emel Islamzada
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - Kerryn Matthews
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
| | - Simon P. Duffy
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
- British Columbia Institute of Technology, Canada
| | - Hongshen Ma
- Department of Mechanical Engineering, University of British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Canada
| |
Collapse
|
9
|
Oshabaheebwa S, Delianides CA, Patwardhan AA, Evans EN, Sekyonda Z, Bode A, Apio FM, Mutuluuza CK, Sheehan VA, Suster MA, Gurkan UA, Mohseni P. A miniaturized wash-free microfluidic assay for electrical impedance-based assessment of red blood cell-mediated microvascular occlusion. Biosens Bioelectron 2024; 258:116352. [PMID: 38718635 PMCID: PMC11741037 DOI: 10.1016/j.bios.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
The production of HbS - an abnormal hemoglobin (Hb) - in sickle cell disease (SCD) results in poorly deformable red blood cells (RBCs) that are prone to microcapillary occlusion, causing tissue ischemia and organ damage. Novel treatments, including gene therapy, may reduce SCD morbidity, but methods to functionally evaluate RBCs remain limited. Previously, we presented the microfluidic impedance red cell assay (MIRCA) for rapid assessment of RBC deformability, employing electrical impedance-based readout to measure RBC occlusion of progressively narrowing micropillar openings. We describe herein the design, development, validation, and clinical utility of the next-generation MIRCA assay, featuring enhanced portability, rapidity, and usability. It incorporates a miniaturized impedance analyzer and features a simplified wash-free operation that yields an occlusion index (OI) within 15 min as a new metric for RBC occlusion. We show a correlation between OI and percent fetal hemoglobin (%HbF), other laboratory biomarkers of RBC hemolysis, and SCD severity. To demonstrate the assay's versatility, we tested RBC samples from treatment-naïve SCD patients in Uganda that yielded OI levels similar to those from hydroxyurea (HU)-treated patients in the U.S., highlighting the role of %HbF in protecting against microcapillary occlusion independent of other pharmacological effects. The MIRCA assay could also identify a subset of HU-treated patients with high occlusion risks, suggesting that they may require treatment adjustments including a second-line therapy to improve their outcomes. This work demonstrates the potential of the MIRCA assay for accelerated evaluation of RBC health, function, and therapeutic effect in an ex vivo model of the microcapillary networks.
Collapse
Affiliation(s)
- Solomon Oshabaheebwa
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher A Delianides
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Akshay A Patwardhan
- Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Erica N Evans
- Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zoe Sekyonda
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Allison Bode
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | - Vivien A Sheehan
- Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| | - Michael A Suster
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Umut A Gurkan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Pedram Mohseni
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Recktenwald SM, Rashidi Y, Graham I, Arratia PE, Del Giudice F, Wagner C. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement. SOFT MATTER 2024; 20:4950-4963. [PMID: 38873747 DOI: 10.1039/d4sm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yazdan Rashidi
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | - Ian Graham
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Del Giudice
- Complex Fluid Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
11
|
Cheng P, Chen Y, Wang J, Han Z, Hao D, Li Y, Feng F, Duan X, Chen H. PM 2.5 induces a senescent state in mouse AT2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123686. [PMID: 38431248 DOI: 10.1016/j.envpol.2024.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
PM2.5 is known to induce lung injury, but its toxic effects on lung regenerative machinery and the underlying mechanisms remain unknown. In this study, primary mouse alveolar type 2 (AT2) cells, considered stem cells in the gas-exchange barrier, were sorted using fluorescence-activated cell sorting. By developing microfluidic technology with constricted microchannels, we observed that both passage time and impedance opacities of mouse AT2 cells were reduced after PM2.5, indicating that PM2.5 induced a more deformable mechanical property and a higher membrane permeability. In vitro organoid cultures of primary mouse AT2 cells indicated that PM2.5 is able to impair the proliferative potential and self-renewal capacity of AT2 cells but does not affect AT1 differentiation. Furthermore, cell senescence biomarkers, p53 and γ-H2A.X at protein levels, P16ink4a and P21 at mRNA levels were increased in primary mouse AT2 cells after PM2.5 stimulations as shown by immunofluorescent staining and quantitative PCR analysis. Using several advanced single-cell technologies, this study sheds light on new mechanisms of the cytotoxic effects of atmospheric fine particulate matter on lung stem cell behavior.
Collapse
Affiliation(s)
- Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Yongqi Chen
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - De Hao
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China; Tianjin Key Laboratory of Lung Regenerative Tianjin University Medicine, Tianjin, 300350, China; College of Pulmonary and Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
12
|
Nouaman M, Darras A, Wagner C, Recktenwald SM. Confinement effect on the microcapillary flow and shape of red blood cells. BIOMICROFLUIDICS 2024; 18:024104. [PMID: 38577010 PMCID: PMC10994673 DOI: 10.1063/5.0197208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
The ability to change shape is essential for the proper functioning of red blood cells (RBCs) within the microvasculature. The shape of RBCs significantly influences blood flow and has been employed in microfluidic lab-on-a-chip devices, serving as a diagnostic biomarker for specific pathologies and enabling the assessment of RBC deformability. While external flow conditions, such as the vessel size and the flow velocity, are known to impact microscale RBC flow, our comprehensive understanding of how their shape-adapting ability is influenced by channel confinement in biomedical applications remains incomplete. This study explores the impact of various rectangular and square channels, each with different confinement and aspect ratios, on the in vitro RBC flow behavior and characteristic shapes. We demonstrate that rectangular microchannels, with a height similar to the RBC diameter in combination with a confinement ratio exceeding 0.9, are required to generate distinctive well-defined croissant and slipper-like RBC shapes. These shapes are characterized by their equilibrium positions in the channel cross section, and we observe a strong elongation of both stable shapes in response to the shear rate across the different channels. Less confined channel configurations lead to the emergence of unstable other shape types that display rich shape dynamics. Our work establishes an experimental framework to understand the influence of channel size on the single-cell flow behavior of RBCs, providing valuable insights for the design of biomicrofluidic single-cell analysis applications.
Collapse
Affiliation(s)
- Mohammed Nouaman
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Alexis Darras
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | | | | |
Collapse
|
13
|
Baskaran RKR, Link A, Porr B, Franke T. Classification of chemically modified red blood cells in microflow using machine learning video analysis. SOFT MATTER 2024; 20:952-958. [PMID: 38088860 DOI: 10.1039/d3sm01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We classify native and chemically modified red blood cells with an AI based video classifier. Using TensorFlow video analysis enables us to capture not only the morphology of the cell but also the trajectories of motion of individual red blood cells and their dynamics. We chemically modify cells in three different ways to model different pathological conditions and obtain classification accuracies for all three classification tasks of more than 90% between native and modified cells. Unlike standard cytometers that are based on immunophenotyping our microfluidic cytometer allows to rapidly categorize cells without any fluorescence labels simply by analysing the shape and flow of red blood cells.
Collapse
Affiliation(s)
- R K Rajaram Baskaran
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| | - A Link
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| | - B Porr
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| | - T Franke
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK.
| |
Collapse
|
14
|
Yamamoto T, Watanabe H. Energy spectrum analysis on a red blood cell model. J Chem Phys 2023; 159:234119. [PMID: 38117019 DOI: 10.1063/5.0169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
It is important to understand the dynamics of red blood cells (RBCs) in blood flow. This requires the formulation of coarse-grained RBC models that reproduce the hydrodynamic properties of blood accurately. One of the models that successfully reproduces the rheology and morphology of blood has been proposed by Fedosov et al. [Comput. Methods Appl. Mech. Eng. 199, 1937-1948 (2010)]. The proposed RBC model contains several parameters whose values are determined by either various experiments or physical requirements. In this study, we developed a new method of determining parameter values precisely from the fluctuations of the RBC membrane. Specifically, we studied the relationship between the spectra of the fluctuations and model parameters. Characteristic peaks were observed in the spectra, whose peak frequencies were dependent on the parameter values. In addition, we investigated the spectra of the radius of gyration. We identified the peaks originating from the spring potential and the volume-conserving potential appearing in the spectra. These results lead to the precise experimental determination of the parameters used in the RBC model.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroshi Watanabe
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
15
|
Mallin MM, Kim N, Choudhury MI, Lee SJ, An SS, Sun SX, Konstantopoulos K, Pienta KJ, Amend SR. Cells in the polyaneuploid cancer cell (PACC) state have increased metastatic potential. Clin Exp Metastasis 2023:10.1007/s10585-023-10216-8. [PMID: 37326720 DOI: 10.1007/s10585-023-10216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | | | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kenneth J Pienta
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Sarah R Amend
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
16
|
Lopes MG, Recktenwald SM, Simionato G, Eichler H, Wagner C, Quint S, Kaestner L. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemother 2023; 50:163-173. [PMID: 37408647 PMCID: PMC10319094 DOI: 10.1159/000530458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 07/07/2023] Open
Abstract
Background "Artificial intelligence" and "big data" increasingly take the step from just being interesting concepts to being relevant or even part of our lives. This general statement holds also true for transfusion medicine. Besides all advancements in transfusion medicine, there is not yet an established red blood cell quality measure, which is generally applied. Summary We highlight the usefulness of big data in transfusion medicine. Furthermore, we emphasize in the example of quality control of red blood cell units the application of artificial intelligence. Key Messages A variety of concepts making use of big data and artificial intelligence are readily available but still await to be implemented into any clinical routine. For the quality control of red blood cell units, clinical validation is still required.
Collapse
Affiliation(s)
- Marcelle G.M. Lopes
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Cysmic GmbH, Saarbrücken, Germany
| | | | - Greta Simionato
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | | | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
Nouaman M, Darras A, John T, Simionato G, Rab MAE, van Wijk R, Laschke MW, Kaestner L, Wagner C, Recktenwald SM. Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow. Cells 2023; 12:1529. [PMID: 37296651 PMCID: PMC10252257 DOI: 10.3390/cells12111529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity.
Collapse
Affiliation(s)
- Mohammed Nouaman
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Alexis Darras
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas John
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Minke A. E. Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Steffen M. Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Antonelou MH. Tools and metrics for the assessment of post-storage performance of red blood cells: no one is left over. Transfusion 2023; 63:1-6. [PMID: 36537147 DOI: 10.1111/trf.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Athens, Greece
| |
Collapse
|
19
|
Himbert S, Rheinstädter MC. Structural and mechanical properties of the red blood cell's cytoplasmic membrane seen through the lens of biophysics. Front Physiol 2022; 13:953257. [PMID: 36171967 PMCID: PMC9510598 DOI: 10.3389/fphys.2022.953257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Red blood cells (RBCs) are the most abundant cell type in the human body and critical suppliers of oxygen. The cells are characterized by a simple structure with no internal organelles. Their two-layered outer shell is composed of a cytoplasmic membrane (RBC cm ) tethered to a spectrin cytoskeleton allowing the cell to be both flexible yet resistant against shear stress. These mechanical properties are intrinsically linked to the molecular composition and organization of their shell. The cytoplasmic membrane is expected to dominate the elastic behavior on small, nanometer length scales, which are most relevant for cellular processes that take place between the fibrils of the cytoskeleton. Several pathologies have been linked to structural and compositional changes within the RBC cm and the cell's mechanical properties. We review current findings in terms of RBC lipidomics, lipid organization and elastic properties with a focus on biophysical techniques, such as X-ray and neutron scattering, and Molecular Dynamics simulations, and their biological relevance. In our current understanding, the RBC cm 's structure is patchy, with nanometer sized liquid ordered and disordered lipid, and peptide domains. At the same time, it is surprisingly soft, with bending rigidities κ of 2-4 kBT. This is in strong contrast to the current belief that a high concentration of cholesterol results in stiff membranes. This extreme softness is likely the result of an interaction between polyunsaturated lipids and cholesterol, which may also occur in other biological membranes. There is strong evidence in the literature that there is no length scale dependence of κ of whole RBCs.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Hu Q, Wang Z, Shen L, Zhao G. Label-Free and Noninvasive Single-Cell Characterization for the Viscoelastic Properties of Cryopreserved Human Red Blood Cells Using a Dielectrophoresis-On-a-Chip Approach. Anal Chem 2022; 94:10245-10255. [DOI: 10.1021/acs.analchem.2c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qianqian Hu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Zirui Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|