1
|
Wang H, Cheng H, Zhang M, Zou Y, Wen R, Li K, Wang D, Ding M, Chen Q, Wang QL, Gao XM, Yang W. Application of the Ginsenoside Multidimensional Information Library (GinMIL) Enables Accurate Characterization of Ginsenosides from Diverse Ginseng Products and Accelerates the Discovery of New Saponin Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10003-10016. [PMID: 40205726 DOI: 10.1021/acs.jafc.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Accurate characterization of ginsenosides from ginseng relying on liquid chromatography-mass spectrometry (LC-MS) is challenging due to the lack of sufficient structural information. By machine learning techniques, we have established a ginsenoside multidimensional information library, namely, GinMIL, covering four dimensions of structural information of 579 ginsenosides. This work was designed to accurately characterize ginsenosides from Panax notoginseng products and to rapidly discover novel ginsenosides from Panax quinquefolius flowers by ion-mobility LC/MS profiling and efficient GinMIL matching on UNIFI. Consequently, we characterized 334/356/738/545 ginsenosides from three parts/two extracts/four single preparations/seven compound preparations of Panax notoginseng, respectively. 45/99/59/116 novel masses were discovered in four types of notoginseng products, respectively. Four novel ginsenosides, including three rare dimalonyl ginsenosides and one methylated malonyl ginsenoside, were isolated from Panax quinquefolius flowers by feat of GinMIL analysis. This work can verify the superiority of GinMIL, thus greatly enhancing the multicomponent characterization and the discovery of new compounds from functional herbs.
Collapse
Affiliation(s)
- Hongda Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Huizhen Cheng
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ruohan Wen
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, Rua de Luís Gonzaga Gomes, Macao 999078, China
| | - Duo Wang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, Rua de Luís Gonzaga Gomes, Macao 999078, China
| | - Mengxiang Ding
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qi-Long Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiu-Mei Gao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenzhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
2
|
Xiao P, Ye Z, Li X, Feng Q, Su Y. Ginseng and its functional components in non-alcoholic fatty liver disease: therapeutic effects and multi-target pharmacological mechanisms. Front Pharmacol 2025; 16:1540255. [PMID: 40271056 PMCID: PMC12014752 DOI: 10.3389/fphar.2025.1540255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease and its incidence is increasing. Its disease progression is closely related to non-alcoholic steatohepatitis and liver fibrosis. Effective treatment is currently lacking. The traditional Chinese medicine ginseng (Panax ginseng) shows unique advantages in NAFLD intervention, but its complex compositional system and molecular mechanism network still need to be systematically analyzed. Objective This paper systematically integrates evidence from nearly 20 years of research to elucidate the multi-target pharmacological mechanism of ginseng for the treatment of NAFLD. Methods Relevant information was sourced from Pubmed, Web of science, Embase and CNKI databases. Using BioRender and visio to draw biomedical illustrations. Results The active ingredients of ginseng contain 2 classes of saponins (tetracyclic triterpene saponins, pentacyclic triterpene saponins and other modified types) and non-saponins. Different cultivation methods, processing techniques and extraction sites have expanded the variety of ginseng constituents and demonstrated different pharmacological activities. Studies have shown that ginseng and its functional components have the ability to regulate lipid metabolism disorders, inflammation, oxidative stress, endoplasmic reticulum stress, insulin resistance, disruption of intestinal flora structure, cell death and senescence. Demonstrates the potential of ginseng for the treatment of NAFLD. Conclusion This study reveals for the first time the integrative mechanism of ginseng in the treatment of NAFLD through the tertiary mode of action of "multi-component multi-target multi-pathway". The multilevel modulatory ability of ginseng provides a new direction for the development of comprehensive therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
| | | | | | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Su
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Jiang Z, Chen N, Wang HT, Tian Y, Du X, Wu R, Huang L, Wang ZL, Yuan Y. Molecular characterization and structural basis of a promiscuous glycosyltransferase for β-(1,6) oligoglucoside chain glycosides biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40107321 DOI: 10.1111/pbi.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Sugar building blocks are crucial for the chemical diversity and biological activity of secondary metabolites. UDP-dependent glycosyltransferases (UGTs) play a pivotal role in the biosynthesis of glycosides in plants by catalysing the attachment of sugar moieties to various bioactive natural products. However, the biosynthesis of oligosaccharide-chain glycosides is often limited by the narrow substrate specificity of UGTs. In this study, we identify a regio-specific β-(1,6) glycosyltransferase, UGT94BY1, from Platycodon grandiflorum. UGT94BY1 exhibits broad substrate promiscuity and can transfer up to three sugar moieties to the C6-OH position of the glucosyl group in various triterpenoids and phenolic glycosides, thereby forming β-(1,6) oligoglucoside chains. To elucidate the mechanism underlying its substrate selectivity, we determined the crystal structure of the UGT94BY1 complex with UDP at a resolution of 2.0 Å. Molecular simulations revealed that a critical structural motif, comprising residues N84-M91, S141-L155 and R179-E186, plays a key role in recognizing sugar acceptors and facilitating chain elongation. Our study unveils a powerful glycosyltransferase for β-(1,6) oligoglucoside chain biosynthesis and highlights key regions involved in substrate recognition and sugar chain extension, providing valuable insights for designing UGTs with customized substrate specificities for biotechnological applications.
Collapse
Affiliation(s)
- Zhennan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Nianhang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yungang Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiaoyu Du
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Luqi Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Li B, Mou S, Zhang C, Zhu T, Hu X, Li M. Ginsenoside Rh2 Ameliorates Myocardial Infarction by Regulating Cardiomyocyte Pyroptosis Based on Network Pharmacology, Molecular Docking, and Experimental Verification. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:475-499. [PMID: 40099395 DOI: 10.1142/s0192415x25500181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Myocardial infarction (MI) is a significant threat to human health worldwide. Following MI, cardiomyocytes (CMs) undergo pyroptosis, exacerbating the damage caused by infarction. Ginseng may play a role in alleviating CM pyroptosis. However, further exploration is needed regarding its main active ingredients and effects. By employing network pharmacology on the active ingredients of ginseng, MI and pyroptosis, and employing molecular docking between such ingredients and pyroptosis-related proteins, we screened for the main ingredient of ginseng. Through network pharmacology and molecular docking, we identified ginsenoside Rh2, which acts on MI and cell pyroptosis, as the most likely active ingredient that stably binds to pyroptosis-related proteins. We subsequently constructed a neonatal rat CM oxygen-glucose deprivation (OGD) model in vitro and an MI mouse model in vivo. Ginsenoside Rh2 was administered, with losartan used as a positive control. In the in vitro OGD model, ginsenoside Rh2 increased the viability of primary rat CMs and mitigated OGD-induced pyroptosis. In the in vivo MI model, ginsenoside Rh2 reduced CM pyroptosis, decreased infarct size, and subsequently improved cardiac function. Our study provides a novel therapeutic strategy for MI by attenuating CM pyroptosis.
Collapse
Affiliation(s)
- Bing Li
- Guizhou University Medical College, Guiyang, Guizhou 550025, P. R. China
| | - Shuanglong Mou
- Guizhou University Medical College, Guiyang, Guizhou 550025, P. R. China
| | - Chenrui Zhang
- Guizhou University Medical College, Guiyang, Guizhou 550025, P. R. China
| | - Tingting Zhu
- Guizhou University Medical College, Guiyang, Guizhou 550025, P. R. China
| | - Xingwei Hu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563006, P. R. China
| | - Mengsha Li
- Guizhou University Medical College, Guiyang, Guizhou 550025, P. R. China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
5
|
Yu X, Peng M, Liu X, Shang Y, Wang D, Jin W, Li F. Physicochemical Properties and Biological Activities of Polysaccharides from Panax Notoginseng Separated by Fractional Precipitation. Chem Biodivers 2025; 22:e202402002. [PMID: 39363708 DOI: 10.1002/cbdv.202402002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
The dried root of Panax notoginseng is a medicinal and food ingredient. P. notoginseng polysaccharides (PNPs) have physicochemical properties, which have not been fully elucidated. This study aimed to identify a method to separate the PNP fractions and investigate their activities. PNPs were prepared from roots by hot water extraction, deproteinization, and decolorization. PNP20, PNP40, and PNP60 fractions were isolated through stepwise ethanol precipitation at 20 %, 40 %, and 60 % concentrations, respectively. The three polysaccharide fractions were characterized using chromatography, spectroscopy, and thermogravimetric analysis, and their moisture retention, antioxidant, and tyrosinase-inhibition properties were evaluated. Monosaccharide composition analysis showed that the three PNPs contained mannose (Man), galacturonic acid (GalA), glucose (Glc), galactose (Gal), and arabinose (Ara) in different molar ratios. HPGPC analysis demonstrated that the polysaccharides precipitated with higher ethanol concentrations had lower molecular weights (Mw). Furthermore, all PNPs had distinct moisturizing and hygroscopic properties and antioxidant activities, with PNP60 showing better antioxidant properties and a competitive mixture of hygroscopic properties and tyrosinase inhibition. The chemical composition and structural characteristics of PNPs could affect their functional attributes. PNP60 has the potential to be a moisturizer and antioxidant and could be used in the development of cosmetic ingredients.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mengli Peng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiaocheng Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
6
|
Zhu Y, Zhang KX, Bu QY, Song SX, Chen Y, Zou H, You XY, Zhao GP. Ginsenosides From Panax ginseng Improves Hepatic Lipid Metabolism Disorders in HFD-Fed Rats by Regulating Gut Microbiota and Cholesterol Metabolism Signaling Pathways. Phytother Res 2025; 39:714-732. [PMID: 39660634 DOI: 10.1002/ptr.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 12/12/2024]
Abstract
A high-fat diet (HFD) is often associated with hepatic lipid metabolism disorders, leading to dysfunction in multiple body systems. Ginsenosides derived from Panax ginseng have been reported to possess potential effects in ameliorating lipid metabolism disorders; however, their underlying mechanisms remain insufficiently explored. This study aims to investigate the bioactivities of ginsenosides in combating lipid metabolism disorders and obesity, with a focus on their mechanisms involving the cholesterol metabolism signaling pathway and gut microbiota. Our results demonstrated that ginsenoside treatment significantly reduced overall body weight, body weight changes, liver weight, and eWAT weight, as well as alleviated hepatic steatosis and dyslipidemia in HFD-fed rats, without affecting food intake. These effects were dose-dependent. Furthermore, 16S rRNA sequencing revealed that ginsenosides significantly increased the relative abundance of Akkermansia muciniphila, Blautia, Eisenbergiella, Clostridium clusters XI, XVIII, and III, while decreasing the relative abundance of Clostridium subcluster XIVa and Dorea. In addition, ginsenoside treatment significantly regulated the expression of hepatic genes and proteins involved in the cholesterol metabolism signaling pathway (FXR, CYP7A1, CYP7B1, CYP27A1, ABCG5, ABCG8, Insig2, and Dhcr7), potentially inhibiting hepatic cholesterol biosynthesis while promoting cholesterol transport to HDL and its excretion via bile and feces. Notably, levels of 7-dehydrocholesterol (7-DHC) and 27-hydroxycholesterol (27-OHC) were reduced, while 5β,6β-epoxycholesterol (5,6β-epoxy) levels were elevated following ginsenoside treatment, indicating significant modulation of oxysterols by ginsenosides. Moreover, bile acid enterohepatic circulation was regulated through the enhancement of hepatic FXR-CYP7A1 signaling and intestinal FXR-FGF15 signaling in HFD-fed rats treated with ginsenosides, which was closely linked to gut microbiota composition. Collectively, our findings suggest that ginsenosides alleviate hepatic lipid metabolism disorders by modulating gut microbiota and the cholesterol metabolism signaling pathway in HFD-fed rats.
Collapse
Affiliation(s)
- Yue Zhu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kang-Xi Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Qing-Yun Bu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Shu-Xia Song
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Yue Chen
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Guo-Ping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Liu JY, Ma LJ, Yang RJ, Liu Y, Shu Z, Cai YQ, Zhang QW, Yang FQ, Wan JB. Preparation of Rare Dehydrated Protopanaxadiol Ginsenosides from Panax notoginseng Leaves by Confined Microwave-Driven Transformation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:678-692. [PMID: 39689256 DOI: 10.1021/acs.jafc.4c08400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Rare dehydrated ginsenosides barely exist in natural ginseng plants. Herein, the confined microwave technique was utilized to transform the main ginsenosides of Panax notoginseng leaves (PNL) into dehydrated ginsenosides. The main microwave-treated products of dried PNL are dehydrated ginsenoside Rk1, Rg5, notoginsenoside SFt3, and SFt4. Comparatively, the main microwave-treated products of water preimmersed PNL are dehydrated ginsenoside Rk2, Rh3, notoginsenoside SFt3, and SFt4. The impacts of solvent, solid-liquid ratio, microwave temperature and duration on the yield of dehydrated ginsenosides were explored. Based on theoretical calculation, primary ginsenosides in water preimmersed PNL are more prone to deglycosylation at the C-20 site and dehydration elimination reactions at the side chain during microwave treatment. Moreover, reference compounds were used to verify ginsenoside transformation pathway, and the dehydrated ginsenosides were individually purified and identified. In short, this study elucidates novel approach for preparing rare Δ20(21)- and Δ20(22)-dehydrated protopanoxadiol ginsenosides.
Collapse
Affiliation(s)
- Jia-Yue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Ru-Jie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Zheng Shu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao 999078, P.R. China
| | - Yong-Qing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao 999078, P.R. China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, P.R. China
| |
Collapse
|
8
|
Iqbal H, Kim Y, Jin M, Rhee DK. Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation. J Ginseng Res 2025; 49:12-21. [PMID: 39872288 PMCID: PMC11764131 DOI: 10.1016/j.jgr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 01/30/2025] Open
Abstract
The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health. Ginseng has shown potential to ameliorate conditions associated with dysbiosis, such as gut and CNS disorders by restoring microbial balance and enhancing gut barrier function. This comprehensive review provides valuable insights into the potential of ginseng as a herbal modulator of GBA as a therapeutic intervention for preventing and treating gut and neurological diseases via microbiota regulation to ultimately enhance overall health. Furthermore, we emphasize the therapeutic benefits of ginseng, its ability to enhance beneficial probiotics, such as Firmicutes, Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia while reducing pathogenic bacteria prevalence, such as Helicobacter, Clostridium, and Proteobacteria. Although the connection between ginseng regulation of microbial communities in response to the gut and neuropsychiatric disorders is lacking, additional investigations are warranted to elucidate the underlying mechanisms, optimize dosages, and explore the clinical relevance of ginseng in promoting GBA balance and ultimately overall health.
Collapse
Affiliation(s)
- Hamid Iqbal
- Department of Pharmacy, CECOS University, Hayatabad, Peshawar, Pakistan
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yihyo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Jiang M, Sha Y, Zou Y, Xu X, Ding M, Lian X, Wang H, Wang Q, Li K, Guo DA, Yang W. Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics to discriminate easily confused ginseng species. J Pharm Anal 2025; 15:101116. [PMID: 39902459 PMCID: PMC11788866 DOI: 10.1016/j.jpha.2024.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 02/05/2025] Open
Abstract
Metabolomics covers a wide range of applications in life sciences, biomedicine, and phytology. Data acquisition (to achieve high coverage and efficiency) and analysis (to pursue good classification) are two key segments involved in metabolomics workflows. Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups. However, insufficient feature extraction, inappropriate feature selection, overfitting, or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused. Using two ginseng varieties, namely Panax japonicus (PJ) and Panax japonicus var. major (PJvm), containing the similar ginsenosides, we integrated pseudo-targeted metabolomics and deep neural network (DNN) modeling to achieve accurate species differentiation. A pseudo-targeted metabolomics approach was optimized through data acquisition mode, ion pairs generation, comparison between multiple reaction monitoring (MRM) and scheduled MRM (sMRM), and chromatographic elution gradient. In total, 1980 ion pairs were monitored within 23 min, allowing for the most comprehensive ginseng metabolome analysis. The established DNN model demonstrated excellent classification performance (in terms of accuracy, precision, recall, F1 score, area under the curve, and receiver operating characteristic (ROC)) using the entire metabolome data and feature-selection dataset, exhibiting superior advantages over random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and multilayer perceptron (MLP). Moreover, DNNs were advantageous for automated feature learning, nonlinear modeling, adaptability, and generalization. This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples. This established approach holds promise for plant metabolomics and is not limited to ginseng.
Collapse
Affiliation(s)
- Meiting Jiang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuyang Sha
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078, China
| | - Yadan Zou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Mengxiang Ding
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xu Lian
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078, China
| | - Hongda Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, 999078, China
| | - De-an Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhi Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
10
|
Sha Y, Jiang M, Luo G, Meng W, Zhai X, Pan H, Li J, Yan Y, Qiao Y, Yang W, Li K. HerbMet: Enhancing metabolomics data analysis for accurate identification of Chinese herbal medicines using deep learning. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:261-272. [PMID: 39165116 DOI: 10.1002/pca.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Chinese herbal medicines have been utilized for thousands of years to prevent and treat diseases. Accurate identification is crucial since their medicinal effects vary between species and varieties. Metabolomics is a promising approach to distinguish herbs. However, current metabolomics data analysis and modeling in Chinese herbal medicines are limited by small sample sizes, high dimensionality, and overfitting. OBJECTIVES This study aims to use metabolomics data to develop HerbMet, a high-performance artificial intelligence system for accurately identifying Chinese herbal medicines, particularly those from different species of the same genus. METHODS We propose HerbMet, an AI-based system for accurately identifying Chinese herbal medicines. HerbMet employs a 1D-ResNet architecture to extract discriminative features from input samples and uses a multilayer perceptron for classification. Additionally, we design the double dropout regularization module to alleviate overfitting and improve model's performance. RESULTS Compared to 10 commonly used machine learning and deep learning methods, HerbMet achieves superior accuracy and robustness, with an accuracy of 0.9571 and an F1-score of 0.9542 for distinguishing seven similar Panax ginseng species. After feature selection by 25 different feature ranking techniques in combination with prior knowledge, we obtained 100% accuracy and an F1-score for discriminating P. ginseng species. Furthermore, HerbMet exhibits acceptable inference speed and computational costs compared to existing approaches on both CPU and GPU. CONCLUSIONS HerbMet surpasses existing solutions for identifying Chinese herbal medicines species. It is simple to use in real-world scenarios, eliminating the need for feature ranking and selection in classical machine learning-based methods.
Collapse
Affiliation(s)
- Yuyang Sha
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Meiting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Luo
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Weiyu Meng
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Xiaobing Zhai
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Hongxin Pan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Junrong Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| |
Collapse
|
11
|
Chen P, Chang C, Kong L. Whole Genome Identification and Integrated Analysis of Long Non-Coding RNAs Responding ABA-Mediated Drought Stress in Panax ginseng C.A. Meyer. Curr Issues Mol Biol 2024; 47:5. [PMID: 39852120 PMCID: PMC11763544 DOI: 10.3390/cimb47010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Panax ginseng C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes. Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes but still remain poorly understood in ginseng, which has limited the application of molecular breeding in this plant. In this study, we identified 17,478 lncRNAs and 3106 novel mRNAs from ginseng by high-throughput illumine sequencing. 50 and 257 differentially expressed genes (DEGs) and DE lncRNAs (DELs) were detected under drought + ABA vs. drought conditions, respectively. The DEGs and DELs target genes main enrichment is focused on the "biosynthesis of secondary metabolites", "starch and sucrose metabolism", and "carbon metabolism" pathways under drought + ABA vs. drought conditions according to KEGG pathway enrichment analysis, suggesting that these secondary metabolites biosynthesis pathways might be crucial for ABA-mediated drought stress response in ginseng. Together, we identified drought stress response lncRNAs in ginseng for the first time and found that the target genes of these lncRNAs mainly regulate the biosynthesis of secondary metabolites pathway to response to drought stress. These findings also open up a new visual for molecular breeding in ginseng.
Collapse
Affiliation(s)
| | | | - Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (P.C.); (C.C.)
| |
Collapse
|
12
|
Guo Y, Wu K, Yang H, Lin X, Yang H, Wu X. Structural Elucidation and In Silico-Aided Toxicity Prediction of Forced Degradation Products of Ginsenoside Re Using Ultra-High-Performance Liquid Chromatography Equipped with a Diode Array Detector and Charged Aerosol Detector (UHPLC-DAD-CAD) and Liquid Chromatography Coupled to a High-Resolution Mass Detector (LC-HRMS). Int J Mol Sci 2024; 25:13231. [PMID: 39768996 PMCID: PMC11676588 DOI: 10.3390/ijms252413231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Ginsenoside Re was the major bioactive component found rich in Panax ginseng C. A. Meyer, which exerted excellent cardiovascular protection, anti-inflammatory, and anti-oxidation effects. The generation of unexpected degradation products (DPs) may influence the therapeutic effect of Re, or even bring toxic effects to patients. However, to date, only a few reports were available about the stability of Re. The present study aims to systematically investigate the degradation behaviors of Re under different stress conditions, including hydrolysis (acidic, basic, and neutral), oxidation, humidity, thermal, and photolytic (ultraviolet and visible light) conditions. A total of thirteen DPs were putatively identified, and among them, nine were discovered for the first time in our study. The results showed that Re was sensitive to exposure to acidic, basic, and oxidation conditions. It underwent a series of chemical degradation reactions, including deglycosylation, dehydration, addition, oxidation at the double bond, and isomerization under various stress conditions. Structural characterization of these DPs was carried out by UHPLC-DAD-CAD and LC-LTQ/Orbitrap. A plausible mechanism of their formation was proposed to support the structures of all DPs of Re. In silico toxicity prediction and metabolism behavior assessment were done by Derek Nexus and Meteor Nexus software. Re and DP-1 to DP-6 were predicted to possess potential skin irritation/corrosion toxicity. DP-11 and DP-12 bear the potential for carcinogenicity, mutagenicity, irritation, hepatotoxicity, and skin sensitization. The observation of these DPs updates our knowledge regarding the stability of Re, which provides valuable information for quality control and to choose suitable storage conditions.
Collapse
Affiliation(s)
- Yaqing Guo
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Kai Wu
- National Institutes for Food and Drug Control, Beijing 102629, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haoran Yang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiaoyu Lin
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Huiying Yang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xianfu Wu
- National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
13
|
Hong L, Wang Y, Wang S, Xiong Y, Xu B, Chen Q, Yang Y, Ding M, Wang H, Yang W. Holistic Comparison of the Lipidomes Simultaneously From 12 Panax Herbal Medicines By Ultra-High-Performance Supercritical Fluid Chromatography Coupled With Ion Mobility-Quadrupole Time-of-Flight Mass Spectrometry. J Sep Sci 2024; 47:e70040. [PMID: 39658817 DOI: 10.1002/jssc.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Researches regarding quality control of ginseng focusing on the lipids are rare. Herein, ultra-high-performance supercritical fluid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPSFC/IM-QTOF-MS) combined with untargeted metabolomic analysis was utilized to holistically characterize and compare the lipidomic difference among 12 Panax-derived herbal medicines. The established UHPSFC/IM-QTOF-MS method, using a Torus 1-AA column with CO2/CH3OH (modifier) as the mobile phase, well resolved the ginseng lipidome within 30 min. The lipid isomers and those easily co-eluted by conventional reversed-phase chromatography got separated, and integrated analyses of the positive-/negative-mode MS data and IM-derived collision cross section (CCS) greatly enhanced lipids identification. By the pattern recognition chemometric analysis of 90 batches of ginseng samples, the root ginseng samples showed significant differences in lipidome composition from those stem/leaf and flower samples. In contrast, red ginseng also contained lipids significantly different from the other root ginseng. Totally 82 potential differential lipids were discovered and identified based on the positive-mode data and 90 ones in the negative mode. Some of these lipid markers might be diagnostic for their authentication. Conclusively, we first report the lipidomic difference among 12 ginseng varieties, and the information obtained can lay foundation for the accurate identification of ginseng from the lipidome level.
Collapse
Affiliation(s)
- Lili Hong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Simiao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ying Xiong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Bei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Mengxiang Ding
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Li X, Zheng Y, Liu M, Wang K, Chen H. Weighted gene co-expression network analysis and identification of ginsenoside biosynthesis candidate genes for ginseng adventitious roots under MeJA treatment. Genes Genomics 2024; 46:1473-1485. [PMID: 39373827 DOI: 10.1007/s13258-024-01577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Ginseng (Panax ginseng) is an herb with a long history and a wide range of applications. Ginsenoside is one of the most representative and active ginseng compounds, with various pharmacological effects. Therefore, the development of bioreactors using methyl jasmonate (MeJA) as an inducer for targeted ginsenoside production is of great commercial value. Combined with transcriptomic research tools, screenings to obtain candidate genes involved in ginsenoside biosynthesis are crucial for future discoveries about the molecular mechanism of MeJA-regulated ginsenoside biosynthesis. OBJECTIVE AND METHODS In our study, the ginsenoside content of ginseng adventitious roots treated with MeJA at different times was analyzed. Transcriptome analysis was performed to investigate the effects of MeJA on changes in ginsenoside content in ginseng adventitious roots. RESULTS The MeJA could significantly increase changes in the content of pro-ginsenodiol ginsenosides as well as pro-triol ginsenosides Rg3, Re, and Rf in ginseng adventitious roots. Differential gene expression analysis showed that a total of 14,009 differentially expressed genes were obtained from the screening of the present study. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that differentially expressed genes were mainly enriched under GO terms in response to stimuli, metabolic processes, and the regulation of biological processes, with significant annotation to the metabolic terms of terpenoids and polyketides. Two expression modules of genes highly related to ginsenoside biosynthesis were obtained via WGCNA. CONCLUSIONS Our study provides a reference system for the targeted ginsenoside production using MeJA as an inducer, and also provides genetic and gene resources for subsequently validating genes related to the regulation of ginsenoside biosynthesis using weighted gene co-expression network analysis (WGCNA).
Collapse
Affiliation(s)
- Xiangzhu Li
- Tonghua Herbal Biotechnology Co., Ltd., Tonghua, 134100, China
| | - Yongjun Zheng
- Tonghua Herbal Biotechnology Co., Ltd., Tonghua, 134100, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Hong Chen
- Tonghua Herbal Biotechnology Co., Ltd., Tonghua, 134100, China.
- Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Bu Y, Liu Y, Zhu L, Gan X, Jiang S, Zhang X, Dilixiati M, Bai M, Zeng J, Shi S, Li T, Li B, Wang S, Wang H. Recent Advances in Polysaccharides Derived from the Genus Panax: Preparation Strategies, Structural Profiles, Functional Properties and Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26074-26097. [PMID: 39546627 DOI: 10.1021/acs.jafc.4c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Plants from the Panax genus have significant medicinal and nutritional benefits. Many Panax species are traditionally used in Chinese medicine and have gained popularity as food and health products because of their tonic effects and high safety. Their key bioactive components include polysaccharides, which are hydrophilic biomolecules that have demonstrated significant potential in the food and pharmaceutical industries because of their multiple health-promoting qualities, such as immunomodulatory, antitumor, antiaging, blood glucose and blood lipid regulation, antiviral, hepatoprotective, and gastrointestinal protective properties. Additionally, polysaccharides are abundant in health products made from the genus Panax, such as energy drinks and herbal teas. However, compared with more extensively studied components, such as ginsenosides and saponins, polysaccharides from the genus Panax (GPPs) have been the subject of relatively limited research. This review provides a comprehensive overview of the extraction and purification technology, structural characteristics, biological activities, applications, and structure-activity relationships of GPPs. Ultimately, this information establishes a theoretical foundation for the further development and application of GPPs in nutrition and medicine.
Collapse
Affiliation(s)
- Yingxuan Bu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yupeng Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lingyan Zhu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shenggui Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Xiaoyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P. R. China
| | - Muwei Bai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiani Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
16
|
Lin SK, Zhou J, Lu Y, Guo L, Huang JJ, Lin JF. Computer-Guided Engineered Endo- and Exocleaving Glycosidase for Significantly Improving Production of Ginsenoside F1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26294-26304. [PMID: 39535231 DOI: 10.1021/acs.jafc.4c07387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ginsenoside F1, a particularly rare and valuable compound known for its health benefits, requires precise deglycosylation due to the extensive glycosylation of ginsenosides in Panax notoginseng. Here, we identified that the β-d-glucosidase BglSK exhibits both endo- and exocleaving glycosidase activities with multi-6-O-glycosides, thereby facilitating the specific production of Ginsenoside F1. The variant BglSKT137A/L508A, obtained through protein engineering, displayed kcat/KM values for the reactions of ginsenoside Rg1 and notoginsenoside R1 that were increased by 13.88-fold and 108.56-fold, respectively, compared with the BglSKWT. The reduced steric hindrance and the overall increase in loop stability show a higher tendency to adopt a closed conformation and facilitate the prereaction state, which may explain the enhanced catalytic efficiency of the engineered enzyme. These beneficial mutants will deepen our understanding of mechanisms for improving glycosidase activity and provide tools for producing high-value P. notoginseng products.
Collapse
Affiliation(s)
- Shi-Kun Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jinlin Zhou
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
| | - Yujing Lu
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liqiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jia-Jun Huang
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
- TF BioSyn Biotechnology Co., Ltd., Foshan 528225, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
17
|
Wang S, Zou Y, Zhang M, Xu X, Wang H, Jiang M, Hu Y, Cheng H, Li X, Guo D, Yang W. Online Comprehensive Two-Dimensional Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolic Profiling and Comparison Enabling the Characterization of 1146 Ginsenosides and More Explicit Differentiation of Ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24866-24878. [PMID: 39439127 DOI: 10.1021/acs.jafc.4c06793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work was designed for the in-depth characterization and holistic comparison of up to 12 ginseng varieties, which can benefit the development of functional foods and ensure their authenticity in the food industry. An online comprehensive two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry (2D-LC/QTOF-MS) approach was established by configurating the XCharge C18 and HSS Cyano columns. Under the optimal conditions, we characterized a total of 1146 ginsenosides (including 876 potentially new compounds) from 12 ginseng varieties by reference to an in-house library of 573 known ginsenosides and 70 reference compounds. The online 2D-LC/QTOF-MS-based untargeted metabolomics workflows were developed, by which 126 potential ginsenoside markers were unveiled and utilized to establish the key identification points for each ginseng species. Compared with the conventional liquid chromatography/mass spectrometry metabolomics, our multidimensional chromatography approach performed better in discriminating multiple ginseng varieties. This work demonstrates a potent and practical methodology to identify easily confused functional plants.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Huizhen Cheng
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Dean Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wenzhi Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
18
|
Ji H, Guo L, Yu D, Du X. Application of microorganisms in Panax ginseng: cultivation of plants, and biotransformation and bioactivity of key component ginsenosides. Arch Microbiol 2024; 206:433. [PMID: 39412649 DOI: 10.1007/s00203-024-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/10/2024]
Abstract
Panax ginseng is a precious Chinese medicinal plant with a long growth cycle and high medicinal value. Therefore, it is of great significance to explore effective ways to increase its yield and main active substance content to reduce the cost of ginseng, which is widely used in food and clinical applications. Here, we review the key roles of microorganisms in the biological control of ginseng diseases, enhancement of ginseng yield, biotransformation of ginsenosides, and augmentation of ginsenoside bioactivity. The application of microorganisms in P. ginseng faces multiple challenges, including the need for further exploration of efficient microbial strain resources used in the cultivation of ginseng and biotransformation of ginsenosides, lack of microbial application in large-scale field cultivation of ginseng, and unclear mechanism of microbial transformation of ginsenosides. This review provides a deeper understanding of the applications of microorganisms in P. ginseng.
Collapse
Affiliation(s)
- Hongyu Ji
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Lidong Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Dan Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Xiaowei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|
19
|
Geng X, Wang J, Liu Y, Liu L, Liu X, Zhao Y, Wang C, Liu J. Research progress on chemical diversity of saponins in Panax ginseng. CHINESE HERBAL MEDICINES 2024; 16:529-547. [PMID: 39606259 PMCID: PMC11589341 DOI: 10.1016/j.chmed.2024.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024] Open
Abstract
Saponins, the major bioactive components of Panax ginseng C. A. Mey., are gradually emerging as research hotspots owing to the possession of various pharmacological activities. This review updates the ginsenosides list from P. ginseng and the steam-processed ginseng (red ginseng and black ginseng) up to 271 by June of 2024, encompassing 243 saponins from different parts of P. ginseng (roots, stems, leaves, flowers, berries, and seeds), 103 from red ginseng, and 65 from black ginseng, respectively. Among 271 saponins, there are a total of 249 (1-249) dammarane type (with a - z subtypes) tetracyclic triterpene saponins reported from each part of P. ginseng and steam-processed ginseng, two (250-251) lanostane type tetracyclic triterpene saponins identified from red ginseng, 18 (252-269) oleanane type pentacyclic triterpenoid saponins discovered from each part of P. ginseng and steam-processed ginseng, and two (270-271) ursane type pentacyclic triterpenoid saponins reported from red ginseng. Overall, this review expounds on the chemical diversity of ginsenosides in various aspects, such as chemical structure, spatial distribution and subtype comparison, processed products, and transformation. This facilitates more in-depth research on ginsenosides and contributes to the future development of ginseng.
Collapse
Affiliation(s)
- Xiaoyu Geng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Jia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yuwei Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linxuan Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xuekun Liu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
20
|
Ding M, Cheng H, Li X, Li X, Zhang M, Cui D, Yang Y, Tian X, Wang H, Yang W. Phytochemistry, quality control and biosynthesis in ginseng research from 2021 to 2023: A state-of-the-art review concerning advances and challenges. CHINESE HERBAL MEDICINES 2024; 16:505-520. [PMID: 39606254 PMCID: PMC11589329 DOI: 10.1016/j.chmed.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 11/29/2024] Open
Abstract
Panax L. (Araliaceae) has a long history of medicinal and edible use due to its significant tonifying effects, and ginseng research has been a hot topic in natural products research and food science. In continuation of our recent ginseng review, we highlighted the advances in ginseng research from 2021 to 2023 with 157 citations, which exhibited the increasingly systematic, collaborative, and intelligent characteristics. In this review, we firstly updated the progress in phytochemistry involving the ginsenosides and polysaccharides and summarized the researches on the active components. Then, some specific applications by feat of the multidimensional chromatography, mass spectrometry imaging, DNA barcoding, and metabolomics, were analyzed, which could provide rich information supporting the multi-component characterization, authentication, and quality control of ginseng and the versatile products. Finally, the recent biosynthesis studies concerning ginsenosides were retrospected. Additionally, the current challenges and future trends with respect to ginseng research were discussed.
Collapse
Affiliation(s)
| | | | | | - Xue Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dianxin Cui
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yijin Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaojin Tian
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | | | | |
Collapse
|
21
|
Hong L, Wang W, Wang S, Hu W, Sha Y, Xu X, Wang X, Li K, Wang H, Gao X, Guo DA, Yang W. Software-aided efficient identification of the components of compound formulae and their metabolites in rats by UHPLC/IM-QTOF-MS and an in-house high-definition MS 2 library: Sishen formula as a case. J Pharm Anal 2024; 14:100994. [PMID: 39850233 PMCID: PMC11755337 DOI: 10.1016/j.jpha.2024.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 01/25/2025] Open
Abstract
Identifying the compound formulae-related xenobiotics in bio-samples is full of challenges. Conventional strategies always exhibit the insufficiencies in overall coverage, analytical efficiency, and degree of automation, and the results highly rely on the personal knowledge and experience. The goal of this work was to establish a software-aided approach, by integrating ultra-high performance liquid chromatography/ion-mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) and in-house high-definition MS2 library, to enhance the identification of prototypes and metabolites of the compound formulae in vivo, taking Sishen formula (SSF) as a template. Seven different MS2 acquisition methods were compared, which demonstrated the potency of a hybrid scan approach (namely high-definition data-independent/data-dependent acquisition (HDDIDDA)) in the identification precision, MS1 coverage, and MS2 spectra quality. The HDDIDDA data for 55 reference compounds, four component drugs, and SSF, together with the rat bio-samples (e.g., plasma, urine, feces, liver, and kidney), were acquired. Based on the UNIFI™ platform (Waters), the efficient data processing workflows were established by combining mass defect filtering (MDF)-induced classification, diagnostic product ions (DPIs), and neutral loss filtering (NLF)-dominated structural confirmation. The high-definition MS2 spectral libraries, dubbed in vitro-SSF and in vivo-SSF, were elaborated, enabling the efficient and automatic identification of SSF-associated xenobiotics in diverse rat bio-samples. Consequently, 118 prototypes and 206 metabolites of SSF were identified, with the identification rate reaching 80.51% and 79.61%, respectively. The metabolic pathways mainly involved the oxidation, reduction, hydrolysis, sulfation, methylation, demethylation, acetylation, glucuronidation, and the combined reactions. Conclusively, the proposed strategy can drive the identification of compound formulae-related xenobiotics in vivo in an intelligent manner.
Collapse
Affiliation(s)
- Lili Hong
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Shiyu Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wandi Hu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuyang Sha
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, Rua de Luís Gonzaga Gomes, Macao, 999078, China
| | - Xiaoyan Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, Rua de Luís Gonzaga Gomes, Macao, 999078, China
| | - Hongda Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiumei Gao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - De-an Guo
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
22
|
Hu W, Nie Y, Huang L, Qian D. Contribution of phenolamides to the quality evaluation in Lycium spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118220. [PMID: 38657878 DOI: 10.1016/j.jep.2024.118220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goji berry is a general term for various plant species in the genus Lycium. Goji has long been historically used in traditional Chinese medicines. Goji is a representative tonic medicine that has the effects of nourishing the liver and kidney and benefiting the essence and eyesight. It has been widely used in the treatment of various diseases, including tinnitus, impotence, spermatorrhea and blood deficiency, since ancient times. AIM OF THE REVIEW This study aims to comprehensively summarize the quality evaluation methods of the main compounds in goji, as well as the current research status of the phenolamides in goji and their pharmacological effects, to explore the feasibility of using phenolamides as quality control markers and thus improve the quality and efficacy in goji. MATERIALS AND METHODS Relevant literature from PubMed, Web of Science, Science Direct, CNKI and other databases was comprehensively collected, screened and summarized. RESULTS According to the collected literature, the quality evaluation markers of goji in the Pharmacopoeia of the People's Republic of China are Lycium barbarum polysaccharide (LBP) and betaine. As a result of its structure complexity, only the total level of LBP can be determined, while betaine is not prominent in the pharmacological action of goji and lacks species distinctiveness. Neither of them can well explain the quality of goji. KuA and KuB are commonly used as quality evaluation markers of the Lycii cortex because of their high levels and suitable pharmacological activity. Goji is rich in polyphenols, carotenoids and alkaloids. Many studies have used the above compounds to establish quality evaluation methods but the results have not been satisfactory. Phenolamides have often been neglected in previous studies because of their low single compound levels and high separation difficulty. However, in recent years, the favorable pharmacological activities of phenolamides have been gradually recognized, and studies on goji phenolamides are greatly increasing. In addition, phenolamides have higher species distinctiveness than other compounds and can be combined with other compounds to better evaluate the quality of goji to improve its average quality. CONCLUSIONS The phenolamides in the goji are rich and play a key role in antioxidation, anti-inflammation, neuroprotection and immunomodulation. As a result of their characteristics, it is suitable to evaluate the quality by quantitative analysis of multi-components by single-marker and fingerprint. This method can be combined with other techniques to improve the quality evaluation system of goji, which lays a foundation for their effectiveness and provides a reference for new quality evaluation methods of similar herbal medicines.
Collapse
Affiliation(s)
- Wenxiao Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yinglan Nie
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Zhang K, Jia J, Li T, Liu W, Tu P, Wan JB, Li J, Song Y. Triple three-dimensional MS/MS spectrum facilitates quantitative ginsenosides-targeted sub-metabolome characterization in notoginseng. Acta Pharm Sin B 2024; 14:4045-4058. [PMID: 39309494 PMCID: PMC11413663 DOI: 10.1016/j.apsb.2024.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
Although serving as the workhorse, MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization. Because more information intrinsically correlates to more structural and concentration clues, here, efforts were devoted to comprehensively tracing and deciphering MS/MS behaviors through constructing triple three-dimensional (3×3D)-MS/MS spectrum. Ginsenosides-targeted metabolomics of notoginseng, one of the most famous edible medicinal plants, was employed as a proof-of-concept. Serial authentic ginsenosides were deployed to build the correlations between 3×3D-MS/MS spectra and structure/concentration features. Through assaying ginsenosides with progressive concentrations using QTOF-MS to configure 1st 3D spectrum, the generations of MS1 spectral signals, particularly multi-charged multimer anions, e.g., [2M-2H]2- and [2M+2HCOO]2- ions, relied on both concentration and the amount of sugar chains. By programming progressive collision energies to the front collision cell of Qtrap-MS device to gain 2nd 3D spectrum, optimal collision energy (OCE) corresponding to the glycosidic bond fission was primarily correlated with the masses of precursor and fragment ions and partially governed by the glycosidation site. The quantitative relationships between OCEs and masses of precursor and fragment ions were utilized to build large-scale quantitative program for ginsenosides. After applying progressive exciting energies to the back collision chamber to build 3rd 3D spectrum, the fragment ion and the decomposition product anion exhibited identical dissociation trajectories when they shared the same molecular geometry. After ginsenosides-focused quantitative metabolomics, significant differences occurred for sub-metabolome amongst different parts of notoginseng. The differential ginsenosides were confirmatively identified by applying the correlations between 3×3D-MS/MS spectra and structures. Together, 3×3D-MS/MS spectrum covers all MS/MS behaviors and dramatically facilitates sub-metabolome characterization from both quantitative program development and structural identification.
Collapse
Affiliation(s)
- Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | | | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
24
|
Xie X, Jaleel A, Zhan J, Ren M. Microalgae: towards human health from urban areas to space missions. FRONTIERS IN PLANT SCIENCE 2024; 15:1419157. [PMID: 39220018 PMCID: PMC11361926 DOI: 10.3389/fpls.2024.1419157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Space exploration and interstellar migration are important strategies for long-term human survival. However, extreme environmental conditions, such as space radiation and microgravity, can cause adverse effects, including DNA damage, cerebrovascular disease, osteoporosis, and muscle atrophy, which would require prophylactic and remedial treatment en route. Production of oral drugs in situ is therefore critical for interstellar travel and can be achieved through industrial production utilizing microalgae, which offers high production efficiency, edibility, resource minimization, adaptability, stress tolerance, and genetic manipulation ease. Synthetic biological techniques using microalgae as a chassis offer several advantages in producing natural products, including availability of biosynthetic precursors, potential for synthesizing natural metabolites, superior quality and efficiency, environmental protection, and sustainable development. This article explores the advantages of bioproduction from microalgal chassis using synthetic biological techniques, suitability of microalgal bioreactor-based cell factories for producing value-added natural metabolites, and prospects and applications of microalgae in interstellar travel.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Li X, Zou Y, Cheng H, Ding M, Yang Y, Hong L, Xiong Y, Zhang M, Li X, Chen Q, Wang H, Cui Y, Yang W. Evaluation and comparison of liquid chromatography/high-resolution mass spectrometry platforms for the separation and characterization of ginsenosides from the leaves of Panax ginseng. J Sep Sci 2024; 47:e2400354. [PMID: 39034839 DOI: 10.1002/jssc.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
The measurement of data repeatability in small-molecule metabolites acquired within and among different liquid chromatography-mass spectrometry (LC-MS) platforms is crucial for data sharing or data transfer in natural products research. This work was designed to investigate and evaluate the separation and detection performance of three commercial high-resolution LC-MS platforms (e.g., Agilent 6550 QTOF, Waters Vion IM-QTOF, and Thermo Scientific Orbitrap Exploris 120) using 68 ginsenoside references and the extract of Panax ginseng leaf. The retention time (tR), measured on these three platforms (under the same chromatography condition), showed good stability in different concentration tests, and within/among different instruments for both intra-day and inter-day precision examinations. Correlation in tR of ginsenosides was also highly determined on these three platforms. In spite of the different mass analyzers involved, these three platforms gave the accurate mass determination ability, especially enhanced resolution gained because of the ion mobility (IM) separation facilitated by IM-quadrupole time-of-flight. The current study has systematically evaluated the separation and MS detection performance enabled by three high-resolution LC-MS platforms taking ginsenosides as the template, and the reported findings can benefit the researchers for the selection of analytical platforms and the purpose of data sharing or data transfer.
Collapse
Affiliation(s)
- Xiaohang Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yadan Zou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Huizhen Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Mengxiang Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Lili Hong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ying Xiong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuanwu Cui
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
26
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
27
|
Gao Y, Feng Y, Chang Y, Zhu Z, Zhao H, Xu W, Zhao M, Xiao Y, Tian L, Xiu Y. Biotransformation of Ginsenoside Rb1 to Ginsenoside Rd and 7 Rare Ginsenosides Using Irpex lacteus with HPLC-HRMS/MS Identification. ACS OMEGA 2024; 9:22744-22753. [PMID: 38826525 PMCID: PMC11137714 DOI: 10.1021/acsomega.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
The biotransformation of ginsenosides using microorganisms represents a promising and ecofriendly approach for the production of rare ginsenosides. The present study reports on the biotransformation of ginsenoside Rb1 using the fungus Irpex lacteus, resulting in the production of ginsenoside Rd and seven rare ginsenosides with novel structures. Employing high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry, the identities of the transformation products were rapidly determined. Two sets of isomers with molecular weights of 980.56 and 962.55 were discovered among the seven rare ginsenosides, which were generated through the isomerization of the olefin chain in the protopanaxadiol (PPD)-type ginsenoside skeleton. Each isomer exhibited characteristic fragment ions and neutral loss patterns in their tandem mass spectra, providing evidence of their unique structures. Time-course experiments demonstrated that the transformation reaction reached equilibrium after 14 days, with Rb1 initially generating Rd and compound 5, followed by the formation of other rare ginsenosides. The biotransformation process catalyzed by I. lacteus was found to involve not only the typical deglycosylation reaction at the C-20 position but also hydroxylation at the C-22 and C-23 positions, as well as hydrogenation, transfer, and cyclization of the double bond at the C-24(25) position. These enzymatic capabilities extend to the structural modification of other PPD-type ginsenosides such as Rc and Rd, revealing the potential of I. lacteus for the production of a wider range of rare ginsenosides. The transformation activities observed in I. lacteus are unprecedented among fungal biotransformations of ginsenosides. This study highlights the application of a medicinal fungi-based biotransformation strategy for the generation of rare ginsenosides with enhanced structural diversity, thereby expanding the variety of bioactive compounds derived from ginseng.
Collapse
Affiliation(s)
- Yue Gao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yadong Feng
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yanyan Chang
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Zhu Zhu
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Huanxi Zhao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Wei Xu
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Mengya Zhao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yusheng Xiao
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Lu Tian
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yang Xiu
- Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| |
Collapse
|
28
|
Wang H, Zhang L, Li X, Sun M, Jiang M, Shi X, Xu X, Ding M, Chen B, Yu H, Li Z, Guo D, Yang W. Machine learning prediction for constructing a universal multidimensional information library of Panax saponins (ginsenosides). Food Chem 2024; 439:138106. [PMID: 38056336 DOI: 10.1016/j.foodchem.2023.138106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Accurate characterization of Panax herb ginsenosides is challenging because of the isomers and lack of sufficient reference compounds. More structural information could help differentiate ginsenosides and their isomers, enabling more accurate identification. Based on the VionTM ion-mobility high-resolution LC-MS platform, a multidimensional information library for ginsenosides, namely GinMIL, was established by predicting retention time (tR) and collision cross section (CCS) through machine learning. Robustness validation experiments proved tR and CCS were suitable for database construction. Among three machine learning models we attempted, gradient boosting machine (GBM) exhibited the best prediction performance. GinMIL included the multidimensional information (m/z, molecular formula, tR, CCS, and some MS/MS fragments) for 579 known ginsenosides. Accuracy in identifying ginsenosides from diverse ginseng products was greatly improved by a unique LC-MS approach and searching GinMIL, demonstrating a universal Panax saponins library constructed based on hierarchical design. GinMIL could improve the accuracy of isomers identification by approximately 88%.
Collapse
Affiliation(s)
- Hongda Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Lin Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaohang Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiao Sun
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaojian Shi
- Cellular & Molecular Physiology, Yale School of Medicine, 850 Yale West Campus, West Haven CT 06516, USA
| | - Xiaoyan Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mengxiang Ding
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Boxue Chen
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Heshui Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Zheng Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Dean Guo
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| |
Collapse
|
29
|
Yuan X, Li R, He W, Xu W, Xu W, Yan G, Xu S, Chen L, Feng Y, Li H. Progress in Identification of UDP-Glycosyltransferases for Ginsenoside Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:1246-1267. [PMID: 38449105 DOI: 10.1021/acs.jnatprod.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Ginsenosides, the primary pharmacologically active constituents of the Panax genus, have demonstrated a variety of medicinal properties, including anticardiovascular disease, cytotoxic, antiaging, and antidiabetes effects. However, the low concentration of ginsenosides in plants and the challenges associated with their extraction impede the advancement and application of ginsenosides. Heterologous biosynthesis represents a promising strategy for the targeted production of these natural active compounds. As representative triterpenoids, the biosynthetic pathway of the aglycone skeletons of ginsenosides has been successfully decoded. While the sugar moiety is vital for the structural diversity and pharmacological activity of ginsenosides, the mining of uridine diphosphate-dependent glycosyltransferases (UGTs) involved in ginsenoside biosynthesis has attracted a lot of attention and made great progress in recent years. In this paper, we summarize the identification and functional study of UGTs responsible for ginsenoside synthesis in both plants, such as Panax ginseng and Gynostemma pentaphyllum, and microorganisms including Bacillus subtilis and Saccharomyces cerevisiae. The UGT-related microbial cell factories for large-scale ginsenoside production are also mentioned. Additionally, we delve into strategies for UGT mining, particularly potential rapid screening or identification methods, providing insights and prospects. This review provides insights into the study of other unknown glycosyltransferases as candidate genetic elements for the heterologous biosynthesis of rare ginsenosides.
Collapse
Affiliation(s)
- Xiaoxuan Yuan
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guohong Yan
- Pharmacy Department, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Lixia Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqian Feng
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
30
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Yu W, Cai S, Zhao J, Hu S, Zang C, Xu J, Hu L. Beyond genome: Advanced omics progress of Panax ginseng. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112022. [PMID: 38311250 DOI: 10.1016/j.plantsci.2024.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Ginseng is a perennial herb of the genus Panax in the family Araliaceae as one of the most important traditional medicine. Genomic studies of ginseng assist in the systematic discovery of genes related to bioactive ginsenosides biosynthesis and resistance to stress, which are of great significance in the conservation of genetic resources and variety improvement. The transcriptome reflects the difference and consistency of gene expression, and transcriptomics studies of ginseng assist in screening ginseng differentially expressed genes to further explore the powerful gene source of ginseng. Protein is the ultimate bearer of ginseng life activities, and proteomic studies of ginseng assist in exploring the biosynthesis and regulation of secondary metabolites like ginsenosides and the molecular mechanism of ginseng adversity adaptation at the overall level. In this review, we summarize the current status of ginseng research in genomics, transcriptomics and proteomics, respectively. We also discuss and look forward to the development of ginseng genome allele mapping, ginseng spatiotemporal, single-cell transcriptome, as well as ginseng post-translational modification proteome. We hope that this review will contribute to the in-depth study of ginseng and provide a reference for future analysis of ginseng from a systems biology perspective.
Collapse
Affiliation(s)
- Wenjing Yu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Shuhan Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
32
|
Wang Z, Fang J, Zu S, Sun Q, Song Z, Geng J, Wang D, Li M, Wang C. Protective Effect of Panax notoginseng Extract Fermented by Four Different Saccharomyces cerevisiae Strains on H 2O 2 Induced Oxidative Stress in Skin Fibroblasts. Clin Cosmet Investig Dermatol 2024; 17:621-635. [PMID: 38505810 PMCID: PMC10949305 DOI: 10.2147/ccid.s443717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024]
Abstract
Purpose To produce Panax notoginseng extract as a cosmetic ingredient through Saccharomyces cerevisiae fermentation. Methods We first compared the total sugar content, polysaccharide content, reducing sugar content, total phenolic content, total saponin content, DPPH free radical, ABTS free radical, hydroxyl free radical scavenging ability and ferric reducing antioxidant power (FRAP) of Panax notoginseng fermented extract (pnFE) and unfermented extract (pnWE). Their potential correlations were analyzed by Pearson's correlation analysis. Then, the oxidative stress model of H2O2-induced MSFs was used to evaluate the effects of different pnFE on MSF viability, reactive oxygen species (ROS), malondialdehyde (MDA), and the activities of catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) to explore their protective effects on MSFs subjected to H2O2-induced cellular oxidative damage. Finally, their safety and stability were evaluated by using the red blood cell (RBC) test and hen's egg test-chorioallantoic membrane (HET-CAM) assay, and changes in pH and content of soluble solids, respectively. Results Compared with pnWE, pnFE has more active substances and stronger antioxidant capacity. In addition, pnFE has a protective effect on H2O2-induced oxidative stress in MSFs with appropriate safety and stability. Conclusion PnFE has broad application prospects in the field of cosmetics.
Collapse
Affiliation(s)
- Ziwen Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiaxuan Fang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Shigao Zu
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Qianru Sun
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Zixin Song
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiman Geng
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| |
Collapse
|
33
|
Zhang KX, Zhu Y, Song SX, Bu QY, You XY, Zou H, Zhao GP. Ginsenoside Rb1, Compound K and 20(S)-Protopanaxadiol Attenuate High-Fat Diet-Induced Hyperlipidemia in Rats via Modulation of Gut Microbiota and Bile Acid Metabolism. Molecules 2024; 29:1108. [PMID: 38474620 DOI: 10.3390/molecules29051108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hyperlipidemia, characterized by elevated serum lipid concentrations resulting from lipid metabolism dysfunction, represents a prevalent global health concern. Ginsenoside Rb1, compound K (CK), and 20(S)-protopanaxadiol (PPD), bioactive constituents derived from Panax ginseng, have shown promise in mitigating lipid metabolism disorders. However, the comparative efficacy and underlying mechanisms of these compounds in hyperlipidemia prevention remain inadequately explored. This study investigates the impact of ginsenoside Rb1, CK, and PPD supplementation on hyperlipidemia in rats induced by a high-fat diet. Our findings demonstrate that ginsenoside Rb1 significantly decreased body weight and body weight gain, ameliorated hepatic steatosis, and improved dyslipidemia in HFD-fed rats, outperforming CK and PPD. Moreover, ginsenoside Rb1, CK, and PPD distinctly modified gut microbiota composition and function. Ginsenoside Rb1 increased the relative abundance of Blautia and Eubacterium, while PPD elevated Akkermansia levels. Both CK and PPD increased Prevotella and Bacteroides, whereas Clostridium-sensu-stricto and Lactobacillus were reduced following treatment with all three compounds. Notably, only ginsenoside Rb1 enhanced lipid metabolism by modulating the PPARγ/ACC/FAS signaling pathway and promoting fatty acid β-oxidation. Additionally, all three ginsenosides markedly improved bile acid enterohepatic circulation via the FXR/CYP7A1 pathway, reducing hepatic and serum total bile acids and modulating bile acid pool composition by decreasing primary/unconjugated bile acids (CA, CDCA, and β-MCA) and increasing conjugated bile acids (TCDCA, GCDCA, GDCA, and TUDCA), correlated with gut microbiota changes. In conclusion, our results suggest that ginsenoside Rb1, CK, and PPD supplementation offer promising prebiotic interventions for managing HFD-induced hyperlipidemia in rats, with ginsenoside Rb1 demonstrating superior efficacy.
Collapse
Affiliation(s)
- Kang-Xi Zhang
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Zhu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shu-Xia Song
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qing-Yun Bu
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Xiao-Yan You
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Ping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
34
|
Kim HW, Kim DH, Ryu B, Chung YJ, Lee K, Kim YC, Lee JW, Kim DH, Jang W, Cho W, Shim H, Sung SH, Yang TJ, Kang KB. Mass spectrometry-based ginsenoside profiling: Recent applications, limitations, and perspectives. J Ginseng Res 2024; 48:149-162. [PMID: 38465223 PMCID: PMC10920005 DOI: 10.1016/j.jgr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.
Collapse
Affiliation(s)
- Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byeol Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - You Jin Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyungha Lee
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Chang Kim
- Future Agriculture Strategy Team, Research Policy Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Jung Woo Lee
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Dong Hwi Kim
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Woojong Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Republic of Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Lou J, Xu XY, Xu B, Wang HD, Li X, Sun H, Zheng XY, Zhou J, Zou YD, Wu HH, Wang YF, Yang WZ. Comprehensive metabolome characterization and comparison between two sources of Dragon's blood by integrating liquid chromatography/mass spectrometry and chemometrics. Anal Bioanal Chem 2024; 416:1571-1587. [PMID: 38279012 DOI: 10.1007/s00216-024-05159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.
Collapse
Affiliation(s)
- Jia Lou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xiao-Yan Xu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Bei Xu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Hong-da Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - He Sun
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xin-Yuan Zheng
- Tianjin Institute for Drug Control, 98 Guizhou Road, Tianjin, 300070, China
| | - Jun Zhou
- Tianjin Institute for Drug Control, 98 Guizhou Road, Tianjin, 300070, China
| | - Ya-Dan Zou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Hong-Hua Wu
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yue-Fei Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wen-Zhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
| |
Collapse
|
36
|
Fan J, Liu F, Ji W, Wang X, Li L. Comprehensive Investigation of Ginsenosides in the Steamed Panax quinquefolius with Different Processing Conditions Using LC-MS. Molecules 2024; 29:623. [PMID: 38338369 PMCID: PMC10856252 DOI: 10.3390/molecules29030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Panax quinquefolius (PQ) has been widely used in traditional Chinese medicine and functional food. Ginsenosides are the important functional components of PQ. The ginsenosides' diversity is deeply affected by the processing conditions. The ginsenosides in the steamed PQ have been not well-characterized yet because of the complexity of their structure. In the study, the comprehensive investigation of ginsenosides was performed on the steamed PQ with different steaming times and temperatures by UPLC-Q-TOF-MS. Based on the molecular weight, retention time and characterized fragment ions, 175 ginsenosides were unambiguously identified or tentatively characterized, including 45 protopanaxatriol type, 49 protopanaxadiol type, 19 octillol type, 6 oleanolic acid type ginsenosides, and 56 other ginsenosides. Ten new ginsenosides and three new aglycones were discovered in the steamed PQ samples through searching the database of CAS SciFindern. Principal component analysis showed the significant influence on the chemical components of PQ through different processing conditions. The steaming temperature was found to promote the transformation of ginsenosides more than the steaming time. The protoginsenosides were found to transform into the rare ginsenosides by elimination reactions. The malonyl ginsenosides were degraded into acetyl ginsenosides, and then degraded into neutral ginsenosides. The sugar chain experienced degradation, with position changes and configuration inversions. Furthermore, 20 (S/R)-ginsenoside Rh1, Rh2, Rg2, and Rh12 were found to transform from the S-configuration to the R-configuration significantly. This study could present a comprehensive ginsenosides profile of PQ with different steaming conditions, and provide technical support for the development and utilization of PQ.
Collapse
Affiliation(s)
- Jiali Fan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
37
|
Kochan E, Sienkiewicz M, Szmajda-Krygier D, Balcerczak E, Szymańska G. Carvacrol as a Stimulant of the Expression of Key Genes of the Ginsenoside Biosynthesis Pathway and Its Effect on the Production of Ginseng Saponins in Panax quinquefolium Hairy Root Cultures. Int J Mol Sci 2024; 25:909. [PMID: 38255986 PMCID: PMC10815547 DOI: 10.3390/ijms25020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The accumulation of ginsenosides (triterpenic saponins) was determined in Panax quinquefolium hairy root cultures subjected to an elicitation process using carvacrol at 5, 10, 25, 50, 100, 250, and 500 μM concentrations during 24 and 72 h exposure. This study was the first one in which carvacrol was applied as an elicitor. The content of eight ginsenosides, Rb1, Rb2, Rb3, Rc, Rd, Rg1, Rg2, and Re, was determined using HPLC analysis. Moreover, the quantitative RT-PCR method was applied to assess the relative expression level of farnesyl diphosphate synthase, squalene synthase, and dammarenediol synthase genes in the studied cultures. The addition of carvacrol (100 μM) was an effective approach to increase the production of ginsenosides. The highest content and productivity of all detected saponins were, respectively, 20.01 mg∙g-1 d.w. and 5.74 mg∙L-1∙day-1 after 72 h elicitation. The production profile of individual metabolites in P. quinquefolium cultures changed under the influence of carvacrol. The biosynthesis of most examined protopanaxadiol derivatives was reduced under carvacrol treatment. In contrast, the levels of ginsenosides belonging to the Rg group increased. The strongest effect of carvacrol was noticed for Re metabolites, achieving a 7.72-fold increase in comparison to the control. Saponin Rg2, not detected in untreated samples, was accumulated after carvacrol stimulation, reaching its maximum concentration after 72 h exposure to 10 μM elicitor.
Collapse
Affiliation(s)
- Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Dagmara Szmajda-Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (D.S.-K.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (D.S.-K.); (E.B.)
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
38
|
Liu J, Li X, Guo JW, Chen BX, Sun H, Huang JQ, Hu Y, Xu XY, Jiang MT, Gao XM, Yang WZ, Wang QL, Guo DA. Characterization and comparison of cardiomyocyte protection activities of non-starch polysaccharides from six ginseng root herbal medicines. Int J Biol Macromol 2023; 253:126994. [PMID: 37730001 DOI: 10.1016/j.ijbiomac.2023.126994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Ginseng is rich of polysaccharides, however, the evidence supporting polysaccharides to distinguish various ginseng species is rarely reported. Focusing on six root ginseng (e.g., Panax ginseng-PG, P. quinquefolius-PQ, P. notoginseng-PN, red ginseng-RG, P. japonicus-PJ, and P. japonicus var. major-PJM), the contained non-starch polysaccharides (NPs) were structurally characterized and compared by both the chemical and biological evaluation. Holistic fingerprinting at three levels (the NPs and the acid hydrolysates involving oligosaccharides and monosaccharides) utilized various chromatography methods, and the treatment of H9c2 cells with the NPs by OGD and H2O2-induced injury models was used to assess the protective effect. NPs from six Panax herbal medicines occupied about 20 % of the total polysaccharides, which were of the highest content in RG and the lowest in PN. NPs from six ginseng exhibited weak differentiations in the molecular weight distribution, while marker oligosaccharides were found to distinguish PN and RG from the others. Glc and GalA were more abundant in the NPs for PG and RG, respectively. NPs from PQ (100/200 μg/mL) showed significant cardiomyocyte protection effect by regulating the mitochondrial functions. This work further testifies the role of polysaccharides in quality control of herbal medicine, with new markers discovered beneficial to distinguish the ginseng.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; School of Pharmacy, Hebei Medical University, 361 Zhongshan Donglu, Shijiazhuang, Hebei 050017, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jing-Wen Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bo-Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia-Qi Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mei-Ting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Qi-Long Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
39
|
Zhong Y, Xiao Q, Huang J, Yu S, Chen L, Wan Q, Zhang Z, Luo L, Song L, Zhao H, Zhou W, Liu D. Ginsenoside Rg1 Alleviates Ulcerative Colitis in Obese Mice by Regulating the Gut Microbiota-Lipid Metabolism-Th1/Th2/Th17 Cells Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20073-20091. [PMID: 38064669 DOI: 10.1021/acs.jafc.3c04811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ginsenoside Rg1 (G-Rg1) has various pharmacological properties including antiobesity, immunomodulatory, and anti-inflammatory effects. This study aimed to explore the therapeutic effects and underlying mechanisms of G-Rg1 on colitis complicated by obesity. The results indicate that G-Rg1 effectively alleviates colitis in obese mice and improves serum lipid levels and liver function. Importantly, G-Rg1 improved the composition of gut microbiota in obese mice with colitis, with increases in alpha diversity indexes Sobs, Ace, and Chao, a significant down-regulation of the relative abundance of Romboutsia, and a significant up-regulation of Rikenellaceae_RC9_gut_group, Lachnospiraceae_NK4A136_group, Enterorhabdus, Desulfovibrio, and Alistipes. Meanwhile, G-Rg1 improved lipid metabolism in the colonic contents of obese mice with colitis. Additionally, G-Rg1 significantly reduced the percentages of helper T (Th)1, Th17, central memory T (TCM), and effector memory T (TEM) cells in obese mice with colitis while significantly increasing Naïve T and Th2 cells. In conclusion, G-Rg1 could be a promising therapeutic option for alleviating obesity complicated by colitis through regulation of the gut microbiota and lipid metabolism as well as Th1/Th2/Th17 cell differentiation.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Institute of Chinese Medicine and Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330004, Jiangxi, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jiaqi Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Songren Yu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qi Wan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zheyan Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Lin Luo
- College of Acupuncture and Massage, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Lizhao Song
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Wen Zhou
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Nanchang Medical College, Nanchang, Jiangxi 330004, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Institute of Chinese Medicine and Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330004, Jiangxi, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
40
|
Chen Q, Wang J, Gao Y, Wang Z, Gao X, Yan P. Biotransformation of American Ginseng Stems and Leaves by an Endophytic Fungus Umbelopsis sp. and Its Effect on Alzheimer's Disease Control. Nutrients 2023; 15:4878. [PMID: 38068736 PMCID: PMC10708258 DOI: 10.3390/nu15234878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Common ginsenosides can be transformed into rare ginsenosides through microbial fermentation, and some rare ginsenosides can prevent Alzheimer's disease (AD). This study aimed to transform common ginsenosides into rare ginsenosides through solid-state fermentation of American ginseng stems and leaves (AGSL) by an endophytic fungus and to explore whether fermented saponin extracts prevent AD. METHODS The powders of AGSL were fermented in a solid state by endophytic fungus. Total saponins were extracted from fermentation products using the methanol extraction method. The types of saponins were analyzed by liquid chromatography mass spectrometry (LC/MS). The Aβ42 concentration and β-secretase activity were measured by ELISA for the prevention of AD. RESULTS After AGSL was fermented by an endophytic fungus NSJG, the total saponin concentration of the fermented extract G-SL was higher than the unfermented CK-SL. Rare ginsenoside Rh1 was newly produced and the yield of compound K (561.79%), Rh2 (77.48%), and F2 (40.89%) was increased in G-SL. G-SL had a higher inhibition rate on Aβ42 concentration (42.75%) and β-secretase activity (42.22%) than CK-SL, possibly because the rare ginsenoside Rh1, Rh2, F2, and compound K included in it have a strong inhibitory effect on AD. CONCLUSION The fermented saponin extracts of AGSL show more inhibition effects on AD and may be promising therapeutic drugs or nutrients for AD.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingying Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yuhang Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Zixin Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiujun Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Peisheng Yan
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
41
|
Xu XY, Jiang MT, Wang Y, Sun H, Jing Q, Li XH, Xu B, Zou YD, Yu HS, Li Z, Guo DA, Yang WZ. Multiple heart-cutting two-dimensional liquid chromatography/charged aerosol detector assay of ginsenosides for quality evaluation of ginseng from diverse Chinese patent medicines. J Chromatogr A 2023; 1708:464344. [PMID: 37703763 DOI: 10.1016/j.chroma.2023.464344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
For quality control of Chinese patent medicines (CPMs) containing the same herbal medicine or different herbal medicines that have similar chemical composition, current ″one standard for one species″ research mode leads to poor universality of the analytical approaches unfavorable to discriminate easily confused species. Herein, we were aimed to elaborate a multiple heart-cutting two-dimensional liquid chromatography/charged aerosol detector (MHC-2DLC/CAD) approach to quantitatively assess ginseng from multiple CPMs. Targeting baseline resolution of 16 ginsenosides (noto-R1/Rg1/Re/Rf/Ra2/Rb1/Rc/Ro/Rb2/Rb3/Rd/Rh1/Rg2/Rg3/Rg3(R)/24(R)-p-F11), experiments were conducted to optimize key parameters and validate its performance. A Poroshell 120 EC-C18 column and an XBridge Shield RP18 column were separately utilized in the first-dimensional (1D) and the second-dimensional (2D) chromatography. Eight consecutive cuttings could achieve good separation of 16 ginsenosides within 85 min. The developed MHC-2DLC/CAD method showed good linearity (R2 > 0.999), repeatability (RSD < 6.73%), stability (RSD < 5.63%), inter- and intra-day precision (RSD < 5.57%), recovery (93.76-111.14%), and the limit of detection (LOD) and limit of quantification (LOQ) varied between 0.45-2.37 ng and 0.96-4.71 ng, respectively. We applied it to the content determination of 16 ginsenosides simultaneously from 28 different ginseng-containing CPMs, which unveiled the ginsenoside content difference among the tested CPMs, and gave useful information to discriminate ginseng in the preparation samples, as well. The MHC-2DLC/CAD approach exhibited advantages of high specificity, good separation ability, and relative high analysis efficiency, which also justified the feasibility of our proposed ″Monomethod Characterization of Structure Analogs″ strategy in quality evaluation of diverse CPMs that contained different ginseng.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mei-Ting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi Jing
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiao-Hang Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bei Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ya-Dan Zou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He-Shui Yu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - De-An Guo
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| |
Collapse
|
42
|
Jiang M, Zhao D, Zou Y, Li X, Lou J, Wang Y, Gao X, Yang W. An efficient approach addressing the chemical complexity of Jiawei Fangji Huangqi decoction by integrating ultra-high-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry and intelligent data processing workflows. J Sep Sci 2023; 46:e2300374. [PMID: 37582648 DOI: 10.1002/jssc.202300374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
A challenge in the quality control of traditional Chinese medicine is the systematic multicomponent characterization of the compound formulae. Jiawei Fangji Huangqi, a modified form of Fangji Huangqi, is a prescription comprising seven herbal medicines. To address the chemical complexity of the Jiawei Fangji Huangqi decoction, we integrated ion mobility-quadrupole time-of-flight high-definition MSE coupled to ultra-high-performance liquid chromatography and intelligent data processing workflows available in the UNIFI software package. Good chromatographic separation was achieved on CORTECS UPLC T3 column within 52 min, and high-accuracy MS2 data were acquired using high-definition MSE in the negative and positive modes. A chemical library of 1250 compounds was created and incorporated into the UNIFI software to enable automatic peak annotation of the high-definition MSE data. We identified or tentatively characterize 430 compounds in the Jiawei Fangji Huangqi decoction. The potential superiority of high-definition MSE over conventional MS data acquisition approaches was revealed in its spectral quality (MS2 ), differentiation of isomers, separation of coeluting compounds, and target mass coverage. The multiple components of the Jiawei Fangji Huangqi decoction were elucidated, offering insight into its improved pharmacological action compared with that of the Fangji Huangqi formula.
Collapse
Affiliation(s)
- Meiting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Dongxue Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yadan Zou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiaohang Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jia Lou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
43
|
Ren Z, Yang H, Zhu C, Deng J, Fan D. Ginsenoside Rh4 Alleviates Amyloid β Plaque and Tau Hyperphosphorylation by Regulating Neuroinflammation and the Glycogen Synthase Kinase 3β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13783-13794. [PMID: 37676640 DOI: 10.1021/acs.jafc.3c02550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a primary neurodegenerative disease. It can be caused by aging and brain trauma and severely affects the abilities of cognition and memory of patients. Therefore, it seriously threatens the mental and physical health of humans worldwide. As a traditional Chinese medicine, ginsenosides have been proven to have a variety of pharmacological activities. Ginsenoside Rh4 (Rh4) is one of the rare ginsenosides with higher pharmacological activity than ordinary ginsenosides, but its effect on alleviating AD and its molecular mechanism have not been studied. Here, we investigated the anti-AD effects of Rh4 and its potential mechanisms using an AD mouse model induced by a combination of AlCl3·6H2O and d-galactose. The results showed that Rh4 could significantly improve the ability of cognizance and reduce neuronal damage in mice. Concurrently, Rh4 attenuates amyloid β accumulation, increases the density of dendritic spines, and logically inhibits synaptic structural damage as a result of neuronal excessive apoptosis and autophagy. Rh4 can not only inhibit the inflammatory response caused by the overactivation of microglia and astrocytes, reduce the levels of pro-inflammatory factors, increase the level of antioxidant enzymes in serum, and significantly improve the activity of antioxidant enzyme SOD1 in the hippocampus but also inhibit the hyperphosphorylation of tau protein in the hippocampus of mice by regulating the Wnt2b/GSK-3β/SMAD4 signaling pathway. Together, this study provides a theoretical basis for Rh4 in the treatment of AD and reveals that Rh4 is a potential drug for the treatment of AD.
Collapse
Affiliation(s)
- Zhuo Ren
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
44
|
Chen Q, Wang J, Gao Y, Gao X, Yan P. Optimization of Fermentation Conditions and Product Identification of a Saponin-Producing Endophytic Fungus. Microorganisms 2023; 11:2331. [PMID: 37764176 PMCID: PMC10535331 DOI: 10.3390/microorganisms11092331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Some fungal endophytes isolated from P. ginseng may present a new method of obtaining saponins. This experiment aimed to optimize the total saponin yield produced through in vitro fermentation by an endophytic fungus and analyze its saponin species in the fermented extract. METHODS Fermentation protocols were optimized with a uniform design and verified through regression analysis to maximize the total saponin yield. The saponin types under optimal fermentation conditions were then identified and analyzed using Liquid Chromatography-Mass Spectrometry. RESULTS The Trametes versicolor strain NSJ105 (gene accession number: OR144428) isolated from wild ginseng could produce total saponins. The total saponin yield could be increased more than two-fold through the optimization of fermentation conditions. The concentration of the total saponins achieved by the verified protocol 105-DP was close to the predicted value. The fermentation conditions of the 105-DP protocol were as follows: potato concentration 97.3 mg/mL, glucose concentration 20.6 mg/mL, inoculum volume 2.1%, fermentation broth pH 2.1, fermentation temperature 29.2 °C, and fermentation time 6 d. It was detected and analyzed that the fermented extract of 105-DP contained the ginsenosides Rf and Rb3. CONCLUSION The endophytic fungus Trametes versicolor strain NSJ105 has potential application value in saponin production.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingying Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yuhang Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiujun Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Peisheng Yan
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
45
|
Sun MX, Li XH, Jiang MT, Zhang L, Ding MX, Zou YD, Gao XM, Yang WZ, Wang HD, Guo DA. A practical strategy enabling more reliable identification of ginsenosides from Panax quinquefolius flower by dimension-enhanced liquid chromatography/mass spectrometry and quantitative structure-retention relationship-based retention behavior prediction. J Chromatogr A 2023; 1706:464243. [PMID: 37567002 DOI: 10.1016/j.chroma.2023.464243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.
Collapse
Affiliation(s)
- Meng-Xiao Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiao-Hang Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mei-Ting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meng-Xiang Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ya-Dan Zou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
46
|
Jiang M, Li X, Zhao Y, Zou Y, Bai M, Yang Z, Wang W, Xu X, Wang H, Yang W, Chen Q, Guo D. Characterization of ginsenosides from Panax japonicus var. major (Zhu-Zi-Shen) based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry and desorption electrospray ionization-mass spectrometry imaging. Chin Med 2023; 18:115. [PMID: 37684699 PMCID: PMC10486018 DOI: 10.1186/s13020-023-00830-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Panax japonicus var. major (PJM) belongs to the well-known ginseng species used in west China for hundreds of years, which has the effects of lung tonifying and yin nourishing, and exerts the analgesic, antitussive, and hemostatic activities. Compared with the other Panax species, the chemical composition and the spatial tissue distribution of the bioactive ginsenosides in PJM have seldom been investigated. METHODS Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) and desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) were integrated for the systematic characterization and spatial tissue distribution studies of ginsenosides in the rhizome of PJM. Considering the great difficulty in exposing the minor saponins, apart from the conventional Auto MS/MS (M1), two different precursor ions list-including data-dependent acquisition (PIL-DDA) approaches, involving the direct input of an in-house library containing 579 known ginsenosides (M2) and the inclusion of the target precursors screened from the MS1 data by mass defect filtering (M3), were developed. The in situ spatial distribution of various ginsenosides in PJM was profiled based on DESI-MSI with a mass range of m/z 100-1500 in the negative ion mode, with the imaging data processed by the High Definition Imaging (HDI) software. RESULTS Under the optimized condition, 272 ginsenosides were identified or tentatively characterized, and 138 thereof were possibly not ever reported from the Panax genus. They were composed by 75 oleanolic acid type, 22 protopanaxadiol type, 52 protopanaxatriol type, 16 octillol type, 19 malonylated, 35 C-17 side-chain varied, and 53 others. In addition, the DESI-MSI experiment unveiled the differentiated distribution of saponins, but the main location in the cork layer and phloem of the rhizome. The abundance of the oleanolic acid ginsenosides was high in the rhizome slice of PJM, which was consistent with the results obtained by UHPLC/QTOF-MS. CONCLUSION Comprehensive characterization of the ginsenosides in the rhizome of PJM was achieved, with a large amount of unknown structures unveiled primarily. We, for the first time, reported the spatial tissue distribution of different subtypes of ginsenosides in the rhizome slice of PJM. These results can benefit the quality control and further development of PJM and the other ginseng species.
Collapse
Affiliation(s)
- Meiting Jiang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xiaohang Li
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yuying Zhao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yadan Zou
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Maoli Bai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zhiming Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Wei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xiaoyan Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Hongda Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China.
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China.
| | - Dean Guo
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| |
Collapse
|
47
|
Zhang L, Wang L, Chen Y, Yang Y, Xia G, Guo Y, Yang H, Shen Y, Meyer AS. Biotransformation of ginsenoside Rb 1 and Rd to four rare ginsenosides and evaluation of their anti-melanogenic effects. J Nat Med 2023; 77:939-952. [PMID: 37329418 DOI: 10.1007/s11418-023-01719-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Improving physiological activity of primary ginsenosides through biotransformation is of great significance for food applications. In this study, gynostapenoside XVII, gynostapenoside LXXV, ginsenoside F2, and ginsenoside CK were obtained by enzymolysis of an accessible extract composed of ginsenoside Rb1 and Rd. Their effects on melanin content and tyrosinase activity were compared in vitro, and molecular docking simulation was employed to elucidate the interaction between tyrosinase and individual saponin. The results indicated that four rare ginsenosides decreased tyrosinase activity, melanin content and microphthalmia-associated transcription factor (MITF) expression level, more greatly than their primary ginsenosides, and they were more readily to bind with ASP10 and GLY68 at active site of tyrosinase to inhibit tyrosinase activity as well. These findings suggested that the rare ginsenosides obtained by enzymolysis had excellent anti-melanogenic effect, which could expand the application of ginsenosides in the field of functional foods and health supplements.
Collapse
Affiliation(s)
- Le Zhang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liwei Wang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yufei Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yaya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yuao Guo
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
48
|
Li Z, Wang Y, Xu Q, Ma J, Li X, Tian Y, Wen Y, Chen T. Ginseng and health outcomes: an umbrella review. Front Pharmacol 2023; 14:1069268. [PMID: 37465522 PMCID: PMC10351045 DOI: 10.3389/fphar.2023.1069268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Background: Ginseng consumption has been associated with various health outcomes. However, there are no review articles summarizing these reports. Methods: PubMed, Embase, the Cochrane Library of Systematic Reviews, Scopus, CNKI and Wanfang databases were searched from inception to 31 July 2022. The Assessment of Multiple Systematic Reviews-2 (AMSTAR-2) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence in each meta-analysis, and the results were summarized in a narrative form. Results: Nineteen meta-analyses that met the eligibility criteria were identified from among 1,233 papers. The overall methodological quality was relatively poor, with only five studies being low-quality, and 14 critically low-quality. When compared with control treatments (mainly placebo), ginseng was beneficial for improving fatigue and physical function, sexual function, menopausal symptoms, metabolic indicators, inflammatory markers, unstable angina and respiratory diseases. Adverse events included gastrointestinal symptoms and potential bleeding; however, no serious adverse events were reported. Conclusion: This umbrella review suggests that ginseng intake has beneficial therapeutic effects for diverse diseases. However, the methodological quality of studies needs to be improved considerably. In addition, it is imperative to establish the clinical efficacy of ginseng through high-quality randomized controlled trials.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinxin Ma
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yibing Tian
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Li N, Duan YH, Chen L, Zhang K. Iron metabolism: An emerging therapeutic target underlying the anti-Alzheimer's disease effect of ginseng. J Trace Elem Med Biol 2023; 79:127252. [PMID: 37418790 DOI: 10.1016/j.jtemb.2023.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yu-Han Duan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Chen
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Medical Research Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
50
|
Zhang J, He J, Huang J, Li X, Fan X, Li W, Wu G, Xie C, Fan XX, Zhang J, Yao X, Wang R, Leung ELH. Pharmacokinetics, absorption and transport mechanism for ginseng polysaccharides. Biomed Pharmacother 2023; 162:114610. [PMID: 36989718 DOI: 10.1016/j.biopha.2023.114610] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Ginseng polysaccharide (GP) is one of the most abundant components in Panax ginseng. However, the absorption pathways and mechanisms of GPs have not been investigated systematically due to the challenges of their detection. METHODS The fluorescein isothiocyanate derivative (FITC) was employed to label GP and ginseng acidic polysaccharide (GAP) to obtain target samples. HPLC-MS/MS assay was used to determine the pharmacokinetics of GP and GAP in rats. The Caco-2 cell model was used to investigate the uptake and transport mechanisms of GP and GAP in rats. RESULTS Our results demonstrated that the absorption of GAP was more than that of GP in rats after gavage administration, while there was no significant difference between both after intravenous administration. In addition, we found that GAP and GP were more distributed in the kidney, liver and genitalia, suggesting that GAP and GP are highly targeted to the liver, kidney and genitalia. Importantly, we explored the uptake mechanism of GAP and GP. GAP and GP are endocytosed into the cell via lattice proteins or niche proteins. Both are transported lysosomally mediated to the endoplasmic reticulum (ER) and then enter the nucleus through the ER, thus completing the process of intracellular uptake and transportation. CONCLUSION Our results confirm that the uptake of GPs by small intestinal epithelial cells is primarily mediated via lattice proteins and the cytosolic cellar. The discovery of important pharmacokinetic properties and the uncovering of the absorption mechanism provide a research rationale for the research of GP formulation and clinical promotion.
Collapse
|