1
|
Ciesiołkiewicz A, Lizandra Perez J, Skalniak L, Noceń P, Berlicki Ł. Miniprotein engineering for inhibition of PD-1/PD-L1 interaction. Protein Sci 2024; 33:e5106. [PMID: 39012010 PMCID: PMC11250529 DOI: 10.1002/pro.5106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
Miniproteins constitute an excellent basis for the development of structurally demanding functional molecules. The engrailed homeodomain, a three-helix-containing miniprotein, was applied as a scaffold for constructing programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) interaction inhibitors. PD-L1 binders were initially designed using the computer-aided approach and subsequently optimized iteratively. The conformational stability was assessed for each obtained miniprotein using circular dichroism spectroscopy, indicating that numerous mutations could be introduced. The formation of a sizable hydrophobic surface at the inhibitor that fits the molecular target imposed the necessity for the incorporation of additional charged amino acid residues to retain its appropriate solubility. Finally, the miniprotein effectively binding to PD-L1 (KD = 51.4 nM) that inhibits PD-1/PD-L1 interaction in cell-based studies with EC50 = 3.9 μM, was discovered.
Collapse
Affiliation(s)
| | - Juan Lizandra Perez
- Department of Bioorganic ChemistryWrocław University of Science and TechnologyWrocławPoland
| | | | - Paweł Noceń
- Department of Bioorganic ChemistryWrocław University of Science and TechnologyWrocławPoland
| | - Łukasz Berlicki
- Department of Bioorganic ChemistryWrocław University of Science and TechnologyWrocławPoland
| |
Collapse
|
2
|
Kovalenko V, Rudzińska-Szostak E, Ślepokura K, Berlicki Ł. Scalable Synthesis of All Stereoisomers of 2-Aminocyclopentanecarboxylic Acid─A Toolbox for Peptide Foldamer Chemistry. J Org Chem 2024; 89:4760-4767. [PMID: 38544408 PMCID: PMC11002926 DOI: 10.1021/acs.joc.3c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Although the construction of peptides with well-defined three-dimensional structures and predictable functions, including biological activity, using conformationally constrained β-amino acids has been shown to be a very successful strategy, their broad application is limited by access to the appropriate building blocks. In particular, trans- and cis-stereoisomers of 2-aminocyclopentanecarboxylic acid (ACPC) are of high interest. The scalable synthesis of all four stereoisomers of Fmoc derivatives of ACPC is presented with NMR-based analysis methods for their enantiomeric purity.
Collapse
Affiliation(s)
- Vitaly Kovalenko
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Ślepokura
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
4
|
Abstract
The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.
Collapse
|
5
|
Chen Y, Gardiner MG, Lan P, Banwell MG. α-Iodo-α,β-Unsaturated Ketones as Vicinal Dielectrophiles: Their Reactions with Dinucleophiles Provide New Annulation Protocols for the Formation of Carbo- and Heterocyclic Ring Systems. J Org Chem 2022; 87:6146-6160. [PMID: 35438488 DOI: 10.1021/acs.joc.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Iodo-α,β-unsaturated ketones such as compound 1 serve as vicinal dielectrophiles and react with a range of dinucleophiles including pentane-2,4-dione and 1,3-indandione to produce [3 + 2]- and [2 + 1]-adducts such as 5 and 38, respectively. [4 + 2]- and [5 + 2]-cycloadducts have been obtained from compound 1 by related means. Preliminary studies reveal that α-iodinated α,β-unsaturated esters can also participate in at least some of these same processes.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Michael G Gardiner
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Ping Lan
- Institute of Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Martin G Banwell
- Institute of Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
6
|
Szefczyk M, Ożga K, Drewniak-Świtalska M, Rudzińska-Szostak E, Hołubowicz R, Ożyhar A, Berlicki Ł. Controlling the conformational stability of coiled-coil peptides with a single stereogenic center of a peripheral β-amino acid residue. RSC Adv 2022; 12:4640-4647. [PMID: 35425498 PMCID: PMC8981378 DOI: 10.1039/d2ra00111j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
The key issue in the research on foldamers remains the understanding of the relationship between the monomers structure and conformational properties at the oligomer level. In peptidomimetic foldamers, the main goal of which is to mimic the structure of proteins, a main challenge is still better understanding of the folding of peptides and the factors that influence their conformational stability. We probed the impact of the modification of the peptide periphery with trans- and cis-2-aminocyclopentanecarboxylic acid (ACPC) on the structure and stability of the model coiled-coil using circular dichroism (CD), analytical ultracentrifugation (AUC) and two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Although, trans-ACPC and cis-ACPC-containing mutants differ by only one peripheral stereogenic center, their conformational stability is strikingly different.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Ożga
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Magda Drewniak-Świtalska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
7
|
Bejger M, Fortuna P, Drewniak-Switalska M, Plewka J, Rypniewski W, Berlicki Ł. A computationally designed β-amino acid-containing miniprotein. Chem Commun (Camb) 2021; 57:6015-6018. [PMID: 34032224 DOI: 10.1039/d1cc02192c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new miniprotein built from three helices, including one structure based on the ααβαααβ sequence pattern was developed. Its crystal structure revealed a compact conformation with a well-packed hydrophobic core of unprecedented structure. The miniprotein formed dimers that were stabilized by the interaction of their hydrophobic surfaces.
Collapse
Affiliation(s)
- Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Paulina Fortuna
- Department of Bioorganic Chemistry Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland. and Department of Medical Biochemistry, Wrocław Medical University, Pausteura 1, Wroclaw 50-368, Poland
| | - Magda Drewniak-Switalska
- Department of Bioorganic Chemistry Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian Univeristy, Gronostajowa 2, Kraków 30-387, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| |
Collapse
|