1
|
Wang L, Zhang W. Recent Advances on Epoxide- and Aziridine-Based [3+2] Annulations. Chem Asian J 2025; 20:e202401936. [PMID: 39962900 DOI: 10.1002/asia.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Abstract
[3+2] Annulations are a powerful method for the synthesis of five-membered heterocyclic compounds. The annulations have concerted cycloaddition and formal (stepwise) cycloaddition reaction pathways. In addition to the well-established O-centered and N-centered ylides, epoxides and aziridines could serve as synthetic equivalent of 1,3-dipoles for [3+2] annulation with dipolarophiles for making functionalized tetrahydrofuran, pyrrolidine, and associated compounds. This review article covers recent development on epoxide- and aziridine-based [3+2] annulation reactions. The reactions are classified based on the ring opening conditions, including acid/base catalysis, organocatalysis, and transitional-metal catalysis.
Collapse
Affiliation(s)
- Liang Wang
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Gehu Road 33, Wujin District, Changzhou, 213164, P. R. China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
2
|
Chao CBE, Pham QH, Richardson C, Pyne SG, Hyland CJT. Palladium-Catalyzed (3+2) and (4+2) Cycloaddition Reactions of Sulfamidate Imine-Derived Azadienes: Synthesis of Spirocyclic Pyrrolidines and Tetrahydroquinolines. J Org Chem 2024; 89:13744-13755. [PMID: 39206628 DOI: 10.1021/acs.joc.4c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diastereoselective Pd-catalyzed (3+2) and (4+2) cycloaddition reactions of sulfamidate imine-derived 1-azadienes with zwitterionic N-dipoles derived from 1-tosyl-2-vinylaziridine and 4-vinylbenzoxazinone have been developed. These reactions provide highly functionalized azaspirocycles featuring three contiguous stereocenters. The sulfonyl imine moiety of the cycloadducts can be fully reduced to access valuable β-amino alcohols.
Collapse
Affiliation(s)
- Chi Bong Eric Chao
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
3
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
4
|
Nachimuthu K, Nallasivam JL. Recent updates on vinyl cyclopropanes, aziridines and oxiranes: access to heterocyclic scaffolds. Org Biomol Chem 2024; 22:4212-4242. [PMID: 38738483 DOI: 10.1039/d4ob00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This present review delineates the repertoire of vinyl cyclopropanes and their stuctural analogues to accomplish a wide array of oxa-cycles, aza-cycles, and thia-cycles under transition metal catalysis and metal-free approaches from early 2019 to the present date. The generation of electrophilic π-allyl intermediates and 1-3/1-5-dipolarophile chemistry originating from VCPs are always green, step- and atom-economical and sustainable strategies in comparsion with prefunctionalized and/or C-H activation protocols. Here, the strained ring-system extends its applicability by relieving the strain to undergo a ring-expansion reaction to accomplish 5-9 membered carbo- and heterocyclic systems. The availability of chiral ligands in the ring-expansion reaction of VCPs and their analogues has paved the way to realizing asymmetric synthetic transformations.
Collapse
Affiliation(s)
- Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| |
Collapse
|
5
|
Luo X, Xu MM, Xu XP, Ji SJ. NBS-induced intramolecular annulation reactions for the divergent synthesis of fused- and spirocyclic indolines. Chem Commun (Camb) 2023; 59:6576-6579. [PMID: 37183546 DOI: 10.1039/d3cc01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An NBS-induced intramolecular annulation of 3-(1H-indol-3-yl)-N-alkoxypropanamide is described. The reactions proceed well and quickly under mild conditions with the help of a base. It was found that C2-substituents on the indole ring in 3-(1H-indol-3-yl)-N-alkoxypropanamide have a great influence upon the reaction. By using C2-methyl- and C2-phenyl-3-(1H-indol-3-yl)-N-alkoxypropanamide as templates, practical protocols for the divergent synthesis of fused- and spirocyclic indoline compounds were studied and established.
Collapse
Affiliation(s)
- Xian Luo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Innovation Center for Chemical Science, Soochow University, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
6
|
Jiang Q, Yang T, Li Q, Liang GM, Liu Y, He CY, Chu WD, Liu QZ. Synthesis of Cyclopenta[ b]indoles via Sc(III)-Catalyzed Annulation of Vinyl Diazoacetates with Indole-Derived Unsaturated Imines. Org Lett 2023; 25:3184-3189. [PMID: 37125696 DOI: 10.1021/acs.orglett.3c00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A Lewis acid Sc(OTf)3-catalyzed annulation reaction of vinyl diazoacetates with in situ formed α,β-unsaturated imines for the preparation of indole-fused tricyclic rings has been reported. This strategy involves a sequential addition/rebound addition process of vinyl diazoacetates and an in situ dedinitrogenation. This annulation protocol features low-cost catalysts, mild reaction conditions, and facilely prepared substrates.
Collapse
Affiliation(s)
- Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Qi Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Guang-Ming Liang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Yong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
7
|
Yang T, Jiang Q, Wang CM, Li SL, He CY, Chu WD, Liu QZ. Cyclization of Vinyl Diazo Compounds with Benzofuran-Derived Azadienes Enabled by NaBAr F4. Org Lett 2023; 25:2243-2247. [PMID: 36971358 DOI: 10.1021/acs.orglett.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
An unprecedented cycloaddition of vinyl diazo compounds with benzofuran-derived azadienes catalyzed by rarely independently used NaBArF4 has been established. Benzofuran-fused hydropyridines were constructed with excellent yields and high diastereoselectivity via a Na+-catalyzed inverse-electron-demand aza-Diels-Alder reaction. Notably, this transformation also features good compatibility with a one-pot protocol to deliver the spiro[benzofuran-cyclopentene] skeleton, as well as perfect atom economy and simple reaction conditions.
Collapse
|
8
|
Du J, Li YF, Ding CH. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Molnár Á. Recent Advances in the Synthesis of Five‐membered Nitrogen Heterocycles Induced by Palladium Ions and Complexes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
10
|
Xiao JA, Peng H, Zhang H, Meng RF, Lin C, Su W, Huang Y. Synergistic Sc(III)/Au(I)-Catalyzed Dearomative Spiroannulation of 2-(Ethynyl)aryl Cyclopropanes with 2-Aryl Indoles. Org Lett 2022; 24:8709-8713. [DOI: 10.1021/acs.orglett.2c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Hai Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Huan Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Ru-Fang Meng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P.R. China
| |
Collapse
|
11
|
Nambo M, Maekawa Y, Crudden CM. Desulfonylative Transformations of Sulfones by Transition-Metal Catalysis, Photocatalysis, and Organocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
| | - Yuuki Maekawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario, Canada, K7L 4 V1
| | - Cathleen M. Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario, Canada, K7L 4 V1
| |
Collapse
|
12
|
Qin H, Xie Q, HE LONG. Synthesis of Spiroindolenine Bearing Chroman Scaffolds Based on Cylization Reaction to para-Methylated Methides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00936f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient diastereoselective cyclization reaction of ortho-hydroxyphenyl-substituted para-quinone methides with α,β-unsaturated imines generated in situ from aryl sulfonyl indoles was developed, which afforded spiroindolenine bearing chroman scaffolds in good to...
Collapse
|
13
|
Molnár Á. Stereoselective Synthesis of Azacycles Induced by Group 8–11 Late Transition Metals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|