1
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025; 46:1511-1538. [PMID: 39890942 PMCID: PMC12098710 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Akhtar A, Singh P, Admane N, Grover A. Parishin C modulates the amyloid transformation of alpha-synuclein protein by apparently interacting with the NAC domain. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141076. [PMID: 40345607 DOI: 10.1016/j.bbapap.2025.141076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the gradual deterioration of dopaminergic neurons in the brain and the presence of Lewy bodies (LB) within the remaining affected neurons, comprised of α-synuclein protein aggregates. Herein, we report a novel amyloid inhibitory potential of Parishin C on the amyloid transformation of the α-synuclein protein. Our studies involving computational screening and REMD simulation analysis revealed a strong interaction between Parishin C and the non-amyloid component (NAC domain), a known aggregation-prone region of the α-synuclein protein. Thioflavin T fluorescence assay demonstrated the inhibitory effect of Parishin C on amyloid transformation kinetics of α-synuclein, where even at the lowest concentration of Parishin C there was a 72 % reduction in the ThT maxima. ANS binding assay further revealed its ability to alter the surface hydrophobicity of the protein. An extensive evaluation using biophysical techniques indicated that Parishin C effectively prevented the formation of mature fibrillar species and promoted the formation of lower order aggregates with reduced cross-β-sheet signatures compared to the native α-synuclein aggregates. Collectively, our research highlights Parishin C's potential as a structural blueprint for developing new therapeutic compounds aimed at preventing the amyloidogenic transition in Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Regmi D, Haque S, Karim MRU, Stanic A, Du D. Inhibition of amyloid formation of prion fragment (106-128) by polyphenolic compounds. Biochim Biophys Acta Gen Subj 2025; 1869:130778. [PMID: 39988109 DOI: 10.1016/j.bbagen.2025.130778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Prion diseases are characterized by the self-association and amyloid formation of misfolded prion proteins. Developing effective inhibitors of protein aggregation is critical for therapeutic intervention. In this study, we systematically evaluated a range of polyphenolic compounds as potential inhibitors of amyloid fibril formation of PrP(106-128), a prion fragment crucially involved in prion aggregation and propagation. Our findings demonstrate that the basic aromatic backbone structure of flavone alone is insufficient to inhibit PrP(106-128) amyloid formation. Remarkably, flavone molecules containing adjacent hydroxyl groups on the phenolic B or A ring efficiently inhibited PrP(106-128) fibrillization, whereas compounds lacking vicinal hydroxyl groups were less effective in inhibiting amyloid formation. Epigallocatechin-3-gallate (EGCG) was one of the most potent inhibitors found in this study, with the gallate moiety playing an active role in the inhibitory function. Our findings indicate a structure-dependent inhibition activity of the phenolic small molecules, where the number and positioning of hydroxyl groups on the phenyl ring play a pivotal role in inhibiting the aggregation of the peptide. The auto-oxidation of the catechol or pyrogallol moieties to form quinone structures, followed by their reaction with amino acid side chains of the peptide to form covalent adducts, likely account for the inhibitory activity of these phenolic compounds on PrP(106-128) amyloidogenesis. These results will help the design of novel polyphenolic molecules with optimized structural features as potent inhibitors of amyloid formation of both PrP(106-128) and the full-length prion proteins.
Collapse
Affiliation(s)
- Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Seymour Haque
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Raza Ul Karim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aleksander Stanic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
4
|
Singh P, Akhtar A, Admane N, Grover A. The antiviral drug Ribavirin effectively modulates the amyloid transformation of α-Synuclein protein. Comput Biol Chem 2024; 112:108155. [PMID: 39084146 DOI: 10.1016/j.compbiolchem.2024.108155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein, linked genetically and neuropathologically to Parkinson's disease where this protein aggregates within the brain. Hence, identifying compounds capable of impeding α-syn aggregation puts forward a promising approach for the development of disease-modifying therapies. Herein, we investigated the efficacy of Ribavirin, an FDA-approved compound, in curtailing α-syn amyloid transformation, employing an array of bioinformatic tools and systematic analysis using biophysical techniques. Ribavirin shows a dose dependent anti-aggregation propensity where it effectively subdued the formation of mature fibrillar aggregates of α-syn, where even at the lowest concentration there was a 69 % reduction in the ThT maxima. Ribavirin averts the formation of mature fibrillar aggregates by interacting with the NAC domain of α-syn. Ribavirin redirects the amyloid transformation of α-syn by emanating aggregates of lower order with reduced cross β-sheet signature and revokes the formation of on-pathway amyloids. Collectively, our study puts forward the novel potency of Ribavirin as a promising molecule for therapeutic intervention in Parkinson's disease.
Collapse
Affiliation(s)
- Payal Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Almas Akhtar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Kim J, Lee H, Kim HM, Kim JH, Byun S, Lee S, Kim CY, Ryou C. Isolation of Anti-Prion Compounds from Curcuma phaeocaulis Valeton Extract. Molecules 2024; 29:4034. [PMID: 39274884 PMCID: PMC11397528 DOI: 10.3390/molecules29174034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Prion diseases, known as a group of fatal neurodegenerative disorders caused by prions, remain incurable despite extensive research efforts. In a recent study, crude extract from Curcuma phaeocaulis Valeton (Cp) showed promising anti-prion efficacy in in vitro and in vivo models, prompting further investigation into their active compounds. We endeavored to identify the chemical constituents of the Cp extract and discover potential anti-prion agents. With the use of centrifugal partition chromatography (CPC), major constituents were isolated from the n-hexane (HX) fraction of the extract in a single step. Spectroscopic analysis confirmed the presence of curcumenone, curcumenol, and furanodienone. Subsequent efficacy testing in a cell culture model of prion disease identified curcumenol and furanodienone as active compounds. This study underscores the potential of natural products in the search for effective treatments against prion diseases.
Collapse
Affiliation(s)
- Jaehyeon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hakmin Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hye Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Ji Hoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sanghoon Byun
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chul Young Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Admane N, Kothandan R, Biswas S. Amyloid transformations of phenol soluble modulin α1 in Staphylococcus aureus and their modulation deploying a prenylated chalcone. Sci Rep 2024; 14:18587. [PMID: 39127763 PMCID: PMC11316821 DOI: 10.1038/s41598-024-69344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Phenol soluble modulins (PSMs) are small amphipathic peptides involved in a series of biological functions governing staphylococcal pathogenesis, primarily by facilitating the formation of an extracellular fibril structure with amyloid-like properties. This fibrillar architecture stabilizes the staphylococcal biofilm making it resilient to antibiotic treatment. Our study aims to abrogate the amyloid fibrillation of PSM α1 with novel insights on the amyloid modulatory potential of a prenylated chalcone, Isobavachalcone (IBC). A combination of biophysical and computational assays to address the amyloid modulatory effect of IBC has been undertaken to arrive at a model for the inhibition of PSM α1 fibrillation. ThT kinetics studies indicated that IBC must be stably interacting with the amyloidogenic core of PSM α1 monomers or it may be inhibiting the pre-fibrillar aggregates populated at the early stages of amyloid transformation kinetics. This heteromolecular association further inhibits the amyloid transformation corroborated by a ∼ 94% and ∼ 91% reduction in the ThT maxima, even at sub-stoichiometric concentrations. Transmission electron microscopy (TEM) of end-stage aggregates (∼ 55 h) depict mature, inter-twined, laterally stacked amyloid fibrils in untreated PSM α1 samples while this fibrillar load is remarkably reduced in the presence of IBC. The inhibitory effect of IBC on the β-sheet transitions of PSM α1 were also validated using far-UV CD spectra. Molecular dynamics simulation studies with PSM aggregates (PSM-A) have also suggested that IBC disrupts the hydrogen bonding interactions and corroborates the inhibition of alpha to beta transitions of PSM-A. Collectively, our data proposes a novel structural motif for the rational discovery of non-toxic therapeutic agents targeting the functional amyloids which have slowly emerged as potent factors, consolidating the antibiotic resistant staphylococcal biofilm assembly.
Collapse
Affiliation(s)
- Nikita Admane
- ViStA Laboratory, Department of Biological Sciences, BITS, Pilani - KK Birla Goa Campus, Goa, 403726, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Sumit Biswas
- ViStA Laboratory, Department of Biological Sciences, BITS, Pilani - KK Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
7
|
Neupane S, Khadka J, Rayamajhi S, Pandey AS. Binding modes of potential anti-prion phytochemicals to PrP C structures in silico. J Ayurveda Integr Med 2023; 14:100750. [PMID: 37453159 PMCID: PMC10368899 DOI: 10.1016/j.jaim.2023.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Prion diseases involve the conversion of a normal, cell-surface glycoprotein (PrPC) into a misfolded pathogenic form (PrPSc). One possible strategy to inhibit PrPSc formation is to stabilize the native conformation of PrPC and interfere with the conversion of PrPC to PrPSc. Many compounds have been shown to inhibit the conversion process, however, no promising drugs have been identified to cure prion diseases. OBJECTIVE This study aims to identify potential anti-prion compounds from plant phytochemicals by integrating traditional ethnobotanical knowledge with modern in silico drug design approaches. MATERIALS AND METHODS In the current study medicinal phytochemicals were docked with swapped and non-swapped crystal structures of PrPCin silico to identify potential anti-prions to determine their binding modes and interactions. RESULTS Eleven new phytochemicals were identified based on their binding energies and pharmacokinetic properties. The binding sites and interactions of the known and new anti-prion compounds are similar, and differences in binding modes occur in structures with very subtle differences in side chain conformations. Binding of these compounds poses steric hindrance to neighbouring molecules. Residues shown to be associated with the inhibition of PrPC to PrPSc conversion form interactions with most of the compounds. CONCLUSION Identified compounds might act as potent inhibitors of PrPC to PrPSc conversion. These might be attractive candidates for the development of novel anti-prion therapy although further tests in vitro cell cultures and in vivo mouse models are needed to confirm these findings.
Collapse
Affiliation(s)
- Sandesh Neupane
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Jenisha Khadka
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Sandesh Rayamajhi
- Purbanchal University, Department of Biotechnology, SANN International College, Kathmandu, 44616, Nepal.
| | - Arti S Pandey
- Department of Biochemistry, Kathmandu Medical College (Basic Sciences), Bhaktapur, 44800, Nepal.
| |
Collapse
|
8
|
Admane N, Srivastava A, Jamal S, Sharma R, Kundu B, Grover A. Molecular insights into the critical role of gallate moiety of green tea catechins in modulating prion fibrillation, cellular internalization, and neuronal toxicity. Int J Biol Macromol 2022; 223:755-765. [PMID: 36368361 DOI: 10.1016/j.ijbiomac.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the β2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and β2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered β-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Nikita Admane
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankit Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Salma Jamal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|