1
|
Sasikala M, Mohan S, Karuppaiah A, Karthick V, Ragul PA, Nagarajan A. NanoFlora: Unveiling the therapeutic potential of Ipomoea aquatica nanoparticles. J Genet Eng Biotechnol 2025; 23:100470. [PMID: 40074444 PMCID: PMC11915003 DOI: 10.1016/j.jgeb.2025.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Improving the pharmacokinetics of drugs is achieved through nano formulations and the role of natural product in the synthesis of nanomaterials is gaining prominence due to its eco-friendly nature, cost-effectiveness, and demonstrated efficacy. Metal nanoparticles (NPs) derived from Ipomoea aquatica Forsskal have been synthesized and evaluated for their antioxidant and antidiabetic properties towards enhancing the anticancer activity of the plant extracts. METHODOLOGY Hydroalcoholic extract was obtained from the entire Ipomoea aquatica plant and utilized as a key ingredient in the green synthesis of metal NPs. The characterization of the synthesized NPs involved UV/visible and FT-IR spectroscopic analyses, along with particle size determination using Zetasizer technology. Antioxidant activity was assessed through DPPH radical scavenging assays, while antidiabetic potential was evaluated via alpha-amylase inhibitory activity using HPTLC bioautography. RESULTS The formation of silver nanoparticles (AgNPs) was confirmed by a color change from light brown to dark brown. UV-VIS spectrum analysis showed strong absorbance between 380 and 400 nm, with a peak at 428 nm, indicating successful synthesis via bioreduction by Ipomoea aquatica extract. FT-IR spectra revealed phytochemicals like flavonoids and proteins, with shifts in peak positions confirming AgNP formation. DLS showed an average particle size of 36.27 nm, and TEM images confirmed spherical morphology. The AgNPs exhibited significant antioxidant and antidiabetic activities, outperforming standards such as ascorbic acid and Glibenclamide. Toxicity prediction identified the extract as slightly toxic, guiding safe dose administration. CONCLUSION The study underscores the potential of plant-based nanoparticles in scavenging free radicals and supporting cytotoxicity, thus hinting at their potential role in cancer therapy. Moreover, the nanoparticles derived from Ipomoea aquatica exhibit promising antioxidant and antidiabetic activities compared to the crude plant extract. This research paves the way for further exploration of Ipomoea aquatica nanoparticles as a novel therapeutic intervention for various diseases.
Collapse
Affiliation(s)
- Manickavasagam Sasikala
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Sellappan Mohan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Arjunan Karuppaiah
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India; PSG College of Pharmacy, Peelamedu, Avinashi Road, Coimbatore 641004, India
| | - Vedi Karthick
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Palanigoundar Atheyannan Ragul
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Arumugam Nagarajan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| |
Collapse
|
2
|
Ajala O, Onwudiwe D, Ogunniyi S, Kurniawan SB, Esan O, Aremu OS. A Review of Different Synthesis Approaches to Nanoparticles: Bibliometric Profile. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2024; 11:1329-1368. [DOI: 10.18596/jotcsa.1389331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanomaterials are currently one of the most popular emerging materials used in different applications such as drug delivery, water treatment, cancer treatment, electronic, food preservations, and production of pesticide. This is due to their interesting features including size-dependent properties, lightweight, biocompatibility, amphiphilicity and biodegradability. They offer wide possibilities for modification and are used in multiple functions with enormous possibilities. Some of them are medically suitable which has opened new opportunities for medical improvement especially for human health. These characteristics also make nanomaterials one of the pioneers in green materials for various needs, especially in environmental engineering and energy sectors. In this review, several synthesis approaches for nanoparticles mainly physical, chemical, and biological have been discussed extensively. Furthermore, bibliometric analysis on the synthesis of nanoparticles was evaluated. About 117,162 publications were considered, of which 92% are journal publications. RSC Advances is the most published outlet on the synthesis of nanoparticles and China has the highest number of researchers engaged in the synthesis of nanoparticles. It was noted in the evaluation of synthesis approach that biological approach is the savest method but with a low yield, while the chemical approach offers a high yield with some level of hazardous effect. Also, the bibliometric analysis revealed that the field of nanotechnology is a trending and hot ground for research.
Collapse
|
3
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
4
|
Mallik S, Paria B, Firdous SM, Ghazzawy HS, Alqahtani NK, He Y, Li X, Gouda MM. The positive implication of natural antioxidants on oxidative stress-mediated diabetes mellitus complications. J Genet Eng Biotechnol 2024; 22:100424. [PMID: 39674630 PMCID: PMC11416289 DOI: 10.1016/j.jgeb.2024.100424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 12/16/2024]
Abstract
The complementary intervention to modulate diabetes mellitus (DM) metabolism has recently brought the global attention, since DM has become among the global burden diseases. Where, several related pathways elevate the production of superoxide in consequences. For example, the flux of glycation-derived end products (AGEs) could lead to the deactivation of insulin signaling pathways. In that context, many vitamins and phytochemicals in natural sources have high antioxidant impacts that reduce oxidative stress and cell damages. These chemicals could be applied as bioactive antidiabetic agents. Their mode of actions could be from regulating the intracellular reactive oxygen species (ROS) which cause several pro-inflammatory pathways related to the oxidative stress (OS) and DM. Besides, they have a great potential to control the epigenetic mutations and hyperglycemia and help in back the blood glucose to the normal level. Therefore, the current review addresses the important role of natural functional antioxidants in DM management and its association with its OS complications.
Collapse
Affiliation(s)
- Shouvik Mallik
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Bijoy Paria
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India
| | - Sayed Mohammad Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, India.
| | - Hesham S Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia; Central Laboratory for Date Palm Research and Development, Agriculture Research Center, Giza 12511, Egypt.
| | - Nashi K Alqahtani
- Date Palm Research Center of Excellence, King Faisal University, Al Ahsa, Saudi Arabia
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Mostafa M Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
5
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
6
|
Mengesha SM, Abebe GM, Habtemariam TH. Biosynthesis of CuO nanoparticle using leaf extracts of Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal for antibacterial activity. Sci Rep 2024; 14:23870. [PMID: 39396068 PMCID: PMC11470964 DOI: 10.1038/s41598-024-75296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Nanotechnology is becoming a promise for scientific advancement nowadays in areas like medicine, consumer products, energy, materials, and manufacturing. Copper oxide nanoparticles (CuO NPs) were synthesized using Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal leaf extract via green synthetic pathway. The leaf of O. lamiifolium and W. somnifera were known to have strong antibiotic and antioxidant properties arising due to the presence of various secondary metabolites, including, flavonoids, alkaloids, saponins, tannins, cardiac glycosides, and phenolic compounds which serve as reducing, stabilizing, and capping agents for the CuO-Nanoparticles (NPs) synthesized. The biosynthesized CuO NPs were characterized based on Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and scanning electron microscopy. O. lamiifolium and W. somnifera leaf extract mediated synthesis could produce CuO NPs with average crystallite size of 15 nm and 19 nm, respectively. The biosynthesized CuO-NPs were further examined for antibacterial activity with Gram-positive (S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa). The GZDK-CuO NPs synthesized using W. somnifera leaf extract inhibited the growth of E. coli. and P. aeruginosa largely in comparison to S. aureus. Whereas the DMAZ-CuO NPs synthesized with the help of O. lamiifolium leaf extract showed higher bacterial inhibition on E. coli compared to S. aureus and P. aeruginosa. The minimum inhibitory concentration (MIC) values of both types of NPs are also assessed on all three pathogens. The newly biosynthesized nanoparticles, thus, were found to be optional materials for inhibiting the growth of drug- resistant bacterial pathogens.
Collapse
Affiliation(s)
| | - Gedif Meseret Abebe
- Department of Biology, Wolaita Sodo University, Wolaita Sodo, P.O.BoX. 138, Soddo, Ethiopia
| | | |
Collapse
|
7
|
Di Mari G, La Matta V, Strano V, Reitano R, Cerruti P, Filippone G, Mirabella S, Bruno E. Optimized Chemical Bath Deposition for Low Cost, Scalable, and Environmentally Sustainable Synthesis of Star-Like ZnO Nanostructures. ACS OMEGA 2024; 9:38591-38598. [PMID: 39310188 PMCID: PMC11411655 DOI: 10.1021/acsomega.4c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 09/25/2024]
Abstract
This paper highlights an affordable and straightforward method called chemical bath deposition (CBD) for generating different morphologies of ZnO-based nanostructures. In particular, a specific protocol was found to drive the growth versus a high-yield in-plane symmetric six-arm nanostructure, named a nanostar (NS). Each arm of the star consists of a cluster of parallel wires, creating a subnanostructure with a huge surface-to-volume ratio. As-grown NSs present a mixed phase of ZnOHF and ZnO, which converts to ZnO under thermal annealing at 300 °C. The NSs have a highly exposed surface area (13.2702 m2·g-1) and exhibit an energy gap of 3.25 eV. A cradle-to-gate life cycle assessment (LCA) analysis has shown the high ecofriendly potential of this synthesis route and identified hotspots that need to be addressed to minimize the environmental impact of NS synthesis on an industrial scale.
Collapse
Affiliation(s)
- Gisella
M. Di Mari
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM,
Catania (University) Unit, via S. Sofia 64, Catania 95123, Italy
| | - Valentina La Matta
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale
(INSTM Consortium UdR Naples), University
of Naples Federico II, p.le Tecchio 80, Naples 80125, Italy
| | - Vincenzina Strano
- CNR-IMM,
Catania (University) Unit, via S. Sofia 64, Catania 95123, Italy
| | - Riccardo Reitano
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM,
Catania (University) Unit, via S. Sofia 64, Catania 95123, Italy
| | | | - Giovanni Filippone
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale
(INSTM Consortium UdR Naples), University
of Naples Federico II, p.le Tecchio 80, Naples 80125, Italy
| | - Salvo Mirabella
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM,
Catania (University) Unit, via S. Sofia 64, Catania 95123, Italy
| | - Elena Bruno
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM,
Catania (University) Unit, via S. Sofia 64, Catania 95123, Italy
| |
Collapse
|
8
|
Sharifi R, Vatani A, Sabzi A, Safaei M. A narrative review on application of metal and metal oxide nanoparticles in endodontics. Heliyon 2024; 10:e34673. [PMID: 39145007 PMCID: PMC11320137 DOI: 10.1016/j.heliyon.2024.e34673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The distinct physicochemical and biological characteristics of metal and metal oxide nanoparticles have attracted considerable interest in various branches of dentistry as potential solutions to the problems associated with conventional dental treatments and to promote human health. Many scientists have been interested in nanoparticles for endodontic applications in the last several decades. Endodontic treatment is more likely to be successful when metal and metal oxide nanoparticles are used. Endodontic therapies often make use of nanoparticles made of metals and metal oxides. The effect of nano metals and metal oxide in endodontic treatments has not been published or is not widely available in the literature. Therefore, this paper aims to review recent studies on the development and application of some important metal and metal oxide nanoparticles such as silver and silver oxide, zinc oxide, zirconium oxide, magnesium oxide, titanium dioxide and other metal oxide nanoparticles in endodontic therapeutic procedures.
Collapse
Affiliation(s)
- Roohollah Sharifi
- Advanced Dental Sciences and Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Vatani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Sabzi
- Advanced Dental Sciences and Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Safaei
- Advanced Dental Sciences and Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Jamal Salih S. Green synthesis and characterization of polyphenol-coated magnesium-substituted manganese ferrite nanoparticles: Antibacterial and antioxidant properties. Heliyon 2024; 10:e31428. [PMID: 38818154 PMCID: PMC11137518 DOI: 10.1016/j.heliyon.2024.e31428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Magnesium-substituted manganese ferrite (Mn0.9Mg0.1Fe2O4) nanoparticles were obtained through a wet chemical method and coated with green-extracted polyphenol from Punica granatum peel. The obtained spinel nanocomposite was fully characterized. The X-ray diffraction pattern revealed a single phase with an average crystalline size of 3.33-8.74 nm, confirming the cubic-spinel structure. The FESEM micrograph showed a quasi-spherical shape with nearly uniform particles, indicating mild agglomeration. The mean size of the Mn0.9Mg0.1Fe2O4 was 13.66 nm with a standard deviation of 2.05. The BET isotherms indicated a surface area of 85.45 m2/g. The basic groups attached to the external surface of Mg-doped spinel ferrite were discovered. The resulted superparamagnetic modified doped-nanoferrite particles showed antibacterial activity as well as antioxidant efficiency through studying Catalase (CAT), Glutathione (GSH), and Glutathione Peroxidase (GSH-Px) parameters. The outcomes highlight the promising potential of polyphenol-functionalized Mn0.9Mg0.1Fe2O4 magnetite nanosized particles for the development of novel anti-biofilm agents.
Collapse
Affiliation(s)
- Shameran Jamal Salih
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region − F.R., Iraq
- Department of Pharmaceutical Basic Sciences, Tishk International University - Erbil, Kurdistan Region, Iraq
| |
Collapse
|
10
|
Senthil Rathi B, Ewe LS, S S, S S, Yew WK, R B, Tiong SK. Recent trends and advancement in metal oxide nanoparticles for the degradation of dyes: synthesis, mechanism, types and its application. Nanotoxicology 2024; 18:272-298. [PMID: 38821108 DOI: 10.1080/17435390.2024.2349304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/30/2024] [Indexed: 06/02/2024]
Abstract
Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.
Collapse
Affiliation(s)
- B Senthil Rathi
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Lay Sheng Ewe
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| | - Sanjay S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Sujatha S
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, India
| | - Weng Kean Yew
- School of Engineering and Physical Science, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | | | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Kajang, Selangor, Malaysia
| |
Collapse
|
11
|
Omran BA, Baek KH. Dual extracellular mycofabrication of cobalt and zinc nano metal oxides mediated by mycelial-cell free filtrate of Aspergillus sojae: Characterization and assessment of antibacterial activity. J Mol Struct 2024; 1300:137190. [DOI: 10.1016/j.molstruc.2023.137190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Bhuyan T, Mohanta YK, Patowary K, Maity S, Nayak D, Deka K, Meenakshi Sundaram K, Muthupandian S, Sarma H. Therapeutic potential of lipopeptide biosurfactant-fabricated copper oxide nanoparticles: Mechanistic insight into their biocompatibility using zebra fish. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100227. [DOI: 10.1016/j.crbiot.2024.100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
13
|
Sahoo A, Acharya AN. Synthesis and characterization of La QDs: sensors for anions and H 2O 2. SENSORS & DIAGNOSTICS 2024; 3:1476-1493. [DOI: 10.1039/d4sd00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The development of sensitive and accurate fluorescence sensors for the detection of anions and reactive oxygen species (ROS, H2O2) is essential as they play significant roles in biological and chemical processes.
Collapse
Affiliation(s)
- Amit Sahoo
- School of Basic Sciences & Humanities (Chemistry), Odisha University of Technology and Research, Bhubaneswar-751029, Odisha, India
| | - Achyuta N. Acharya
- School of Basic Sciences & Humanities (Chemistry), Odisha University of Technology and Research, Bhubaneswar-751029, Odisha, India
| |
Collapse
|
14
|
Singh KR, Singh P, Mallick S, Singh J, Pandey SS. Chitosan stabilized copper iodide nanoparticles enabled nano-bio-engineered platform for efficient electrochemical biosensing of dopamine. Int J Biol Macromol 2023; 253:127587. [PMID: 37866579 DOI: 10.1016/j.ijbiomac.2023.127587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Neurodegenerative disorders are one of the significant challenges to the aging society, as per the United Nations, where 1 in 6 people globally over 65 years of age are expected to suffer by 2050. The exact pathophysiological root of these disorders is although not known adequately, but reduced dopamine (most significant neurotransmitters) levels have been reported in people affected by Parkinson's disease. Sensitive detection and effective monitoring of dopamine can help to diagnose these neurodegenerative disorders at a very early stage, which will help to properly treat these disorders and slow down their progression. Therefore, it is crucial to detect physiological and clinically acceptable amounts of dopamine with high sensitivity and selectivity in basic pathophysiology research, medication, and illness diagnosis. Here in this present investigation, nano-bio-engineered stable chitosan stabilized copper iodide nanoparticles (CS@CuI NPs) were synthesized to engineer the active biosensing platform for developing dopamine biosensors. Initially, the as-synthesized nano-bio-engineered CS@CuI NPs were subjected to its drop-casting onto an Indium tin oxide (ITO) conducting glass substrate. This substrate platform was then utilized to immobilize tyrosinase (Tyr) enzyme by drop-casting to fabricate Tyr/CS@CuI NPs/ITO bioelectrode for the ultrasensitive determination of dopamine. Several techniques were used to characterize the structural, optical, and morphological properties of the synthesized CS@CuI NPs and Tyr/CS@CuI NPs/ITO bioelectrode. Further, the as-prepared bioelectrode was evaluated for its suitability and electrocatalytic behaviour towards dopamine by cyclic voltammetry. A perusal of the electroanalytic results of the fabricated biosensor revealed that under the optimized experimental conditions, Tyr/CS@CuI NPs/ITO bioelectrode exhibits a very high electrochemical sensitivity of 11.64 μA μM-1 cm-2 towards dopamine with the low limit of detection and quantification of 0.02 and 0.386 μM, respectively. In addition, the fabricated bioelectrode was stable up to 46 days with only 4.82 % current loss, reusable till 20 scans, and it also performed effectively while real sample analysis. Therefore, the nano-bio-engineered biosensor platform being reported can determine deficient dopamine levels in a very selective and sensitive manner, which can help adequately manage neurodegenerative disorders, further slowing down the disease progression.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Pooja Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Sadhucharan Mallick
- Department of Chemistry, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| |
Collapse
|
15
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
16
|
Bahramikia S, Izadi R. Plant-based green synthesis of nanoparticles as an effective and safe treatment for gastric ulcer. Inflammopharmacology 2023; 31:2843-2855. [PMID: 37921959 DOI: 10.1007/s10787-023-01367-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Gastric ulcer is a chronic disease that affects about 10% of the world's population. This disease is caused by factors such as stress, smoking, alcohol consumption, nonsteroidal anti-inflammatory drugs (NSAIDs), Helicobacter pylori infection, and genetic factors. Herbal medicines such as plant extracts are new sources of drugs with promising results in treating gastric ulcers. Nanotechnology and nanomedicine have been able to reach this objective to some extent. Green synthesis is an alternative method adapted for chemical and physical methods. In the last few years, fungi, bacteria, viruses, algae, and plants have been used to produce metallic nanoparticles. Since nanoparticles synthesized by the green method can be effective in anticancer, antidiabetic, antiulcer, anti-inflammatory, and antioxidant treatments, the aim of this review was to study the effect of metal nanoparticles and metal oxides produced by the green method on the treatment of gastric ulcers. For this purpose, an electronic search of published research and review articles in PubMed, Scopus, Science Direct, Cochrane databases, and Google Scholar was conducted using a combination of keywords of "gastric ulcers and nanoparticles", "gastric ulcers and Green synthesis" and "stomach ulcers and nanoparticles". After a full review of published articles and their references, 120 articles were identified for further detailed review. The articles selected were between 2000 and March 2023, and 2 articles published in 1972 and 1997 were utilized. The results of this study have shown that polymeric, metal, and metal oxide nanoparticles synthesized from plants can be effective in treating gastric ulcers, especially ulcers caused by H. pylori, ethanol, and NSAIDs.
Collapse
Affiliation(s)
- Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| | - Rezvan Izadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
17
|
Malec D, Warszyńska M, Repetowski P, Siomchen A, Dąbrowski JM. Enhancing Visible-Light Photocatalysis with Pd(II) Porphyrin-Based TiO 2 Hybrid Nanomaterials: Preparation, Characterization, ROS Generation, and Photocatalytic Activity. Molecules 2023; 28:7819. [PMID: 38067548 PMCID: PMC10707769 DOI: 10.3390/molecules28237819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 04/07/2024] Open
Abstract
Novel hybrid TiO2-based materials were obtained by adsorption of two different porphyrins on the surface of nanoparticles-commercially available 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and properly modified metalloporphyrin-5,10,15,20-tetrakis(2,6-difluoro-3-sulfophenyl)porphyrin palladium(II) (PdF2POH). The immobilization of porphyrins on the surface of TiO2 was possible due to the presence of sulfonyl groups. To further elevate the adsorption of porphyrin, an anchoring linker-4-hydroxybenzoic acid (PHBA)-was used. The synthesis of hybrid materials was proven by electronic absorption spectroscopy, dynamic light scattering (DLS), and photoelectrochemistry. Results prove the successful photosensitization of TiO2 to visible light by both porphyrins. However, the presence of the palladium ion in the modifier structure played a key role in strong adsorption, enhanced charge separation, and thus effective photosensitization. The incorporation of halogenated metalloporphyrins into TiO2 facilitates the enhancement of the comprehensive characteristics of the investigated materials and enables the evaluation of their performance under visible light. The effectiveness of reactive oxygen species (ROS) generation was also determined. Porphyrin-based materials with the addition of PHBA seemed to generate ROS more effectively than other composites. Interestingly, modifications influenced the generation of singlet oxygen for TPPS but not hydroxyl radical, in contrast to PdF2POH, where singlet oxygen generation was not influenced but hydroxyl radical generation was increased. Palladium (II) porphyrin-modified materials were characterized by higher photostability than TPPS-based nanostructures, as TPPS@PHBA-P25 materials showed the highest singlet oxygen generation and may be oxidized during light exposure. Photocatalytic activity tests with two model pollutants-methylene blue (MB) and the opioid drug tramadol (TRML)-confirmed the light dose-dependent degradation of those two compounds, especially PdF2POH@P25, which led to the virtually complete degradation of MB.
Collapse
Affiliation(s)
- Dawid Malec
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Anton Siomchen
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; (D.M.); (M.W.); (P.R.); (A.S.)
| |
Collapse
|
18
|
Rathee S, Ojha A, Upadhyay A, Xiao J, Bajpai VK, Ali S, Shukla S. Biogenic engineered nanomaterials for enhancing bioavailability via developing nano-iron-fortified smart foods: advances, insight, and prospects of nanobionics in fortification of food. Food Funct 2023; 14:9083-9099. [PMID: 37750182 DOI: 10.1039/d3fo02473c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Iron deficiency is a significant cause of iron deficiency anemia (IDA). Treatment of IDA is challenging due to several challenges, including low target bioavailability, low palatability, poor pharmacokinetics, and extended therapeutic regimes. Nanotechnology holds the promise of revolutionizing the management and treatment of IDA. Smart biogenic engineered nanomaterials (BENMs) such as lipids, protein, carbohydrates, and complex nanomaterials have been the subject of extensive research and opened new avenues for people and the planet due to their enhanced physicochemical, rheological, optoelectronic, thermomechanical, biological, magnetic, and nutritional properties. Additionally, they show eco-sustainability, low biotoxicity, active targeting, enhanced permeation and retention, and stimuli-responsive characteristics. We examine the opportunities offered by emerging smart BENMs for the treatment of iron deficiency anemia by utilizing iron-fortified smart foods. We review the progress made so far and other future directions to maximize the impact of smart nanofortification on the global population. The toxicity effects are also discussed with commercialization challenges.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, South Korea.
| | - Shruti Shukla
- Department of Nanotechnology, North Eastern Hill University (NEHU), East Khasi Hills, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
19
|
Kadian A, Manikandan V, Dev K, Kumar V, Yang CJ, Lin BH, Chen CL, Dong CL, Asokan K, Annapoorni S. Probing size-dependent defects in zinc oxide using synchrotron techniques: impact on photocatalytic efficiency. Phys Chem Chem Phys 2023; 25:25639-25653. [PMID: 37721171 DOI: 10.1039/d3cp02923a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In the present study, synchrotron-based X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) have been used to investigate the induced defect states in metal oxide nanomaterials. Specifically, two synthesis approaches have been followed to develop unique nano-sized peanut-shaped (N-ZnO) nanostructures and micron-sized hexagonal rods (M-ZnO). XANES analysis at the Zn K-edge revealed the presence of defect states with a divalent oxidation state of zinc (Zn2+) in a tetrahedral structure. Furthermore, XAS measurements performed at the Zn L3,2-edge and O K-edge confirm higher oxygen-related defects in M-ZnO, while N-ZnO appeared to have a higher concentration of surface defects due to size confinement. Moreover, the in-line XEOL and time dependent-XEOL measurements exposed the radiative excitonic recombination phenomena occurring in the band-tailing region as a function of absorption length, X-ray energy excitation, and time. Based on the chronology developed in the defect state improvement, a possible energy band diagram is proposed to accurately locate the defect states in the two systems. Furthermore, the increased absorption intensity at the Zn L3,2-edge and the O K-edge under the UV lamp suggests delayed recombination of electrons and holes, highlighting their potential use as photo catalysts. The photocatalytic activity degrading the rhodamine B dye established M-ZnO as a superior catalyst with a rapid degradation rate and significant mineralization. Overall, this work provides valuable insights into ZnO defect states and provides a foundation for efficient advanced materials for environmental or other optoelectronic applications.
Collapse
Affiliation(s)
- Ankit Kadian
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| | - V Manikandan
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| | - Kapil Dev
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| | - Vishnu Kumar
- New Chemistry Unit, JNCASR, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, Tamsui 251301, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - C L Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - C L Dong
- Department of Physics, Tamkang University, Tamsui 251301, Taiwan
| | - K Asokan
- Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - S Annapoorni
- Department of Physics and Astrophysics, University of Delhi, Delhi - 110007, India.
| |
Collapse
|
20
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
21
|
Eisavi R, Ghadernejad S. NiFe 2O 4@SiO 2-Cu as a novel and efficient magnetically recoverable nanocatalyst for regioselective synthesis of β-thiol-1,2,3-triazoles under benign conditions. RSC Adv 2023; 13:27984-27996. [PMID: 37736561 PMCID: PMC10510628 DOI: 10.1039/d3ra05433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
A green, mild and eco-friendly approach for the three component one-pot regioselective synthesis of 1,2,3-triazoles from thiiranes has been introduced in the presence of NiFe2O4@SiO2-Cu as a new and recoverable nanocatalyst. First, the NiFe2O4 nanoparticles have been produced through a solid-state reaction of hydrated nickel sulfate, hydrated iron(iii) nitrate, NaOH and NaCl salts, and then calcined at 700 °C. Next, in order to protect the ferrite particles from oxidation and aggregation, the NiFe2O4 was core-shelled using tetraethyl orthosilicate (TEOS) and converted to NiFe2O4@SiO2. Finally, the novel NiFe2O4@SiO2-Cu nanocomposite was successfully prepared by adding copper(ii) chloride solution and solid potassium borohydride. The catalyst has been characterized by FT-IR, SEM, EDX, VSM, ICP-OES, TEM and XRD techniques. The 1,3-dipolar cyclization of 1,2,3-triazoles was performed successfully in water at room temperature in high yields. The recoverability and reusability of the heterogeneous NiFe2O4@SiO2-Cu have also been investigated using VSM, SEM and FT-IR analyses. The catalyst was used four times in consecutive runs without considerable loss of activity. The presented procedure provides significant benefits such as using water as a green solvent, absence of hazardous organic solvents, high yields, benign conditions and recyclability of the magnetic catalyst.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor University P.O. BOX 19395-4697 Tehran Iran
| | - Seiran Ghadernejad
- Department of Chemistry, Payame Noor University P.O. BOX 19395-4697 Tehran Iran
| |
Collapse
|
22
|
Saha S, Alam R. Recent developments in the creation of a single molecular sensing tool for ternary iron (III), chromium (III), aluminium (III) ionic species: A review. LUMINESCENCE 2023; 38:1026-1046. [PMID: 36251318 DOI: 10.1002/bio.4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Rational design of a molecular sensing tool is an important topic in molecular recognition, signalling, and optoelectronics that has piqued the interest of chemists, biologists, and environmental scientists. Approximately 150 years have passed since the beginning of the fluorescent chemosensor sector. Due to the paramagnetic properties of Cr3+ and Al3+ , it is tough to prepare a photoluminescence plug-in detector. Most dye-based Al3+ sensors must be utilized in organic or mixed solvents for robust hydration of Al3+ in water. The sophisticated molecular design of sensors, conversely, allows for the detection of these metal ions in aqueous medium. The design of chemosensors using various fluorophores and their mechanisms of action have been thoroughly discussed. A literature survey covering the design of chemosensors and their mechanisms of action have been thoroughly discussed covering the period 2010-2022 and that was carried out including innovative and exemplary activities from numerous groups throughout the world that have significantly contributed to this sector. The most important advantages of these probes are their aqueous solubility and quick response with outstanding selectivity and sensitivity for temporal distribution with high fidelity of metals in living cells.
Collapse
Affiliation(s)
- Sudipta Saha
- Department of Chemistry (UG+PG), Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, India
| | - Rabiul Alam
- Department of Chemistry, Rabindra Mahavidyalaya, Champadanga, Hooghly, India
| |
Collapse
|
23
|
Wang C, Shu T, Lang J, Zhang Y, Yao Q, Guo S, Wang S. Rapid real-time monitoring of NO released from living cells using multi-walled carbon nanotube-7,7,8,8-tetracyanoquinonedimethyl-polylysine sensors. Talanta 2023; 259:124566. [PMID: 37084605 DOI: 10.1016/j.talanta.2023.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
Nitric oxide (NO) is an important but short-lived signaling molecule that is released from living cells. Real-time monitoring of NO release is useful for understanding normal cellular physiology and pathology. Herein, a convenient and efficient NO sensor was developed using multiwalled carbon nanotubes (MWCNTs)-7,7,8,8-tetracyanoquinodimethan (TCNQ)-polylysine (PLL) modified screen-printed electrode (SPE). The construction of the sensor (MWCNTs/TCNQ/PLL/SPE) was based on the synergic effect of the good conductivity of TCNQ and the high surface area of MWCNTs. The introduction of the cell-adhesive molecule PLL significantly enhanced the cytocompatibility, resulting in excellent cell attachment and growth. The resulting MWCNTs/TCNQ/PLL/SPE was successfully used for the real-time detection of NO released from living human umbilical vein endothelial cells (HUVECs) cultured on it. The MWCNTs/TCNQ/PLL/SPE was further used to detect NO release from oxidative-injured HUVECs with and without resveratrol to also preliminarily assess the effect of resveratrol against oxidative damage. The sensor developed in this study showed good performance for the real-time detection of NO released by HUVECs under different conditions and has potential applications in the diagnosis of biological processes and the screening of drug treatment effects.
Collapse
Affiliation(s)
- Caixia Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ting Shu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jinrong Lang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Youzhi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Shi Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, PR China.
| |
Collapse
|
24
|
Ngcongco K, Krishna SBN, Pillay K. Biogenic metallic nanoparticles as enzyme mimicking agents. Front Chem 2023; 11:1107619. [PMID: 36959878 PMCID: PMC10027806 DOI: 10.3389/fchem.2023.1107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The use of biological systems such as plants, bacteria, and fungi for the synthesis of nanomaterials has emerged to fill the gap in the development of sustainable methods that are non-toxic, pollution-free, environmentally friendly, and economical for synthesizing nanomaterials with potential in biomedicine, biotechnology, environmental science, and engineering. Current research focuses on understanding the characteristics of biogenic nanoparticles as these will form the basis for the biosynthesis of nanoparticles with multiple functions due to the physicochemical properties they possess. This review briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic nanoparticles, the cytotoxic effects of nanoparticles due to their physicochemical properties and the use of capping agents, molecules acting as reducing and stability agents and which aid to alleviate toxicity. The review also summarizes recent green synthetic strategies for metallic nanoparticles.
Collapse
Affiliation(s)
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Karen Pillay
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
25
|
Appu M, Wu H, Chen H, Huang J. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO 2) nanocomposites and their potent antimicrobial capabilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42575-42586. [PMID: 35233667 DOI: 10.1007/s11356-022-19349-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we hypothesized that novel nanocomposites of chitosan-coated cerium oxide (CS/CeO2 NCs) derived from aqueous extracts of tea polyphenols would be stabilized and reduced by using green chemistry. The UV-visible spectrum of the synthesized material revealed an SPR peak at 279 nm, and the morphological characteristics of nanoparticles (NPs) as a uniformly distributed spherical shape with a size range of 20 nm were confirmed by field emission scanning electron microscopy (FESEM). The Fourier transform infrared spectroscopy (FTIR) spectrum illustrated the amino groups of chitosan-coated with CeO2 NPs on the surface. While, the hydrodynamic size (376 nm) and surface charge (+ 25.0 mV) of particles were assessed by dynamic light scattering (DLS), and the existence of oxidation state elements Ce 3d, O 1 s, and C 1 s was identified by employing X-ray photoelectron spectroscopy (XPS). A cubic fluorite polycrystalline structure with a crystallite size of (5.24 nm) NPs was determined using an X-ray Diffractometer (XRD). The developed CS/CeO2 NCs demonstrated excellent antibacterial and antifungal efficacy against foodborne pathogens such as Escherichia coli, Staphylococcus aureus, and Botrytis cinerea with zone of inhibition of 13.5 ± 0.2 and 11.7 ± 0.2 mm, respectively. The results elucidated the potential of biosynthesized CS/CeO2 NCs could be utilized as potent antimicrobial agents in the food and agriculture industries.
Collapse
Affiliation(s)
- Manikandan Appu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Huixiang Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Hao Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China.
| |
Collapse
|
26
|
Mostafa GAE, El-Tohamy MF, Alrabiah H. Prospective of Agro-Waste Husks for Biogenic Synthesis of Polymeric-Based CeO 2/NiO Nanocomposite Sensor for Determination of Mebeverine Hydrochloride. Molecules 2023; 28:2095. [PMID: 36903341 PMCID: PMC10004120 DOI: 10.3390/molecules28052095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The remarkable properties of nickel oxide (NiO) and cerium oxide (CeO2) nanostructures have attracted considerable interest in these nanocomposites as potential electroactive materials for sensor construction. METHODS The mebeverine hydrochloride (MBHCl) content of commercial formulations was determined in this study using a unique factionalized CeO2/NiO-nanocomposite-coated membrane sensor. RESULTS Mebeverine-phosphotungstate (MB-PT) was prepared by adding phosphotungstic acid to mebeverine hydrochloride and mixing with a polymeric matrix (polyvinyl chloride, PVC) and plasticizing agent o-nitrophenyl octyl ether. The new suggested sensor showed an excellent linear detection range of the selected analyte at 1.0 × 10-8-1.0 × 10-2 mol L-1 with regression equation EmV = (-29.429 ± 0.2) log [MB] + 347.86. However, the unfunctionalized sensor MB-PT displayed less linearity at 1.0 × 10-5-1.0 × 10-2 mol L-1 drug solution with regression equation EmV = (-26.603 ± 0.5) log [MB] + 256.81. By considering a number of factors, the applicability and validity of the suggested potentiometric system were improved following the rules of analytical methodological requirements. CONCLUSION The created potentiometric technique worked well for determining MB in bulk substance and in medical commercial samples.
Collapse
Affiliation(s)
- Gamal A. E. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Haitham Alrabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Harshita, Park TJ, Kailasa SK. Microwave-assisted synthesis of blue fluorescent molybdenum nanoclusters with maltose-cysteine Schiff base for detection of myoglobin and γ-aminobutyric acid in biofluids. LUMINESCENCE 2023. [PMID: 36758217 DOI: 10.1002/bio.4454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The fabrication of stable fluorescent MoNCs (molybdenum nanoclusters) in aqueous media is quite challenging as it is not much explored yet. Herein, we report a facile and efficient strategy for fabricating MoNCs using 2,3 dialdehyde maltose-cysteine Schiff base (DAM-cysteine) as a ligand for detecting myoglobin and γ-aminobutyric acid (GABA) in biofluids with high selectivity and sensitivity. The DAM-cysteine-MoNCs displayed fluorescence of bright blue color under a UV light at 365 nm with an emission peak at 444 nm after excitation at 370 nm. The synthesized DAM-cysteine-MoNCs were homogeneously distributed with a mean size of 2.01 ± 0.98 nm as confirmed by the high-resolution transmission electron microscopy (HR-TEM). Further, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) techniques were utilized to confirm the elemental oxidation states and surface functional groups of the DAM-cysteine-MoNCs. After the addition of myoglobin and GABA, the emission peak of DAM-cysteine-MoNCs at 444 nm was significantly quenched. This resulted in the development of a quantitative assay for the detection of myoglobin (0.1-0.5 μM) and GABA (0.125-2.5 μM) with the lower limit of detection as 56.48 and 112.75 nM for myoglobin and GABA, respectively.
Collapse
Affiliation(s)
- Harshita
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Tae-Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
28
|
Zeraatkar S, Tahan M, Sadeghian H, Nazari R, Behmadi M, Hosseini Bafghi M. Effect of biosynthesized selenium nanoparticles using Nepeta extract against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. J Basic Microbiol 2023; 63:210-222. [PMID: 36482013 DOI: 10.1002/jobm.202200513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
The problems of drug resistance in bacteria have become one of the daily challenges of the clinical treatment of patients, which inevitably forces us to use agents other than common antibiotics. Among these, we can take help from different properties and applications of nanoparticles (NPs). In this work, we evaluate the antibacterial activity of biosynthesized selenium nanoparticles (SeNPs) against standard strains of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. The production of biosynthesized SeNPs was proved by ultraviolet-visible, Fourier transform infrared, X-ray diffractometer, Field Emission Scanning Electron Microscopy, Dynamic light scattering, and Zeta potential methods. The cytotoxicity effect of SeNPs was investigated by MTT assay. Disk diffusion agar (DDA) and minimum inhibitory concentration (MIC) tests were performed on the mentioned bacteria using different classes of standard antibiotics and SeNPs separately. The impact of SeNPs combined with the desired antibiotics for better treatment of these infections was evaluated by checkerboard assay to determine the synergism effect. After the confirmation results based on the biosynthesis of SeNPs, both standard bacterial strains were susceptible to SeNPs and had a zone of inhibition using the DDA test. Also, the results of MICs showed that biosynthesized SeNPs in lower concentrations than antibiotics cause no growth of bacteria. On the other hand, according to the checkerboard assay, SeNPs had a synergistic effect with conventional antibiotics. The antibacterial sensitivity tests demonstrated the inhibition of bacterial growth in the presence of lower concentrations of SeNPs than common antibiotics. This property can be exerted in future applications to solve the drug resistance obstacle of microorganisms in bacterial diseases.
Collapse
Affiliation(s)
- Shadi Zeraatkar
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Tahan
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Nazari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Qom, Iran
| | - Mostafa Behmadi
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
30
|
Liu H, Zhang K, Jang YO, Qiao Z, Jin J, Thi Dao TN, Koo B, Park CO, Shin Y. Homobifunctional imidoester-modified zinc nano-spindle attenuated hyphae growth of Aspergillus against hypersensitivity responses. iScience 2023; 26:105922. [PMID: 36866037 PMCID: PMC9971823 DOI: 10.1016/j.isci.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Fungi cause various forms of invasive fungal disease (IFD), and fungal sensitization can contribute to the development of asthma, asthma severity, and other hypersensitivity diseases, such as atopic dermatitis (AD). In this study, we introduce a facile and controllable approach, using homobifunctional imidoester-modified zinc nano-spindle (HINS), for attenuating hyphae growth of fungi and reducing the hypersensitivity response complications in fungi-infected mice. To extend the study of the specificity and immune mechanisms, we used HINS-cultured Aspergillus extract (HI-AsE) and common agar-cultured Aspergillus extract (Con-AsE) as the refined mouse models. HINS composites within the safe concentration range inhibited the hyphae growth of fungi but also reduce the number of fungal pathogens. Through the evaluation of lung and skin tissues from the mice, asthma pathogenesis (lung) and the hypersensitivity response (skin) to invasive aspergillosis were least severe in HI-AsE-infected mice. Therefore, HINS composites attenuate asthma and the hypersensitivity response to invasive aspergillosis.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jie Jin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Thuy Nguyen Thi Dao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea,Corresponding author
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea,Corresponding author
| |
Collapse
|
31
|
Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More MP, Pardeshi SR, Dhaneshwar G, Junnuthula V, Dyawanapelly S. Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotechnol 2023; 11:1159193. [PMID: 37200842 PMCID: PMC10185809 DOI: 10.3389/fbioe.2023.1159193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Rushikesh Sherkar
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Chaitali Shirsathe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Rushikesh Sonwane
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Nikita Varpe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Mahesh P. More
- Department of Pharmaceutics, Dr Rajendra Gode College of Pharmacy, Malkapur, Buldana, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St John Institute of Pharmacy and Research, Palghar, India
| | | | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| |
Collapse
|
32
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
33
|
Albizia lebbeck-mediated ZnO phytosynthesis and their non-antimicrobial and biocompatibility studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Kosri E, Ibrahim F, Thiha A, Madou M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234171. [PMID: 36500794 PMCID: PMC9741053 DOI: 10.3390/nano12234171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/28/2023]
Abstract
Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.
Collapse
Affiliation(s)
- Elyana Kosri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre of Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Madou
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
- Academia Mexicana de Ciencias, Ciudad de México 14400, CDMX, Mexico
| |
Collapse
|
35
|
Menon S, Jayakodi S, Yadav KK, Somu P, Isaq M, Shanmugam VK, Chaitanyakumar A, Basavegowda N. Preparation of Paclitaxel-Encapsulated Bio-Functionalized Selenium Nanoparticles and Evaluation of Their Efficacy against Cervical Cancer. Molecules 2022; 27:7290. [PMID: 36364115 PMCID: PMC9655580 DOI: 10.3390/molecules27217290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 10/21/2024] Open
Abstract
The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a pH of 7.4 and 5.5, and further characterized using FTIR, DLS, zeta potential, and TEM to confirm their morphology, and the encapsulation of the drug was carried out using UPLC analysis. Quantitative evaluation of anti-cancer properties was performed via MTT analysis, apoptosis, gene expression analysis, cell cycle arrest, and over-production of ROS. The unique combination of phytochemicals from the seed extract, chitosan, paclitaxel, and selenium nanoparticles can be effectively utilized to combat cancerous cells. The production of the nanosystem has been demonstrated to be cost-effective and have unique characteristics, and can be utilized for improving future diagnostic approaches.
Collapse
Affiliation(s)
- Soumya Menon
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Kanti Kusum Yadav
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore 641114, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Mona Isaq
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga 577451, India
| | - Venkat Kumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500085, India
| | | |
Collapse
|
36
|
Zhang B, Yang Z, Li Y, Ma L, Li F, Lv X, Wen G. A label-free aptasensor for the detection of ATP based on turn-on fluorescence DNA-templated silver nanoclusters. RSC Adv 2022; 12:30024-30029. [PMID: 36321105 PMCID: PMC9582908 DOI: 10.1039/d2ra04636a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
A label-free aptasensor has been fabricated in order to detect adenosine triphosphate (ATP) using turn-on fluorescence DNA-Ag NCs. The fluorescence of the DNA-Ag NCs could increase remarkably with the addition of ATP mainly because ATP specifically interacts with its aptamer to change the microenvironment of the darkish DNA-Ag NCs located at one terminus or two termini due to the conformational alteration of the aptamer structure. The proposed sensor can detect ATP in a linear range of 6-27 mM with a good detection limit of 5.0 μM. Additionally, the proposed method succeeded in detecting ATP in fetal bovine serum.
Collapse
Affiliation(s)
- Baozhu Zhang
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| | - Ziyao Yang
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| | - Yuxia Li
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| | - Ling Ma
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| | - Fenfang Li
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| | - Xiuqing Lv
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| | - Guangming Wen
- Department of Chemistry and Chemical Engineering, Jinzhong UniversityYuci 030619P. R. China
| |
Collapse
|
37
|
Hassan MH, Omar AM, Daskalakis E, Mohamed AA, Boyd LA, Blanford C, Grieve B, Bartolo PJDS. Multi-Layer Biosensor for Pre-Symptomatic Detection of Puccinia strifformis, the Causal Agent of Yellow Rust. BIOSENSORS 2022; 12:829. [PMID: 36290966 PMCID: PMC9599175 DOI: 10.3390/bios12100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The yellow rust of wheat (caused by Puccinia striiformis f. sp. tritici) is a devastating fungal infection that is responsible for significant wheat yield losses. The main challenge with the detection of this disease is that it can only be visually detected on the leaf surface between 7 and 10 days after infection, and by this point, counter measures such as the use of fungicides are generally less effective. The hypothesis of this study is to develop and use a compact electrochemical-based biosensor for the early detection of P. striiformis, thus enabling fast countermeasures to be taken. The biosensor that was developed consists of three layers. The first layer mimics the wheat leaf surface morphology. The second layer consists of a sucrose/agar mixture that acts as a substrate and contains a wheat-derived terpene volatile organic compound that stimulates the germination and growth of the spores of the yellow rust pathogen P. s. f. sp. tritici. The third layer consists of a nonenzymatic glucose sensor that produces a signal once invertase is produced by P. striiformis, which comes into contact with the second layer, thereby converting sucrose to glucose. The results show the proof that this innovative biosensor can enable the detection of yellow rust spores in 72 h.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
| | | | | | | | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Paulo JDS. Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
- Singapore 3D Printing Centre, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
38
|
A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers (Basel) 2022; 14:cancers14194654. [PMID: 36230578 PMCID: PMC9564040 DOI: 10.3390/cancers14194654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Presently, there are no conclusive treatments for many types of cancer, mainly due to the advanced phase of the disease at the time of diagnosis and to the side effects of existing therapies. Present diagnostic and therapeutic procedures need to be improved to supply early detection abilities and perform a more specific therapy with reduced systemic toxicity. In this review, improvements in nanotechnology allowing the design of multifunctional nanoparticles for cancer detection, therapy, and monitoring are reported. Nanoparticles, thanks to the nanomaterials they are made of, can be used as contrast agents for various diagnostic techniques such as MRI, optical imaging, and photoacoustic imaging. Furthermore, when used as drug carriers, they can accumulate in tumor tissues through the passive or/and active targeting, protect encapsulated drugs from degradation, raise tumor exposure to chemotherapeutic agents improving treatment effects. In addition, nanocarriers can simultaneously deliver more than one therapeutic agent enhancing the effectiveness of therapy and can co-deliver imaging and therapy agents to provide integration of diagnostics, therapy, and follow-up. Furthermore, the use of nanocarriers allows to use different therapeutic approaches, such as chemotherapy and hyperthermia to exploit synergistic effects. Theranostic approach to diagnose and treat cancer show a great potential to improve human health, however, despite technological advances in this field, the transfer into clinical practice is still a long way off.
Collapse
|
40
|
Rana S, Sharma RK, Fridman N, Kumar A. Structural characterization and bioimaging of Zn 2+ using meta-benziporphodimethene analogue. LUMINESCENCE 2022. [PMID: 36068987 DOI: 10.1002/bio.4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
"Prevention is better than cure, especially when something has no cure." Cancer, in most patients is detected at the stage beyond which it becomes non-curative. Thus, the early detection of cancer cells can play a crucial role in enhancing the chances of a patient's survival. In this light, we present a non-fluorescent receptor employed for the detection of Zn2+ ion in MDA-MB-231 carcinoma cells that exhibits fluorescence turn-on behaviour upon binding with the metal ion. In this work, the synthesis of 11,16-bis(2,6-difluorobenzene)-6,6,21,21-tetramethyl-meta-benziporpho-6,21-dimethene and its Zn2+ chloride complex have been reported. The compounds were fully characterized using UV-Visible, NMR, IR and mass spectrometry. Furthermore, the X-ray polymorphs of meta-benziporphodimethene analogue have been added. The study of its bioimaging applications in MDA-MB-231 breast cancer cells for the detection of Zn2+ ions have been reported.
Collapse
Affiliation(s)
- Shikha Rana
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| | | | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| |
Collapse
|
41
|
Aswathi VP, Meera S, Maria CGA, Nidhin M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2022. [PMCID: PMC9399584 DOI: 10.1007/s41204-022-00276-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The contemporary world is concerned only with non-biodegradable waste management which needs more sophisticated procedures as compared to biodegradable waste management. Biodegradable waste has the potential to become useful to society through a simple volarization technique. The researchers are behind sustainable nanotechnology pathways which are made possible by using biodegradable waste for the preparation of nanomaterials. This review emphasizes the potentialities of biodegradable waste produced as a viable alternative to create a sustainable economy that benefits all humans. Volarization results in the utilization of biowastes as well as provides safer and hazard-free green methods for the synthesis of nanoparticles. Starting from different sources to the application which includes therapeutics, food industry and water treatment. The review hovers over the pros and cons of biowaste-mediated nanoparticles and concludes with possible advances in the application. In the present scenario, the combination of green synthesis and biowaste can bring about a wide variety of applications in nanotechnology once the hurdles of bulk-scale industrial production are resolved. Given these points, the review is focused on the cost-effective synthesis of metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- V. P. Aswathi
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| | - S. Meera
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| | - C. G. Ann Maria
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| | - M. Nidhin
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, Karnataka 560029 India
| |
Collapse
|
42
|
Wu HF, Kailasa SK. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). LUMINESCENCE 2022. [PMID: 35929140 DOI: 10.1002/bio.4353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Further, this review emphasis on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+ , Cu2+ , Hg2+ , F- , peptides, and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in Tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
43
|
Abedini A, Rostami M, Banafshe HR, Rahimi-Nasrabadi M, SobhaniNasab A, Ganjali MR. Utility of Biogenic Iron and Its Bimetallic Nanocomposites for Biomedical Applications: A Review. Front Chem 2022; 10:893793. [PMID: 35844637 PMCID: PMC9283709 DOI: 10.3389/fchem.2022.893793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795–800; Bushra et al., Journal of hazardous materials, 2014, 264, 481–489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76–82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.
Collapse
Affiliation(s)
- Ali Abedini
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ali SobhaniNasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Ali SobhaniNasab,
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
44
|
Bokhary KA, Maqsood F, Amina M, Aldarwesh A, Mofty HK, Al-yousef HM. Grapefruit Extract-Mediated Fabrication of Photosensitive Aluminum Oxide Nanoparticle and Their Antioxidant and Anti-Inflammatory Potential. NANOMATERIALS 2022; 12:nano12111885. [PMID: 35683744 PMCID: PMC9182307 DOI: 10.3390/nano12111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) were synthesized using a simple, eco-friendly green synthesis approach in an alkaline medium from the extract of grapefruit peel waste. The pre-synthesized, nano-crystalline Al2O3 NPs were characterized by using spectroscopic (UV-vis, FTIR, XRD, and EDX) and microscopic (SEM and TEM) techniques. The formed Al2O3 NPs exhibited a pronounced absorption peak at 278 nm in the UV-vis spectrum. The average particle size of the as-prepared Al2O3 NPs was evaluated to be 57.34 nm, and the atomic percentages of O and Al were found to be 54.58 and 45.54, respectively. The fabricated Al2O3 NPs were evaluated for antioxidant, anti-inflammatory, and immunomodulatory properties. The Al2O3 NPs showed strong antioxidant potential towards all the four tested assays. The anti-inflammatory and immunomodulatory potential of Al2O3 NPs was investigated by measuring the production of nitric oxide and superoxide anion (O2•-), as well as proinflammatory cytokines tumour necrosis factor (TNF-α, IL-6) and inhibition of nuclear factor kappa B (NF- κB). The results revealed that Al2O3 NPs inhibited the production of O2•- (99.4%) at 100 μg mL-1 concentrations and intracellular NO•- (55%), proinflammatory cytokines IL-6 (83.3%), and TNF-α (87.9%) at 50 μg mL-1 concentrations, respectively. Additionally, the Al2O3 NPs inhibited 41.8% of nuclear factor kappa B at 20 μg mL-1 concentrations. Overall, the outcomes of current research studies indicated that Al2O3 NPs possess anti-inflammatory and immunomodulatory properties and could be used to treat chronic and acute anti-inflammatory conditions.
Collapse
Affiliation(s)
- Kholoud A. Bokhary
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Farah Maqsood
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Amal Aldarwesh
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan K. Mofty
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan M. Al-yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
45
|
Zheng S, Duley WW, Peng P, Zhou N. Laser modification of Au-CuO-Au structures for improved electrical and electro-optical properties. NANOTECHNOLOGY 2022; 33:245205. [PMID: 35255484 DOI: 10.1088/1361-6528/ac5b52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
CuO nanomaterials are one of the metal-oxides that received extensive investigations in recent years due to their versatility for applications in high-performance nano-devices. Tailoring the device performance through the engineering of properties in the CuO nanomaterials thus attracted lots of effort. In this paper, we show that nanosecond (ns) laser irradiation is effective in improving the electrical and optoelectrical properties in the copper oxide nanowires (CuO NWs). We find that ns laser irradiation can achieve joining between CuO NWs and interdigital gold electrodes. Meanwhile, the concentration and type of point defects in CuO can be controlled by ns laser irradiation as well. An increase in the concentration of defect centers, together with a reduction in the potential energy barrier at the Au/CuO interfaces due to laser irradiation increases electrical conductivity and enhances photo-conductivity. We demonstrate that the enhanced electrical and photo-conductivity achieved through ns laser irradiation can be beneficial for applications such as resistive switching and photo-detection.
Collapse
Affiliation(s)
- Shuo Zheng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario, N2L 3G1, Waterloo, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Walter W Duley
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Peng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario, N2L 3G1, Waterloo, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Norman Zhou
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario, N2L 3G1, Waterloo, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
46
|
Recent Advances in Endocrine Disrupting Compounds Degradation through Metal Oxide-Based Nanomaterials. Catalysts 2022. [DOI: 10.3390/catal12030289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endocrine Disrupting Compounds (EDCs) comprise a class of natural or synthetic molecules and groups of substances which are considered as emerging contaminants due to their toxicity and danger for the ecosystems, including human health. Nowadays, the presence of EDCs in water and wastewater has become a global problem, which is challenging the scientific community to address the development and application of effective strategies for their removal from the environment. Particularly, catalytic and photocatalytic degradation processes employing nanostructured materials based on metal oxides, mainly acting through the generation of reactive oxygen species, are widely explored to eradicate EDCs from water. In this review, we report the recent advances described by the major publications in recent years and focused on the degradation processes of several classes of EDCs, such as plastic components and additives, agricultural chemicals, pharmaceuticals, and personal care products, which were realized by using novel metal oxide-based nanomaterials. A variety of doped, hybrid, composite and heterostructured semiconductors were reported, whose performances are influenced by their chemical, structural as well as morphological features. Along with photocatalysis, alternative heterogeneous advanced oxidation processes are in development, and their combination may be a promising way toward industrial scale application.
Collapse
|
47
|
Hashmi A, Nayak V, Singh KR, Jain B, Baid M, Alexis F, Singh AK. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. MATERIALS TODAY. ADVANCES 2022; 13:100208. [PMID: 35039802 PMCID: PMC8755454 DOI: 10.1016/j.mtadv.2022.100208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 05/06/2023]
Abstract
Graphene is a two-dimensional material with sp2 hybridization that has found its broad-spectrum potentialities in various domains like electronics, robotics, aeronautics, etc.; it has recently gained its utilities in the biomedical domain. The unique properties of graphene and its derivatives of graphene have helped them find their utilities in the biomedical domain. Additionally, the sudden outbreak of SARS-CoV-2 has immensely expanded the research field, which has also benefitted graphene and its derivatives. Currently, the world is facing a global pandemic due to the sudden outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as COVID-19, from its major onset in Wuhan city, China, in December 2019. Presently, many new variants and mutants appear, which is more harmful than previous strains. However, researchers and scientists are focused on understanding the target structure of coronavirus, mechanism, causes and transmission mode, treatment, and alternatives to cure these diseases in this critical pandemic situation; many findings are achieved, but much more is unknown and pending to be explored. This review paper is dedicated to exploring the utilities of graphene and its derivatives in combating the SARS-CoV-2 by highlighting their mechanism and applications in the fabrication of biosensors, personal protection equipment (PPE) kits, 3-D printing, and antiviral coatings. Further, the paper also covers the cytotoxicity caused by graphene and its derivatives and highlights the graphene-based derivatives market aspects in biomedical domains. Thus, graphene and graphene-derived materials are our new hope in this pandemic time, and this review helps acquire broad knowledge about them.
Collapse
Affiliation(s)
- Ayesha Hashmi
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Vanya Nayak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Kshitij Rb Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Mitisha Baid
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| | - Frank Alexis
- Department of Chemical Engineering, Universidad de San Francisco de Quito, Quito, 107910, Ecuador
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V. Y. T. PG. Autonomous College, Durg, Chhattisgarh, 491001, India
| |
Collapse
|
48
|
Le VAT, Trinh TX, Chien PN, Giang NN, Zhang XR, Nam SY, Heo CY. Evaluation of the Performance of a ZnO-Nanoparticle-Coated Hydrocolloid Patch in Wound Healing. Polymers (Basel) 2022; 14:919. [PMID: 35267741 PMCID: PMC8912749 DOI: 10.3390/polym14050919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hydrocolloid dressings are an important method for accelerating wound healing. A combination of a hydrocolloid and nanoparticles (NPs), such as gold (Au), improves the wound healing rate, but Au-NPs are expensive and unable to block ultraviolet (UV) light. Herein, we combined zinc oxide nanoparticles (ZnO-NPs) with hydrocolloids for a less expensive and more effective UV-blocking treatment of wounds. Using Sprague-Dawley rat models, we showed that, during 10-day treatment, a hydrocolloid patch covered with ZnO-NPs (ZnO-NPs-HC) macroscopically and microscopically stimulated the wound healing rate and improved wound healing in the inflammation phase as shown by reducing of pro-inflammatory cytokines (CD68, IL-8, TNF-α, MCP-1, IL-6, IL-1β, and M1) up to 50%. The results from the in vitro models (RAW264.7 cells) also supported these in vivo results: ZnO-NPs-HCs improved wound healing in the inflammation phase by expressing a similar level of pro-inflammatory mediators (TNF-α and IL-6) as the negative control group. ZnO-NPs-HCs also encouraged the proliferation phase of the healing process, which was displayed by increasing expression of fibroblast biomarkers (α-SMA, TGF-β3, vimentin, collagen, and M2) up to 60%. This study provides a comprehensive analysis of wound healing by measuring the biomarkers in each phase and suggests a cheaper method for wound dressing.
Collapse
Affiliation(s)
- Van Anh Thi Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Tung X. Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Xin-Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (V.A.T.L.); (T.X.T.); (P.N.C.); (N.N.G.); (X.-R.Z.)
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
49
|
Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol 2022; 10:788128. [PMID: 35186901 PMCID: PMC8851324 DOI: 10.3389/fbioe.2022.788128] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
The delivery of therapeutic molecules to the brain remains an unsolved problem to the researchers due to the existence of the blood-brain barrier (BBB), which halts the entry of unwanted substances to the brain. Central nervous system (CNS) disorders, mainly Parkinson's disease, Alzheimer's disease, schizophrenia, brain tumors, and stroke, are highly prevalent globally and are a growing concern for researchers due to restricting the delivery of pharmaceutical drugs to the brain. So effective treatment modalities are essential to combat the growing epidemic of CNS diseases. Recently, the growing attention in the field of nanotechnology has gained the faith of researchers for the delivery of therapeutics to the brain by targeting them to the specific target site. Polymeric nanoparticles (PNPs) emerge out to be an instrumental approach in drug targeting to the brain by overcoming the physiological barrier, biomedical barrier, and BBB. Preclinical discovery has shown the tremendous potential and versatility of PNPs in encapsulating several drugs and their targeting to the deepest regions of the brain, thus improving therapeutic intervention of CNS disorders. The current review will summarize advances in the development of PNPs for targeting therapeutics to the brain and the functional and molecular effects obtained in the preclinical model of most common CNS diseases. The advancement of PNPs in clinical practice and their prospect in brain targeting will also be discussed briefly.
Collapse
Affiliation(s)
- Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
50
|
Refaee AA, El-Naggar ME, Mostafa TB, Elshaarawy RF, Nasr AM. Nano-bio finishing of cotton fabric with quaternized chitosan Schiff base-TiO2-ZnO nanocomposites for antimicrobial and UV protection applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|