1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Watumlawar EC, Park BD. A Novel Method of Self-Cross-Linking of Syringaldehyde with Activated Methoxy Groups via Cross-Coupling for Lignin-Based Wood Adhesives. ACS OMEGA 2024; 9:28167-28175. [PMID: 38973923 PMCID: PMC11223239 DOI: 10.1021/acsomega.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
As steric hindrance, methoxy groups are limiting the valorization of hardwood lignin. This paper reports a novel method of self-cross-linking of the syringaldehyde with activated methoxy groups (-OCH3) via cross-coupling reaction to obtain thermosetting polymers for lignin-based wood adhesives. The methoxy groups of syringaldehyde have been activated via cross-coupling reaction by substituting Ar-OCH3 with Ar-CH2-SiMe3, and dichloromethane, leading to cross-linking via methylene bridges to build a thermosetting polymer. FTIR spectra showed a decrease in the intensity of a -CH3 and -OH group, owing to the substitution of the methoxy group. 13C NMR spectra also supported these results with the -SiMe3 signal that disappeared after the cross-linking reaction. Furthermore, cross-linking between the activated methoxy groups was confirmed with a strong exothermic peak at 130 °C, resulting in an increase in the adhesion strength as hot-pressing temperature increased from 160 to 180 °C. These results suggest that the cross-linking between the activated methoxy groups of syringaldehyde is an important understanding of valorizing hardwood lignin via building thermosetting polymers for lignin-based adhesives.
Collapse
Affiliation(s)
- Ega Cyntia Watumlawar
- Department of Wood and Paper
Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper
Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Kosuge S, Araki Y, Tsuge K, Sugimoto K, Matsuya Y. One-Pot Synthesis of Pentasubstituted Pyridines following the Gold(I)-Catalyzed Aza-Enyne Metathesis/6π-Electrocyclization-Aromatization Sequence. J Org Chem 2023. [PMID: 37191633 DOI: 10.1021/acs.joc.3c00270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The one-pot de novo synthesis of pentasubstituted pyridines was realized following the process of Au(I)-autotandem catalysis and subsequent aromatization. The process involves aza-enyne metathesis with aryl propiolates to yield 1-azabutadienes and their addition/6π-electrocyclization sequence with the other propiolate units. The resultant 1,4-dihydropyridines were aromatized to furnish the pyridines in the presence of atmospheric oxygen. The aryl propiolates were regioselectively incorporated into the ring system to afford 2-arylpyridines as the sole product.
Collapse
Affiliation(s)
- Shuto Kosuge
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yusuke Araki
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyoshi Tsuge
- Faculty of Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kenji Sugimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Matsuya
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
4
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
5
|
Zhang Y. Intermolecular Difunctionalization of C, C-Palladacycles Obtained by Pd(0)-Catalyzed C-H Activation. Acc Chem Res 2022; 55:3507-3518. [PMID: 36378838 DOI: 10.1021/acs.accounts.2c00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
C,C-Palladacycles are an important class of organometallic compounds in which palladium is σ-bonded to two carbon atoms. They have three notable features that make them attractive in organic synthesis and organometallic chemistry: (1) C,C-Palladacycles are reactive intermediates that can be accessed via Pd(0)-catalyzed C-H activation of organic halides. Compared to Pd(II)-catalyzed heteroatom-directed C-H activation, C-H activation catalyzed by Pd(0) has some distinct advantages. In this type of catalytic reaction, the halo groups of readily available organic halides act as traceless directing groups. Furthermore, this strategy avoids the use of stoichiometric external oxidants. (2) C,C-Palladacycles have differentiated reactivities from common open-chain Pd(II) species. In particular, C,C-palladacycles have high reactivity toward electrophiles including alkyl halides. This unique reactivity can be utilized to develop novel reactions. (3) C,C-Palladacycles have two C-Pd bonds, providing a unique platform for developing novel reactions.Although a number of reactions of C,C-palladacycles had been developed prior to our work, the scope was largely limited to intramolecular cyclization reactions. Although Catellani reactions are intermolecular reactions of C,C-palladacycles, only one of the C-Pd bonds is functionalized. Our laboratory has sought to develop intermolecular difunctionalization reactions of C,C-palladacycles that exploit their unique reactivity and open new possibilities in organic synthesis. Aiming to develop synthetically useful reactions, we primarily focus on ring-forming reactions. In this Account, we summarize our laboratory's efforts to exploit intermolecular difunctionalization reactions of C,C-palladacycles that are obtained through Pd(0)-catalyzed C-H activation. We have developed a wide array of new reactions that represent facile and efficient methods for the synthesis of cyclic organic compounds, including functional materials and drug molecules. A range of C,C-palladacycles have been studied, including C(aryl),C(aryl)-palladacycles from 2-halobiaryls, C(aryl),C(alkyl)-palladacycles from ortho-iodo-tert-butylbenzenes or ortho-iodoanisole derivatives, and those obtained by cascade reactions. C,C-Palladacycles have been found to react with a variety of oxidants to furnish Pd(IV) intermediates, such as alkyl halides, aryl halides, diazo compounds, and N,N-di-tert-butyldiaziridinone, ultimately affording various cyclic structures, including 5-10-membered rings, carbo- and azacycles, spirocycles, and fused rings. Furthermore, novel reactivity of C,C-palladacycles has been discovered. For example, we found that C,C-palladacycles have unusually high reactivity toward disilanes, which can be leveraged to disilylate a variety of C,C-palladacycles with very high efficiency. These results should provide inspiration to develop other C-Si bond-forming reactions in the future. We hope that this Account will stimulate further research into the rich chemistry of C,C-palladacycles, in particular reactions that find practical applications in the synthesis of bioactive and functional molecules and those that advance the state of the art in C-H functionalization.
Collapse
Affiliation(s)
- Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
Chen P, Wang ZY, Wang JX, Peng XS, Wong HNC. Remote C(sp 3)–H activation: palladium-catalyzed intermolecular arylation and alkynylation with organolithiums and terminal alkynes. Org Chem Front 2022. [DOI: 10.1039/d2qo00584k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,4-palladium shift is regarded as one of the solutions towards the challenging remote C(sp3)–H activation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhi-Yong Wang
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jia-Xin Wang
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, China
| | - Xiao-Shui Peng
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, China
| | - Henry N. C. Wong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, China
| |
Collapse
|
7
|
Chen LP, Cheng SL, Fan XY, Zhu JF, Wang BQ, Feng C, Xiang SK. Palladium-catalyzed triple coupling of 2-iodoanisoles with aryl iodides to access 6H-dibenzopyrans. Org Chem Front 2022. [DOI: 10.1039/d2qo00738j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed triple coupling of 2-iodoanisoles with aryl iodides has been developed. 3-Methyl-2-pyridone was used as a ligand to accelerate the cross-coupling and suppress the homo-coupling of 2-iodoanisoles. A variety...
Collapse
|
8
|
Yano de Albuquerque D, Teixeira WKO, Sacramento MD, Alves D, Santi C, Schwab RS. Palladium-Catalyzed Carbonylative Synthesis of Aryl Selenoesters Using Formic Acid as an Ex Situ CO Source. J Org Chem 2021; 87:595-605. [PMID: 34962405 DOI: 10.1021/acs.joc.1c02608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new catalytic protocol for the synthesis of selenoesters from aryl iodides and diaryl diselenides has been developed, where formic acid was employed as an efficient, low-cost, and safe substitute for toxic and gaseous CO. This protocol presents a high functional group tolerance, providing access to a large family of selenoesters in high yields (up to 97%) while operating under mild reaction conditions, and avoids the use of selenol which is difficult to manipulate, easily oxidizes, and has a bad odor. Additionally, this method can be efficiently extended to the synthesis of thioesters with moderate-to-excellent yields, by employing for the first time diorganyl disulfides as precursors.
Collapse
Affiliation(s)
- Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Wystan K O Teixeira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Manoela do Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06123 Perugia, Italy
| | - Ricardo S Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
9
|
Sun XS, Chang X, Shi LM, Wang ZF, Wei L, Wang CJ. Palladium catalyzed cascade umpolung allylation/acetalation for the construction of quaternary 3-amino oxindoles. Chem Commun (Camb) 2021; 57:7958-7961. [PMID: 34286725 DOI: 10.1039/d1cc03075b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we reported a highly diastereoselective synthesis of quaternary 3-amino oxindoles bearing an acetal unit via a palladium catalyzed three-component cascade umpolung allylation/acetalation process. An array of 3-amino 3-allyl oxindoles incorporating diversified functional groups were prepared in good yields with exclusive diastereoselectivities. Further investigation demonstrated that the current method could also be extended to cascade umpolung allenylation/acetalation.
Collapse
Affiliation(s)
- Xi-Shang Sun
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Li-Min Shi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zuo-Fei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| |
Collapse
|