1
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
2
|
Panda TR, Patra M. Kinetically Inert Platinum (II) Complexes for Improving Anticancer Therapy: Recent Developments and Road Ahead. ChemMedChem 2024; 19:e202400196. [PMID: 38757478 DOI: 10.1002/cmdc.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The search for better chemotherapeutic drugs to alleviate the deficiencies of existing platinum (Pt) drugs has picked up the pace in the millennium. There has been a disparate effort to design better and safer Pt drugs to deal with the problems of deactivation, Pt resistance and toxic side effects of clinical Pt drugs. In this review, we have discussed the potential of kinetically inert Pt complexes as an emerging class of next-generation Pt drugs. The introduction gives an overview about the development, use, mechanism of action and side effects of clinical Pt drugs as well as the various approaches to improve some of their pharmacological properties. We then describe the impact of kinetic lability on the pharmacology of functional Pt drugs including deactivation, antitumor efficacy, toxicity and resistance. Following a brief overview of numerous pharmacological advantages that a non-functional kinetically inert Pt complex can offer; we discussed structurally different classes of kinetically inert Pt (II) complexes highlighting their unique pharmacological features.
Collapse
Affiliation(s)
- Tushar Ranjan Panda
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| |
Collapse
|
3
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
4
|
Liang CJ, Wu RC, Huang XQ, Qin QP, Liang H, Tan MX. Synthesis and anticancer mechanisms of four novel platinum(II) 4'-substituted-2,2':6',2''-terpyridine complexes. Dalton Trans 2024; 53:2143-2152. [PMID: 38189098 DOI: 10.1039/d3dt03197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitophagy, a selective autophagic process, has emerged as a pathway involved in degrading dysfunctional mitochondria. Herein, new platinum(II)-based chemotherapeutics with mitophagy-targeting properties are proposed. Four novel binuclear anticancer Pt(II) complexes with 4'-substituted-2,2':6',2''-terpyridine derivatives (tpy1-tpy4), i.e., [Pt2(tpy1)(DMSO)2Cl4]·CH3OH (tpy1Pt), [Pt(tpy2)Cl][Pt(DMSO)Cl3]·CH3COCH3 (tpy2Pt), [Pt(tpy3)Cl][Pt(DMSO)Cl3] (tpy3Pt), and [Pt(tpy4)Cl]Cl·CH3OH (tpy4Pt), were designed and prepared. Moreover, their potential antitumor mechanism was studied. Tpy1Pt-tpy4Pt exhibited more selective cytotoxicity against cisplatin-resistant SK-OV-3/DDP (SKO3cisR) cancer cells compared with those against ovarian SK-OV-3 (SKO3) cancer cells and normal HL-7702 liver (H702) cells. This selective cytotoxicity of Tpy1Pt-tpy4Pt was better than that of its ligands (i.e., tpy1-tpy4), the clinical drug cisplatin, and cis-Pt(DMSO)2Cl2. The results of various experiments indicated that tpy1Pt and tpy2Pt kill SKO3cisR cancer cells via a mitophagy pathway, which involves the disruption of the mitophagy-related protein expression, dissipation of the mitochondrial membrane potential, elevation of the [Ca2+] and reactive oxygen species levels, promotion of mitochondrial DNA damage, and reduction in the adenosine triphosphate and mitochondrial respiratory chain levels. Furthermore, in vivo experiments indicated that the dinuclear anticancer Pt(II) coordination compound (tpy1Pt) has remarkable therapeutic efficiency (ca. 52.4%) and almost no toxicity. Therefore, the new 4'-substituted-2,2':6',2''-terpyridine Pt(II) coordination compound (tpy1Pt) is a potential candidate for next-generation mitophagy-targeting dinuclear Pt(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
5
|
Wang H, Lai Y, Li D, Karges J, Zhang P, Huang H. Self-Assembly of Erlotinib-Platinum(II) Complexes for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2024; 67:1336-1346. [PMID: 38183413 DOI: 10.1021/acs.jmedchem.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Due to cell mutation and self-adaptation, the application of clinical drugs with early epidermal growth factor receptor (EGFR)-targeted inhibitors is severely limited. To overcome this limitation, herein, the synthesis and in-depth biological evaluation of an erlotinib-platinum(II) complex as an EGFR-targeted anticancer agent is reported. The metal complex is able to self-assemble inside an aqueous solution and readily form nanostructures with strong photophysical properties. While being poorly toxic toward healthy cells and upon treatment in the dark, the compound was able to induce a cytotoxic effect in the very low micromolar range upon irradiation against EGFR overexpressing (drug resistant) human lung cancer cells as well as multicellular tumor spheroids. Mechanistic insights revealed that the compound was able to selectively degrade the EGFR using the lysosomal degradation pathway upon generation of singlet oxygen at the EGFR. We are confident that this work will open new avenues for the treatment of EGFR-overexpressing tumors.
Collapse
Affiliation(s)
- Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44780, Germany
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Wei W, Wang J, Kang X, Li H, He Q, Chang G, Bu W. Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium(i) zwitterions. Chem Sci 2023; 14:11490-11498. [PMID: 37886099 PMCID: PMC10599467 DOI: 10.1039/d3sc03508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Development of new second near-infrared (NIR-II, 1000-1700 nm) luminophores is highly desirable, and d8 square-planar metal complexes with NIR-II phosphorescence have been rarely reported. Herein, we explore an asymmetric coordination paradigm to achieve the first creation of NIR-II phosphorescent isocyanorhodium(i) zwitterions. They show a strong tendency for aggregation in solution, arising from close Rh(i)⋯Rh(i) contacts that are further intensified by π-π stacking interactions and the hydrophilic-hydrophobic effect. Based on such supramolecular aggregation, zwitterions 2 and 5 are found to yield NIR-II phosphorescence emissions centered at 1005 and 1120 (1210, shoulder) nm in methanol-water mixed solvents, respectively. These two bands show red shifts to 1070 and 1130 (1230, shoulder) nm in the corresponding polymer nanoparticles in water. The resulting polymer nanoparticles can brighten in vivo tumor issues in the NIR-II region with a long-circulating time. In view of the synthetic diversity established by the asymmetric coordination paradigm, this work provides an extraordinary opportunity to explore NIR-II luminophores.
Collapse
Affiliation(s)
- Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang 421001 China
| | - Xiaomei Kang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haoquan Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Guanjun Chang
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
7
|
Li D, Guan Q, Hu X, Su Y, Su Z. Reversible and irreversible stimuli-responsive chromism of a square-planar platinum(ii) salt. RSC Adv 2023; 13:24878-24886. [PMID: 37614796 PMCID: PMC10442671 DOI: 10.1039/d3ra03554a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/30/2023] [Indexed: 08/25/2023] Open
Abstract
A new simple Pt(ii) terpyridyl salt that shows reversible response towards acetonitrile and irreversible response towards methanol has been reported, accompanied with the colorimetric/luminescent changing from red to yellow. Experimentally and theoretically, the spectroscopic change derives from the hydrogen bonds between crystal water in the Pt(ii) terpyridyl salt and external organic molecules, and the different strength of hydrogen bond leads either reversible or irreversible stimuli-response. Furthermore, this Pt(ii) terpyridyl salt has been on one hand applied as a probe for sensing acetonitrile in water solution, with high selectivity, good reversibility, proper sensitivity and fast response rate, and on the other hand as advanced anticounterfeiting materials. The current study provides a new approach to acquire and design either reversible or irreversible stimuli-responsive luminescent materials.
Collapse
Affiliation(s)
- Depeng Li
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830017 China
| | - Qingqing Guan
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830017 China
| | - Xiaoyun Hu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830017 China
| | - Yuhong Su
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830017 China
| | - Zhen Su
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University Urumqi 830017 China
| |
Collapse
|
8
|
Wei F, Ke L, Gao S, Karges J, Wang J, Chen Y, Ji L, Chao H. In situ oxidative polymerization of platinum(iv) prodrugs in pore-confined spaces of CaCO 3 nanoparticles for cancer chemoimmunotherapy. Chem Sci 2023; 14:7005-7015. [PMID: 37389267 PMCID: PMC10306087 DOI: 10.1039/d3sc02264a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Drug resistance and metastases are the leading causes of death in clinics. To overcome this limitation, there is an urgent need for new therapeutic agents and drug formulations that are able to therapeutically intervene by non-traditional mechanisms. Herein, the physical adsorption and oxidative polymerization of Pt(iv) prodrugs in pore-confined spaces of CaCO3 nanoparticles is presented, and the nanomaterial surface was coated with DSPE-PEG2000-Biotin to improve aqueous solubility and tumor targeting. While the nanoparticle scaffold remained stable in an aqueous solution, it quickly degraded into Ca2+ in the presence of acid and into cisplatin in the presence of GSH. The nanoparticles were found to interact in cisplatin-resistant non-small lung cancer cells by a multimodal mechanism of action involving mitochondrial Ca2+ overload, dual depletion of GSH, nuclear DNA platination, and amplification of ROS and lipid peroxide generation, resulting in triggering cell death by a combination of apoptosis, ferroptosis and immunogenic cell death in vitro and in vivo. This study could present a novel strategy for the treatment of drug-resistant and metastatic tumors and therefore overcome the limitations of currently used therapeutic agents in the clinics.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Siyuan Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate, Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
9
|
Zheng X, Wu Y, Zuo H, Chen W, Wang K. Metal Nanoparticles as Novel Agents for Lung Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206624. [PMID: 36732908 DOI: 10.1002/smll.202206624] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/31/2022] [Indexed: 05/04/2023]
Abstract
Lung cancer is one of the most common malignancies worldwide and contributes to most cancer-related morbidity and mortality cases. During the past decades, the rapid development of nanotechnology has provided opportunities and challenges for lung cancer diagnosis and therapeutics. As one of the most extensively studied nanostructures, metal nanoparticles obtain higher satisfaction in biomedical applications associated with lung cancer. Metal nanoparticles have enhanced almost all major imaging strategies and proved great potential as sensor for detecting cancer-specific biomarkers. Moreover, metal nanoparticles could also improve therapeutic efficiency via better drug delivery, improved radiotherapy, enhanced gene silencing, and facilitated photo-driven treatment. Herein, the recently advanced metal nanoparticles applied in lung cancer therapy and diagnosis are summarized. Future perspective on the direction of metal-based nanomedicine is also discussed. Stimulating more research interests to promote the development of metal nanoparticles in lung cancer is devoted.
Collapse
Affiliation(s)
- Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Yuan Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
10
|
Jogadi W, Zheng YR. Supramolecular platinum complexes for cancer therapy. Curr Opin Chem Biol 2023; 73:102276. [PMID: 36878171 PMCID: PMC10033446 DOI: 10.1016/j.cbpa.2023.102276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
The rise of supramolecular chemistry offers new tools to design therapeutics and delivery platforms for biomedical applications. This review aims to highlight the recent developments that harness host-guest interactions and self-assembly to design novel supramolecular Pt complexes as anticancer agents and drug delivery systems. These complexes range from small host-guest structures to large metallosupramolecules and nanoparticles. These supramolecular complexes integrate the biological properties of Pt compounds and novel supramolecular structures, which inspires new designs of anticancer approaches that overcome problems in conventional Pt drugs. Based on the differences in Pt cores and supramolecular structures, this review focuses on five different types of supramolecular Pt complexes, and they include host-guest complexes of the FDA-approved Pt(II) drugs, supramolecular complexes of nonclassical Pt(II) metallodrugs, supramolecular complexes of fatty acid-like Pt(IV) prodrugs, self-assembled nanotherapeutics of Pt(IV) prodrugs, and self-assembled Pt-based metallosupramolecules.
Collapse
Affiliation(s)
- Wjdan Jogadi
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yao-Rong Zheng
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
11
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Zhou Z, Du LQ, Huang XM, Zhu LG, Wei QC, Qin QP, Bian H. Novel glycosylation zinc(II)-cryptolepine complexes perturb mitophagy pathways and trigger cancer cell apoptosis and autophagy in SK-OV-3/DDP cells. Eur J Med Chem 2022; 243:114743. [PMID: 36116236 DOI: 10.1016/j.ejmech.2022.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/04/2022]
Abstract
With the aim of shedding some light on the mechanism of action of zinc(II) complexes in antiproliferative processes and molecular signaling pathways, three novel glycosylated zinc(II)-cryptolepine complexes, i.e., [Zn(QA1)Cl2] (Zn(QA1)), [Zn(QA2)Cl2] (Zn(QA2)), and [Zn(QA3)Cl2] (Zn(QA3)), were prepared by conjugating a glucose moiety with cryptolepine, followed by complexation of the resulting glycosylated cryptolepine compounds N-((1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)methyl)-benzofuro[3,2-b]quinolin-11-amine (QA1), 2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)methyl)-1H-1,2,3-triazol-1-yl)ethan-1-ol (QA2), and (2S,3S,4R,5R,6S)-2-(4-((benzofuro[3,2-b]quinolin-11-ylamino)-methyl)-1H-1,2,3-triazol-1-yl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (QA3) with zinc(II), and their anticancer activity was evaluated. In MTT assays, Zn(QA1)-Zn(QA3) were more active against cisplatin-resistant ovarian SK-OV-3/DDP cancer cells (SK-OV-3cis) than ZnCl2 and the QA1-QA3 ligands, with IC50 values of 1.81 ± 0.50, 2.92 ± 0.32, and 1.01 ± 0.11 μM, respectively. Complexation of glycosylated cryptolepine QA3 with zinc(II) increased the antiproliferative activity of the ligand, suggesting that Zn(QA3) could act as a chaperone to deliver the active ligand intracellularly, in contrast with other cryptolepine metal complexes previously reported. In vivo and in vitro investigations suggested that Zn(QA3) exhibited enhanced anticancer activity with treatment effects comparable to those of the clinical drug cisplatin. Furthermore, Zn(QA1)-Zn(QA3) triggered SK-OV-3cis cell apoptosis through mitophagy pathways in the order Zn(QA1) > Zn(QA1) > Zn(QA2). These results demonstrate the potential of glycosylated zinc(II)-cryptolepine complexes for the development of chemotherapy drugs against cisplatin-resistant SK-OV-3cis cells.
Collapse
Affiliation(s)
- Zhen Zhou
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Li-Gang Zhu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China.
| | - Qiao-Chang Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Hedong Bian
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities (Guangxi Minzu University), Nanning, 530006, China.
| |
Collapse
|
13
|
Momeni BZ, Karimi S, Janczak J. Penta-coordinated Cr(II) and Cu(II) complexes appended with 4′-(4-quinolyl)-2,2′:6′,2″-terpyridine: crystal structure, Hirshfeld Surface analysis, luminescence and thermal properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Chang W, Wang J, Zhang J, Ling Q, Li Y, Wang J. High Performance Gold Nanorods@DNA Self-Assembled Drug-Loading System for Cancer Thermo-Chemotherapy in the Second Near-Infrared Optical Window. Pharmaceutics 2022; 14:pharmaceutics14051110. [PMID: 35631696 PMCID: PMC9145609 DOI: 10.3390/pharmaceutics14051110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
In terms of synergistic cancer therapy, biological nanomaterials with a second near-infrared (NIR-II) window response can greatly increase photothermal effects and photoacoustic imaging performance. Herein, we report a novel stimuli-responsive multifunctional drug-loading system which was constructed by integrating miniature gold nanorods (GNR) as the NIR-II photothermal nanorods and cyclic ternary aptamer (CTA) composition as a carrier for chemotherapy drugs. In this system, doxorubicin hydrochloride (DOX, a chemotherapy drug) binds to the G-C base pairs of the CTA, which exhibited a controlled release behavior based on the instability of G-C base pairs in the slightly acidic tumor microenvironment. Upon the 1064 nm (NIR-II biowindow) laser irradiation, the strong photothermal and promoted cargo release properties endow gold nanorods@CTA (GNR@CTA) nanoparticles displaying excellent synergistic anti-cancer effect. Moreover, the GNR@CTA of NIR also possesses thermal imaging and photoacoustic (PA) imaging properties due to the strong NIR region absorbance. This work enables to obtaining a stimuli-responsive “all-in-one” nanocarrier, which are promising candidate for bimodal imaging diagnosis and chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Wei Chang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Junfeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Jing Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Qing Ling
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| |
Collapse
|
15
|
Kasyanenko N, Qiushi Z, Bakulev V, Sokolov P, Yakovlev K. DNA Conformational Changes Induced by Its Interaction with Binuclear Platinum Complexes in Solution Indicate the Molecular Mechanism of Platinum Binding. Polymers (Basel) 2022; 14:polym14102044. [PMID: 35631926 PMCID: PMC9143540 DOI: 10.3390/polym14102044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Platinum anticancer drugs inhibit the division of cancer cells through a DNA binding mechanism. The bimetallic platinum compounds have a possibility for blocking DNA replication via the cross-linking of DNA functional groups at different distances. Many compounds with metals of the platinum group have been tested for possible antitumor activity. The main target of their biological action is a DNA molecule. A combined approach to the study of the interaction of DNA with biologically active compounds of this type is proposed. The capabilities of various methods (hydrodynamic, spectral, microscopy) in obtaining information on the type of binding of coordination compounds to DNA are compared. The analysis of DNA binding with platinum binuclear compounds containing pyrazine, tetrazole, 5- methyltetrazole, 3-propanediamine as bridging ligands in a solution was carried out with the methods of circular dichroism (CD), luminescent spectroscopy (LS), low gradient viscometry (LGV), flow birefringence (FB) and atomic force microscopy (AFM). The competitive binding of different platinum compounds to DNA and the analysis of platinum attachment to DNA after protonation of its nitrogen bases simply indicates the involvement of N7 guanine in binding. Fluorescent dye DAPI was also used to recognize the location of platinum compounds in DNA grooves. DNA conformational changes recorded by variations in persistent length, polyelectrolyte swelling, DNA secondary structure, and its stability clarify the molecular mechanism of the biological activity of platinum compounds.
Collapse
Affiliation(s)
- Nina Kasyanenko
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
- Correspondence:
| | - Zhang Qiushi
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
| | - Vladimir Bakulev
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
| | - Petr Sokolov
- Department of Molecular Biophysics and Polymer Physics, Saint Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia; (Z.Q.); (V.B.); (P.S.)
| | - Konstantin Yakovlev
- Department of Analytical Chemistry, Saint Petersburg State Chemical-Pharmaceutical Academy, 14, Prof. Popov str., 197376 St. Petersburg, Russia;
| |
Collapse
|
16
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Novel bifluorescent Zn(II)–cryptolepine–cyclen complexes trigger apoptosis induced by nuclear and mitochondrial DNA damage in cisplatin-resistant lung tumor cells. Eur J Med Chem 2022; 238:114418. [DOI: 10.1016/j.ejmech.2022.114418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
|
18
|
Wang ZF, Wei QC, Li JX, Zhou Z, Zhang S. A new class of nickel(II) oxyquinoline-bipyridine complexes as potent anticancer agents induces apoptosis and autophagy in A549/DDP tumor cells through mitophagy pathways. Dalton Trans 2022; 51:7154-7163. [DOI: 10.1039/d2dt00669c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of nickel(II) oxyquinoline-bipyridine complexes, namely, [Ni(La1)2(Lb6)] (Ni1), [Ni(La1)2(Lb2)] CH3OH (Ni2), [Ni(La7)2(Lb11)]2H2O (Ni3), [Ni(La1)2(Lb9)] (Ni4), [Ni(La1)2(Lb8)] (Ni5), [Ni(La2)2(Lb1)] (Ni6), [Ni(La2)2(Lb6)]CH3OH (Ni7), [Ni(La2)2(Lb11)]CH3OH (Ni8), [Ni(La2)2(Lb3)] (Ni9), [Ni(La2)2(Lb2)]CH3OH (Ni10), [Ni(La2)2(Lb5)]CH3OH...
Collapse
|