1
|
Schulz T, Marian CM. Simulating the full spin manifold of triplet-pair states in a series of covalently linked TIPS-pentacenes. J Comput Chem 2024; 45:2727-2738. [PMID: 39139132 DOI: 10.1002/jcc.27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Combined density functional theory and multireference configuration interaction methods have been used to elucidate singlet fission (SF) pathways and mechanisms in three regioisomers of side-on linked pentacene dimers. In addition to the optically bright singlets (S 1 and S 2 ) and singly excited triplets (T 1 and T 2 ), the full spin manifold of multiexcitonic triplet-pair states ( 1 ME, 3 ME, 5 ME) has been considered. In the ortho- and para-regioisomers, the 1 ME and S 1 potentials intersect upon geometry relaxation of the S 1 excitation. In the meta-regioisomer, the crossing occurs upon delocalization of the optically bright excitation. The energetic accessibility of these conical intersections and the absence of low-lying charge-transfer states suggests a direct SF mechanism, assisted by charge-resonance effects in the 1 ME state. While the 5 ME state does not appear to play a role in the SF mechanism of the ortho- and para-regioisomers, its participation in the disentanglement of the triplet pair is conceivable in the meta-regioisomer.
Collapse
Affiliation(s)
- Timo Schulz
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Parolin G, Garain BC, Mukherjee S, Granucci G, Corni S, Barbatti M. Conformational dynamics of the pyrene excimer. Phys Chem Chem Phys 2024. [PMID: 39569725 DOI: 10.1039/d4cp03947e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The conformational dynamics of the pyrene excimer play a critical role in its unique fluorescence properties. Yet, the influence of multiple local minima on its excited-state behavior remains underexplored. Using a combination of time-dependent density functional theory (TD-DFT) and unsupervised machine learning analysis, we have identified and characterized a diverse set of stable excimer geometries in the first excited state. Our analysis reveals that rapid structural reorganization towards the most stable stacked-twisted conformer dominates the excimer's photophysics, outcompeting radiative relaxation. This conformer, which is primarily responsible for the characteristic red-shifted, structureless fluorescence emission, reconciles experimental observations of long fluorescence lifetimes and emission profiles. These findings provide new insights into the excited-state dynamics of excimers. They may inform the design of excimer-based materials in fields ranging from organic electronics to molecular sensing.
Collapse
Affiliation(s)
- Giovanni Parolin
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
| | | | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France.
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Giovanni Granucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56126 Pisa, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France.
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
3
|
Scognamiglio A, Thalmann KS, Hartweg S, Rendler N, Bruder L, Coto PB, Thoss M, Stienkemeier F. Non-adiabatic electronic relaxation of tetracene from its brightest singlet excited state. J Chem Phys 2024; 161:024302. [PMID: 38973758 DOI: 10.1063/5.0214006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The ultrafast relaxation dynamics of tetracene following UV excitation to the bright singlet state S6 has been studied with time-resolved photoelectron spectroscopy. With the help of high-level ab initio multireference perturbation theory calculations, we assign photoelectron signals to intermediate dark electronic states S3, S4, and S5 as well as to a low-lying electronic state S2. The energetic structure of these dark states has not been determined experimentally previously. The time-dependent photoelectron yields assigned to the states S6, S5, and S4 have been analyzed and reveal the depopulation of S6 within 60 fs, while S5 and S4 are populated with delays of about 50 and 80 fs. The dynamics of the lower-lying states S3 and S2 seem to agree with a delayed population coinciding with the depopulation of the higher-lying states S4-S6 but could not be elucidated in full detail due to the low signal levels of the corresponding two-photon ionization probe processes.
Collapse
Affiliation(s)
- A Scognamiglio
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - K S Thalmann
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - S Hartweg
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - N Rendler
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - L Bruder
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - P B Coto
- Materials Physics Center (CFM), CSIC and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - M Thoss
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - F Stienkemeier
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| |
Collapse
|
4
|
Pompetti N, Smyser KE, Feingold B, Owens R, Lama B, Sharma S, Damrauer NH, Johnson JC. Tetracene Diacid Aggregates for Directing Energy Flow toward Triplet Pairs. J Am Chem Soc 2024; 146. [PMID: 38606884 PMCID: PMC11046478 DOI: 10.1021/jacs.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
A comprehensive investigation of the solution-phase photophysics of tetracene bis-carboxylic acid [5,12-tetracenepropiolic acid (Tc-DA)] and its related methyl ester [5,12-tetracenepropynoate (Tc-DE)], a non-hydrogen-bonding counterpart, reveals the role of the carboxylic acid moiety in driving molecular aggregation and concomitant excited-state behavior. Low-concentration solutions of Tc-DA exhibit similar properties to the popular 5,12-bis((triisopropylsilyl)ethynl)tetracene, but as the concentration increases, evidence for aggregates that form excimers and a new mixed-state species with charge-transfer (CT) and correlated triplet pair (TT) character is revealed by transient absorption and fluorescence experiments. Aggregates of Tc-DA evolve further with concentration toward an additional phase that is dominated by the mixed CT/TT state which is the only state present in Tc-DE aggregates and can be modulated with the solvent polarity. Computational modeling finds that cofacial arrangement of Tc-DA and Tc-DE subunits is the most stable aggregate structure and this agrees with results from 1H NMR spectroscopy. The calculated spectra of these cofacial dimers replicate the observed broadening in ground-state absorption as well as accurately predict the formation of a near-UV transition associated with a CT between molecular subunits that is unique to the specific aggregate structure. Taken together, the results suggest that the hydrogen bonding between Tc-DA molecules and the associated disruption of hydrogen bonding with solvent produce a regime of dimer-like behavior, absent in Tc-DE, that favors excimers rather than CT/TT mixed states. The control of aggregate size and structure using distinct functional groups, solute concentration, and solvent in tetracene promises new avenues for its use in light-harvesting schemes.
Collapse
Affiliation(s)
- Nicholas
F. Pompetti
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Kori E. Smyser
- University
of Colorado, Boulder, Colorado 80401, United States
| | | | - Raythe Owens
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Bimala Lama
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Sandeep Sharma
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Niels H. Damrauer
- University
of Colorado, Boulder, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| |
Collapse
|
5
|
Sturm F, Philipp LN, Flock M, Fischer I, Mitric R. The Electronic Structures of Azaphenanthrenes and Their Dimers. J Phys Chem A 2024; 128:1250-1259. [PMID: 38345912 DOI: 10.1021/acs.jpca.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Insertion of a nitrogen atom modifies the electronic structures and photochemistry of polycyclic aromatic hydrocarbons by introducing nπ* states into the molecules. To better understand the electronic structures of isolated polycyclic aromatic nitrogen-containing hydrocarbons (PANHs) and their dimers as well as the influence of the position of the nitrogen atom in the molecule, we investigate three different azaphenanthrenes, benzo[f]quinoline, benzo[h]quinoline, and phenanthridine, in a joint experimental and computational study. Experimentally, resonance-enhanced multiphoton ionization (REMPI) spectroscopy is applied to characterize the excited electronic states. The REMPI spectra of the azaphenanthrene monomers have a rather similar appearance, with origins between 3.645 and 3.670 eV for the 1ππ* ← S0 transition. In contrast to the phenanthrene parent, 2ππ* ← S0 is broad and unstructured even at the band origin. The experiments are accompanied by density functional theory computation, and vibrationally resolved spectra are simulated using a time-independent approach. The differences between phenanthrene and the azaphenanthrenes are assigned to perturbations due to the low-lying 1(nπ*) state, which accelerates nonradiative deactivation. For the dimers, it is found that two π-stacked isomers with two electronic transitions each contribute to the electronic spectrum, leading to overlapping bands that are difficult to assign.
Collapse
Affiliation(s)
- F Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - L N Philipp
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - M Flock
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - I Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - R Mitric
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| |
Collapse
|
6
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
7
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
8
|
Einsele R, Hoche J, Mitrić R. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. J Chem Phys 2023; 158:044121. [PMID: 36725509 DOI: 10.1063/5.0136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herein, we present a new method to efficiently calculate electronically excited states in large molecular assemblies, consisting of hundreds of molecules. For this purpose, we combine the long-range corrected tight-binding density functional fragment molecular orbital method (FMO-LC-DFTB) with an excitonic Hamiltonian, which is constructed in the basis of locally excited and charge-transfer configuration state functions calculated for embedded monomers and dimers and accounts explicitly for the electronic coupling between all types of excitons. We first evaluate both the accuracy and efficiency of our fragmentation approach for molecular dimers and aggregates by comparing it with the full LC-TD-DFTB method. The comparison of the calculated spectra of an anthracene cluster shows a very good agreement between our method and the LC-TD-DFTB reference. The effective computational scaling of our method has been explored for anthracene clusters and for perylene bisimide aggregates. We demonstrate the applicability of our method by the calculation of the excited state properties of pentacene crystal models consisting of up to 319 molecules. Furthermore, the participation ratio of the monomer fragments to the excited states is analyzed by the calculation of natural transition orbital participation numbers, which are verified by the hole and particle density for a chosen pentacene cluster. The use of our FMO-LC-TDDFTB method will allow for future studies of excitonic dynamics and charge transport to be performed on complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Hammer S, Linderl T, Tvingstedt K, Brütting W, Pflaum J. Spectroscopic analysis of vibrational coupling in multi-molecular excited states. MATERIALS HORIZONS 2023; 10:221-234. [PMID: 36367085 DOI: 10.1039/d2mh00829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multi-molecular excited states accompanied by intra- and inter-molecular geometric relaxation are commonly encountered in optical and electrooptical studies and applications of organic semiconductors as, for example, excimers or charge transfer states. Understanding the dynamics of these states is crucial to improve organic devices such as light emitting diodes and solar cells. Their full microscopic description, however, demands sophisticated tools such as ab initio quantum chemical calculations which come at the expense of high computational costs and are prone to errors by assumptions as well as iterative algorithmic procedures. Hence, the analysis of spectroscopic data is often conducted at a phenomenological level only. Here, we present a toolkit to analyze temperature dependent luminescence data and gain first insights into the relevant microscopic parameters of the molecular system at hand. By means of a Franck-Condon based approach considering a single effective inter-molecular vibrational mode and different potentials for the ground and excited state we are able to explain the luminescence spectra of such multi-molecular states. We demonstrate that by applying certain reasonable simplifications the luminescence of charge transfer states as well as excimers can be satisfactorily reproduced for temperatures ranging from cryogenics to above room temperature. We present a semi-classical and a quantum-mechanical description of our model and, for both cases, demonstrate its applicability by analyzing the temperature dependent luminescence of the amorphous donor-acceptor heterojunction tetraphenyldibenzoperiflanthene:C60 as well as polycrystalline zinc-phthalocyanine to reproduce the luminescence spectra and extract relevant system parameters such as the excimer binding energy.
Collapse
Affiliation(s)
- Sebastian Hammer
- Experimental Physics VI, Julius Maximilian University Würzburg, 97074 Würzburg, Germany.
| | - Theresa Linderl
- Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - Kristofer Tvingstedt
- Experimental Physics VI, Julius Maximilian University Würzburg, 97074 Würzburg, Germany.
| | - Wolfgang Brütting
- Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - Jens Pflaum
- Experimental Physics VI, Julius Maximilian University Würzburg, 97074 Würzburg, Germany.
- Bavarian Center for Applied Energy Research, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Miao X, Preitschopf T, Sturm F, Fischer I, Lemmens AK, Limbacher M, Mitric R. Stacking Is Favored over Hydrogen Bonding in Azaphenanthrene Dimers. J Phys Chem Lett 2022; 13:8939-8944. [PMID: 36135713 DOI: 10.1021/acs.jpclett.2c02280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N-Doped polycyclic aromatic hydrocarbons have recently emerged as potential organic electronic materials. The function of such materials is determined not only by the intrinsic electronic properties of individual molecules but also by their supramolecular interactions in the solid state. Therefore, a proper characterization of the interactions between the individual units is of interest to materials science since they ultimately govern properties such as excitons and charge transfer. Here, we report a joint experimental and computational study of two azaphenanthrene dimers to determine the structure and the nature of supramolecular interactions in the aggregates. IR/UV double-resonance experiments were carried out using far- and mid-infrared free-electron laser radiation. The experimental spectra are compared with quantum chemical calculations for the lowest-energy π-stacked and hydrogen-bonded structures. The data reveal a preference of the π-stacked structure for the benzo[f]quinoline and the phenanthridine dimer.
Collapse
Affiliation(s)
- Xincheng Miao
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander K Lemmens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Moritz Limbacher
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Roland Mitric
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
11
|
Sebastian E, Sunny J, Hariharan M. Excimer evolution hampers symmetry-broken charge-separated states. Chem Sci 2022; 13:10824-10835. [PMID: 36320683 PMCID: PMC9491171 DOI: 10.1039/d2sc04387d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 08/26/2023] Open
Abstract
Achieving long-lived symmetry-broken charge-separated states in chromophoric assemblies is quintessential for enhanced performance of artificial photosynthetic mimics. However, the occurrence of energy trap states hinders exciton and charge transport across photovoltaic devices, diminishing power conversion efficiency. Herein, we demonstrate unprecedented excimer formation in the relaxed excited-state geometry of bichromophoric systems impeding the lifetime of symmetry-broken charge-separated states. Core-annulated perylenediimide dimers (SC-SPDI2 and SC-NPDI2) prefer a near-orthogonal arrangement in the ground state and a π-stacked foldamer structure in the excited state. The prospect of an excimer-like state in the foldameric arrangement of SC-SPDI2 and SC-NPDI2 has been rationalized by fragment-based excited state analysis and temperature-dependent photoluminescence measurements. Effective electronic coupling matrix elements in the Franck-Condon geometry of SC-SPDI2 and SC-NPDI2 facilitate solvation-assisted ultrafast symmetry-breaking charge-separation (SB-CS) in a high dielectric environment, in contrast to unrelaxed excimer formation (Ex*) in a low dielectric environment. Subsequently, the SB-CS state dissociates into an undesired relaxed excimer state (Ex) due to configuration mixing of a Frenkel exciton (FE) and charge-separated state in the foldamer structure, downgrading the efficacy of the charge-separated state. The decay rate constant of the FE to SB-CS (k FE→SB-CS) in polar solvents is 8-17 fold faster than that of direct Ex* formation (k FE→Ex*) in non-polar solvent (k FE→SB-CS≫k FE→Ex*), characterized by femtosecond transient absorption (fsTA) spectroscopy. The present investigation establishes the impact of detrimental excimer formation on the persistence of the SB-CS state in chromophoric dimers and offers the requisite of conformational rigidity as one of the potential design principles for developing advanced molecular photovoltaics.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
12
|
Haggag O, Levinsky N, Ruhman S. Coherent intramolecular excimer formation in solid [2,2]‐Paracyclophane: Time resolved springing of a molecular “trap”. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Omer Haggag
- The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus Chemistry 9190401 ISRAEL
| | - Noam Levinsky
- The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus Chemistry 9190401 ISRAEL
| | - Sanford Ruhman
- Hebrew University of Jerusalem Chemistry Givat-Ram 9190401 Jerusalem ISRAEL
| |
Collapse
|
13
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
14
|
Bogomolov AS, Rogoveshko VM, Baklanov AV. The first shell structure of He environment in tetracene-(He)N clusters manifested in REMPI spectra. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|