1
|
Chen J, Wang Y, Xu W, Wu X, Bao Q, You L, Xiong C, Wang S. High performance breathable conductive hydrogel sensor based on sodium alginate and polyacrylamide with cross-linked dual network structures. Int J Biol Macromol 2025; 307:142172. [PMID: 40107534 DOI: 10.1016/j.ijbiomac.2025.142172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Conductive hydrogels have attracted immense interest in the field of flexible electronic devices and biosensors. However, issues such as poor breathability, insufficient adhesion and water retention properties still remain and limit their applications as wearable sensors. To address these issues, a porous conductive hydrogel (SA/PAM/CTAB-GO) with high breathability (5.97 mg.cm-2·h-1), favorable conductivity (2.85 S/m), desirable adhesion (1.39 KPa) and moisture retention properties was synthesized by polymerization and crosslinking using sodium alginate and polyacrylamide as gel substrates, cetyltrimethylammonium bromide modified graphene oxide as foam stabilizer and Ca2+ as crosslinking agent. The hydrogel exhibited excellent mechanical properties, water retention characteristics, and high breathability comparable to cotton. Moreover, the SA/PAM/CTAB-GO hydrogel presented excellent sensing sensitivity, fast response ability (225 ms), and favorable endurance, which monitored human motions sensitively and realized the accurate, sensitive and reliable detection of human ECG and EMG signals. The hydrogel sensor was applied in human-computer interaction and sensitively controlled robot arms and virtual characters. The design of dual network mechanism of calcium crosslinking and foam porosity method improved the sensing properties, breathability, adhesion, and stability of the hydrogel making it possesses high performance as wearable sensor and has promising application prospect in flexible electronics.
Collapse
Affiliation(s)
- Jianan Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenjing Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiang Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Bao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Caihua Xiong
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
2
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2025; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
3
|
Castrejón-Comas V, Mataró N, Resina L, Zanuy D, Nuñez-Aulina Q, Sánchez-Morán J, Enshaei H, Arnau M, Muñoz-Galán H, Worch JC, Dove AP, Alemán C, Pérez-Madrigal MM. Electro-responsive hyaluronic acid-based click-hydrogels for wound healing. Carbohydr Polym 2025; 348:122941. [PMID: 39567156 DOI: 10.1016/j.carbpol.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
With the aim of healing challenging skin wounds, electro-responsive click-hydrogels made of hyaluronic acid (clickHA) crosslinked with a modified polyethylene glycol precursor (PEG) were prepared by semi-interpenetrating a conducting polymer, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-MeOH) by oxidative polymerization. The porosity and pore size of the mixed hydrogel, clickHA/PEDOT-MeOH, were both higher than those determined for the hydrogel without PEDOT-MeOH, while a honeycomb-like morphology with PEDOT-MeOH covering the pore walls was observed. Although such PEDOT-MeOH-induced changes did not influence the water absorption capacity of clickHA, they drastically affected the mechanical and electrochemical behavior. More specifically, the semi-interpenetration of PEDOT-MeOH into clickHA resulted in an increase of the Young's modulus, the compressive strength and, especially, the electrochemical activity. The biocompatibility and the potential for skin regeneration of clickHA/PEDOT-MeOH were preliminary assessed using viability and wound-healing assays with epithelial cells. Not only is the conducting hydrogel formulation biocompatible, but also promotes efficient cell migration by electrostimulation using a small voltage (0.5 V) for a short time (15 min). Thus, in just 1 h the wound gap was repaired, and a homogeneous monolayer of migrated cells was formed.
Collapse
Affiliation(s)
- Víctor Castrejón-Comas
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Nil Mataró
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Leonor Resina
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - David Zanuy
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Quim Nuñez-Aulina
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Joel Sánchez-Morán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Hamidreza Enshaei
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Marc Arnau
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Helena Muñoz-Galán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, University Rd W, Birmingham, B152TT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, University Rd W, Birmingham, B152TT, UK
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Maria M Pérez-Madrigal
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain.
| |
Collapse
|
4
|
Yang K, Zhou D, Wang Y, Chen R, Dong Q, Xiao P, Zhou Y, Zhang J. Spider Silk-Inspired Hyaluronic Acid-Based Hydrogels with Superior Self-Healing Capability and Enhanced Strength. CHEMSUSCHEM 2025; 18:e202400769. [PMID: 39072939 PMCID: PMC11696212 DOI: 10.1002/cssc.202400769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Hyaluronic acid hydrogels are promising materials for diverse applications, yet their potential is hampered by limitations such as low self-healing efficiency and insufficient mechanical strength. Inspired by the heterogeneous structures of spider silk, we introduce a novel dual dynamically crosslinked network hydrogel. This hydrogel comprises an acylhydrazone-crosslinked network, utilizing aldehyde hyaluronic acid (AHA) and 3,3'-dithiobis (propionohydrazide) (DTP) as a first network, and a secondary network formed by hydrogen bonds-crosslinked network between tannic acid (TA) and silk fibroin (SF) with β-sheet formation. The hydrogel exhibits exceptional self-healing ability due to the dynamic and reversible nature of Schiff base bonds, disulfide bonds, and hydrogen bonds, achieving complete healing within 5 minutes. Additionally, the spider silk-inspired heterogeneous structures enhance mechanical properties. Furthermore, the incorporation of TA provides enhances adhesion, as well as remarkable antibacterial and antioxidant properties. This innovative hyaluronic acid-based hydrogel, inspired by spider silk, offers a promising avenue to fortify both the mechanical strength and self-healing capabilities of hydrogels, thus expanding opportunities for applications in tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430073P. R. China
| | - Ding Zhou
- Department of Biomedical EngineeringTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071P. R. China
| | - Yachao Wang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430073P. R. China
| | - Ruina Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430073P. R. China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430073P. R. China
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430073P. R. China
| | - Jing Zhang
- Future Industries InstituteUniversity of South AustraliaMawson Lakes, SA5095Australia
- Department of Chemical and Biological EngineeringMonash UniversityClayton, VIC3800Australia
| |
Collapse
|
5
|
Condò I, Giannitelli SM, Lo Presti D, Cortese B, Ursini O. Overview of Dynamic Bond Based Hydrogels for Reversible Adhesion Processes. Gels 2024; 10:442. [PMID: 39057465 PMCID: PMC11275299 DOI: 10.3390/gels10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Polymeric hydrogels are soft materials with a three-dimensional (3D) hydrophilic network capable of retaining and absorbing large amounts of water or biological fluids. Due to their customizable properties, these materials are extensively studied for developing matrices for 3D cell culture scaffolds, drug delivery systems, and tissue engineering. However, conventional hydrogels still exhibit many drawbacks; thus, significant efforts have been directed towards developing dynamic hydrogels that draw inspiration from organisms' natural self-repair abilities after injury. The self-healing properties of these hydrogels are closely associated with their ability to form, break, and heal dynamic bonds in response to various stimuli. The primary objective of this review is to provide a comprehensive overview of dynamic hydrogels by examining the types of chemical bonds associated with them and the biopolymers utilized, and to elucidate the chemical nature of dynamic bonds that enable the modulation of hydrogels' properties. While dynamic bonds ensure the self-healing behavior of hydrogels, they do not inherently confer adhesive properties. Therefore, we also highlight emerging approaches that enable dynamic hydrogels to acquire adhesive properties.
Collapse
Affiliation(s)
- Ilaria Condò
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy; (I.C.); (D.L.P.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Barbara Cortese
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ornella Ursini
- National Research Council—Institute of Nanotechnology (CNR-Nanotec), Università La Sapienza, c/o Edificio Fermi, Pz.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
6
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
7
|
Qin Y, Wei E, Cui C, Xie J. High Tensile, Antibacterial, and Conductive Hydrogel Sensor with Multiple Cross-Linked Networks Based on PVA/Sodium Alginate/Zinc Oxide. ACS OMEGA 2024; 9:16851-16859. [PMID: 38617655 PMCID: PMC11007832 DOI: 10.1021/acsomega.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Hydrogel sensors have attracted a lot of attention due to their great significance for biosensors and human detection, especially their antibacterial properties when in direct contact with the human body. However, it is challenging to improve mechanical and antibacterial performance simultaneously. In this study, by using ultrasonic dispersion technology to attach zinc oxide to cellulose and adding sodium alginate, a multiple cross-linking network is generated, which effectively solves this problem. The proposed poly(vinyl alcohol)/sodium alginate/zinc oxide/hydrogel sensor exhibits not only excellent biocompatibility but also high tensile properties (strain above 2000%). Besides, the sensor also has an antibacterial function (against Escherichia coli and Staphylococcus aureus). The hydrogel acts as a strain sensor and biosensor; it can also be used as a human health detection sensor; its high tensile properties can detect large tensile deformation and small changes in force, such as finger bending, knee bending, and other joint movements, and can also be used as a sound detection sensor to detect speech and breathing. This study provides a simple method to prepare hydrogel sensors that can be useful for human health detection and biosensor development.
Collapse
Affiliation(s)
- Yafei Qin
- Faculty of Mechanical and
Electrical Engineering, Kunming University
of Science and Technology, Kunming 650093, China
| | - Erjiong Wei
- Faculty of Mechanical and
Electrical Engineering, Kunming University
of Science and Technology, Kunming 650093, China
| | - Chenkai Cui
- Faculty of Mechanical and
Electrical Engineering, Kunming University
of Science and Technology, Kunming 650093, China
| | - Jiegao Xie
- Faculty of Mechanical and
Electrical Engineering, Kunming University
of Science and Technology, Kunming 650093, China
| |
Collapse
|
8
|
Xu Y, Chen M, Yu S, Zhou H. High-performance flexible strain sensors based on silver film wrinkles modulated by liquid PDMS substrates. RSC Adv 2023; 13:33697-33706. [PMID: 38020005 PMCID: PMC10654890 DOI: 10.1039/d3ra06020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Flexible strain sensors based on controllable surface microstructures in film-substrate systems can be extensively applied in high-tech fields such as human-machine interfaces, electronic skins, and soft robots. However, the rigid functional films are susceptible to structural destruction and interfacial failure under large strains or high loading speeds, limiting the stability and durability of the sensors. Here we report on a facile technique to prepare high-performance flexible strain sensors based on controllable wrinkles by depositing silver films on liquid polydimethylsiloxane (PDMS) substrates. The silver atoms can penetrate into the surface of liquid PDMS to form an interlocking layer during deposition, enhancing the interfacial adhesion greatly. After deposition, the liquid PDMS is spontaneously solidified to stabilize the film microstructures. The surface patterns are well modulated by changing film thickness, prepolymer-to-crosslinker ratio of liquid PDMS, and strain value. The flexible strain sensors based on the silver film/liquid PDMS system show high sensitivity (above 4000), wide sensing range (∼80%), quick response speed (∼80 ms), and good stability (above 6000 cycles), and have a broad application prospect in the fields of health monitoring and motion tracking.
Collapse
Affiliation(s)
- Yifan Xu
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| | - Miaogen Chen
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Hong Zhou
- Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, College of Science, China Jiliang University Hangzhou 310018 P.R. China
| |
Collapse
|
9
|
Kim SD, Kim K, Shin M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. NANO CONVERGENCE 2023; 10:41. [PMID: 37679589 PMCID: PMC10484881 DOI: 10.1186/s40580-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Recently, the 3D printing of conductive hydrogels has undergone remarkable advances in the fabrication of complex and functional structures. In the field of neural engineering, an increasing number of reports have been published on tissue engineering and bioelectronic approaches over the last few years. The convergence of 3D printing methods and electrically conducting hydrogels may create new clinical and therapeutic possibilities for precision regenerative medicine and implants. In this review, we summarize (i) advancements in preparation strategies for conductive materials, (ii) various printing techniques enabling the fabrication of electroconductive hydrogels, (iii) the required physicochemical properties of the printed constructs, (iv) their applications in bioelectronics and tissue regeneration for neural engineering, and (v) unconventional approaches and outlooks for the 3D printing of conductive hydrogels. This review provides technical insights into 3D printable conductive hydrogels and encompasses recent developments, specifically over the last few years of research in the neural engineering field.
Collapse
Affiliation(s)
- Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Lyu C, Wen B, Bai Y, Luo D, Wang X, Zhang Q, Xing C, Kong T, Diao D, Zhang X. Bone-inspired (GNEC/HAPAAm) hydrogel with fatigue-resistance for use in underwater robots and highly piezoresistive sensors. MICROSYSTEMS & NANOENGINEERING 2023; 9:99. [PMID: 37502758 PMCID: PMC10368655 DOI: 10.1038/s41378-023-00571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
A novel bone-inspired fatigue-resistant hydrogel with excellent mechanical and piezoresistive properties was developed, and it exhibited great potential as a load and strain sensor for underwater robotics and daily monitoring. The hydrogel was created by using the high edge density and aspect ratio of graphene nanosheet-embedded carbon (GNEC) nanomaterials to form a three-dimensional conductive network and prevent the expansion of microcracks in the hydrogel system. Multiscale progressive enhancement of the organic hydrogels (micrometer scale) was realized with inorganic graphene nanosheets (nanometer scale). The graphene nanocrystals inside the GNEC film exhibited good electron transport properties, and the increased distances between the graphene nanocrystals inside the GNEC film caused by external forces increased the resistance, so the hydrogel was highly sensitive and suitable for connection to a loop for sensing applications. The hydrogels obtained in this work exhibited excellent mechanical properties, such as tensile properties (strain up to 1685%) and strengths (stresses up to 171 kPa), that make them suitable for use as elastic retraction devices in robotics and provide high sensitivities (150 ms) for daily human monitoring.
Collapse
Affiliation(s)
- Chaoyang Lyu
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Bo Wen
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Yangzhen Bai
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Daning Luo
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xin Wang
- Research Center of Medical Plasma Technology, Shenzhen University, 518060 Shenzhen, China
| | - Qingfeng Zhang
- Research Center of Medical Plasma Technology, Shenzhen University, 518060 Shenzhen, China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, 518000 Shenzhen, China
| | - Dongfeng Diao
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, 518060 Shenzhen, China
| |
Collapse
|
11
|
Ding J, Gao B, Mei X. Preparation of photothermal responsive, antibacterial hydrogel by using PVA-Alg and silver nanofibers as building blocks. Front Bioeng Biotechnol 2023; 11:1222723. [PMID: 37409166 PMCID: PMC10319420 DOI: 10.3389/fbioe.2023.1222723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction: Photothermal responsive, antimicrobial hydrogels are very attractive and have great potential in the field of tissue engineering. The defective wound environment and metabolic abnormalities in diabetic skin would lead to bacterial infections. Therefore, multifunctional composites with antimicrobial properties are urgently needed to improve the current therapeutic outcomes of diabetic wounds. We prepared an injectable hydrogel loaded with silver nanofibers for efficient and sustained bactericidal activity. Methods: To construct this hydrogel with good antimicrobial activity, homogeneous silver nanofibers were first prepared by solvothermal method and then dispersed in PVA-lg solution. After homogeneous mixing and gelation, injectable hydrogels (Ag@H) wrapped with silver nanofibers were obtained. Results: By virtue of Ag nanofibers, Ag@H exhibited good photothermal conversion efficiency and good antibacterial activity against drug-resistant bacteria, while the in vivo antibacterial also showed excellent performance. The results of antibacterial experiments showed that Ag@H had significant bactericidal effects on MRSA and E. coli with 88.4% and 90.3% inhibition rates, respectively. Discussion: The above results indicate that Ag@H with photothermal reactivity and antibacterial activity is very promising for biomedical applications, such as wound healing and tissue engineering.
Collapse
|
12
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
13
|
Castrejón-Comas V, Alemán C, Pérez-Madrigal MM. Multifunctional conductive hyaluronic acid hydrogels for wound care and skin regeneration. Biomater Sci 2023; 11:2266-2276. [PMID: 36912458 DOI: 10.1039/d2bm02057b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Although the main function of skin is to act as a protective barrier against external factors, it is indeed an extremely vulnerable tissue. Skincare, regardless of the wound type, requires effective treatments to prevent bacterial infection and local inflammation. The complex biological roles displayed by hyaluronic acid (HA) during the wound healing process have made this multifaceted polysaccharide an alternative biomaterial to prepare wound dressings. Therefore, herein, we present the most advanced research undertaken to engineer conductive and interactive hydrogels based on HA as wound dressings that enhance skin tissue regeneration either through electrical stimulation (ES) or by displaying multifunctional performance. First, we briefly introduce to the reader the effect of ES on promoting wound healing and why HA has become a vogue as a wound healing agent. Then, a selection of systems, chosen according to their multifunctional relevance, is presented. Special care has been taken to highlight those recently reported works (mainly from the last 3 years) with enhanced scalability and biomimicry. By doing that, we have turned a critical eye on the field considering what major challenges must be overcome for these systems to have real commercial, clinical, or other translational impact.
Collapse
Affiliation(s)
- Víctor Castrejón-Comas
- Departament d'Enginyeria Química (EQ), Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain. .,Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química (EQ), Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain. .,Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química (EQ), Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain. .,Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| |
Collapse
|
14
|
Sun H, Dong Z, Kou X, Zhao Q, Shi L, Ma Y, Ma Y. Herbal molecule-mediated dual network hydrogels with adhesive and antibacterial properties for strain and pressure sensing. RSC Adv 2023; 13:5762-5769. [PMID: 36816084 PMCID: PMC9929617 DOI: 10.1039/d3ra00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Multifunctional integration is the focus of hydrogel-based flexible sensors, and formation of a dual network (DN) could shed light on the fabrication of hydrogels with multifunctionality and enhanced properties. In this study, a DN hydrogel was fabricated by the self-assembly of herbal molecule glycyrrhizic acid (GA) as the first hydrogel network and subsequent photocrosslinking of methacrylated sodium alginate (SA-MA) to form the second network. Profiting from the good compatibility between the two hydrogel networks, the obtained DN hydrogels with a homogeneous porous microstructure were endowed with remarkably enlarged stretching (114.5%) and compression (74.4%) strains. In addition, they were demonstrated to display excellent bacteriostatic activity (>99.9%) against Escherichia coli and Staphylococcus aureus owing to the synergetic antibacterial effect of GA and SA-MA. The DN hydrogels as strain sensors possessed high sensitivity (GF = 1.39), linear sensing (R 2 > 0.99), rapid response (180 ms), and good stability (1300 times) for human motion detection. Besides, the DN hydrogels could also be used to conduct pressure sensing such as application of heavy weights and even human pulses. All results suggest that the developed DN hydrogels have great potential in serving as epidermal and implantable flexible sensors for human health monitoring.
Collapse
Affiliation(s)
- Hao Sun
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Zhibin Dong
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xinyue Kou
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Qiaoqiao Zhao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Yuxia Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
15
|
Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Kumar A, Rakesh Kumar RK, Shaikh MO, Lu CH, Yang JY, Chang HL, Chuang CH. Ultrasensitive Strain Sensor Utilizing a AgF-AgNW Hybrid Nanocomposite for Breath Monitoring and Pulmonary Function Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55402-55413. [PMID: 36485002 DOI: 10.1021/acsami.2c17756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Breath monitoring and pulmonary function analysis have been the prime focus of wearable smart sensors owing to the COVID-19 outbreak. Currently used lung function meters in hospitals are prone to spread the virus and can result in the transmission of the disease. Herein, we have reported the first-ever wearable patch-type strain sensor for enabling real-time lung function measurements (such as forced volume capacity (FVC) and forced expiratory volume (FEV) along with breath monitoring), which can avoid the spread of the virus. The noninvasive and highly sensitive strain sensor utilizes the synergistic effect of two-dimensional (2D) silver flakes (AgFs) and one-dimensional (1D) silver nanowires (AgNWs), where AgFs create multiple electron transmission paths and AgNWs generate percolation networks in the nanocomposite. The nanocomposite-based strain sensor possesses a high optimized conductivity of 7721 Sm-1 (and a maximum conductivity of 83,836 Sm-1), excellent stretchability (>1000%), and ultrasensitivity (GFs of 35 and 87 when stretched 0-20 and 20-50%, respectively), thus enabling reliable detection of small strains produced by the body during breathing and other motions. The sensor patching site was optimized to accurately discriminate between normal breathing, quick breathing, and deep breathing and analyze numerous pulmonary functions, including the respiratory rate, peak flow, FVC, and FEV. Finally, the observed measurements for different pulmonary functions were compared with a commercial peak flow meter and a spirometer, and a high correlation was observed, which highlights the practical feasibility of continuous respiratory monitoring and pulmonary function analysis.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - R K Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Engineering Program, Tunghai University, Taichung407224, Taiwan
| | - Cheng-Huan Lu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Jia-Yu Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Hsu-Liang Chang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung80145, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| |
Collapse
|
17
|
He Z, Liu J, Fan X, Song B, Gu H. Tara Tannin-Cross-Linked, Underwater-Adhesive, Super Self-Healing, and Recyclable Gelatin-Based Conductive Hydrogel as a Strain Sensor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Zhen He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Jiachang Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Xin Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu610065, China
| |
Collapse
|
18
|
Inanlu MJ, Farhadi J, Ansari E, Charkas S, Bazargan V. Effect of surfactant concentration on the evaporation-driven deposition of carbon nanotubes: from coffee-ring effect to strain sensing. RSC Adv 2022; 12:31688-31698. [PMID: 36380929 PMCID: PMC9638968 DOI: 10.1039/d2ra03833a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2023] Open
Abstract
Carbon nanotubes (CNTs) as electrically conductive materials are of great importance in the fabrication of flexible electronic devices and wearable sensors. In this regard, the evaporation-driven self-assembly of CNTs has attracted increasing attention. CNT-based applications are mostly concerned with the alignment of CNTs and the density of CNT films. In the present work, we focus on the latter by trying to achieve an optimal evaporation-driven deposition with the densest CNT ring. Although surfactants are used for effective dispersion and colloidal stabilization of CNTs in the aqueous phase, their excessive usage induces Marangoni eddies in the evaporating sessile droplets, leading to poor ring depositions. Thus, there is an optimum surfactant concentration that contributes to CNTs deagglomeration and results in the densest ring-like deposition with relatively high thickness. We report that this optimum concentration for sodium dodecyl sulfate (SDS) as a surfactant can be approximately considered as much as the concentration of multi-walled carbon nanotubes (MWCNTs) as the colloidal nanoparticles. Optimal depositions show the lowest electrical resistances for each CNT concentration, making them suitable for electronic applications. We also propose the multiple depositions method in which a new droplet is printed after the complete evaporation of the previous droplet. This method can lead to denser rings with a higher conductivity using lower concentrations of CNTs. Lastly, we fabricate strain sensors based on the optimal evaporation-driven deposition of CNTs which show higher gauge factors than the commercial strain gauges, corroborating the applicability of our method.
Collapse
Affiliation(s)
- Mohammad Jalal Inanlu
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Jafar Farhadi
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Ehsan Ansari
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Saina Charkas
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran Iran
| | - Vahid Bazargan
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran Iran
| |
Collapse
|
19
|
Wang H, Liu J, Fan X, Ren J, Liu Q, Kong B. Fabrication, characterisation, and application of green crosslinked sodium alginate hydrogel films by natural crab-shell powders to achieve drug sustained release. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Wang L, Liu S, Cheng J, Peng Y, Meng F, Wu Z, Chen H. Poly( N, N-dimethyl)acrylamide-based ion-conductive gel with transparency, self-adhesion and rapid self-healing properties for human motion detection. SOFT MATTER 2022; 18:6115-6123. [PMID: 35943040 DOI: 10.1039/d2sm00786j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors have been extensively studied for their potential value in monitoring human activity and health. However, it is still challenging to develop multifunctional flexible strain sensors with simultaneously high transparency, strong self-adhesion, fast self-healing and excellent tensile properties. In this study, we used N,N-dimethylacrylamide (DMA) in the imidazolium-based ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([BMIM][Tf2N]) for "one-step" UV irradiation. A poly(N,N-dimethyl)acrylamide (PDMA) ion-conductive gel was prepared by site polymerization. Based on the good compatibility between PDMA and ionic liquid, the prepared ion-conductive gel has good transparency (∼90%), excellent stretchability (1080%), strong self-adhesion (67.57 kPa), fast self-healing (2 s at room temperature) and great antibacterial activity (∼99% bacterial killing efficiency). Moreover, the strain sensor based on the PDMA ion-conductive gel has good electromechanical performance and can detect different human motions. Based on the simple and easy-to-operate preparation method and the endowed multifunctionality of the PDMA ion-conductive gel, it has broad application prospects in the field of flexible electronic devices.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Shengjie Liu
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingjing Cheng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yao Peng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Fangfei Meng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|