1
|
Sharma C, Raza MA, Purohit SD, Pathak P, Gautam S, Corridon PR, Han SS. Cellulose-based 3D printing bio-inks for biomedical applications: A review. Int J Biol Macromol 2025; 305:141174. [PMID: 39984091 DOI: 10.1016/j.ijbiomac.2025.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Cellulose is the most ubiquitous polymer found in nature. In recent years, cellulose derivatives of various kinds, such as cellulose esters and ethers, and nanocelluloses, have become popular bioprintable materials used for making bio-inks because of their affordability, biocompatibility, biodegradability, and printability. Nevertheless, the potential uses of nanocellulose and cellulose derivative-based bio-inks have not been thoroughly explored. This review emphasizes advancements in the design of cellulose-based bio-inks for 3D bioprinting of diverse tissues as well as the physicochemical attributes of cellulose derivatives and nanocellulose that make them a viable choice for bio-inks in 3D bioprinting. Additionally, cellulose bio-inks' current benefits and drawbacks in 3D printing are thoroughly examined. Various cross-linking approaches are offered for multicomponent cellulose and nanocellulose-based bio-inks to control the fidelity of the ink and alter the mechanical stiffness in the printed hydrogel construct as a bioactive cue. By emphasizing the interactions involving cells and the matrix, it additionally examines the effect of functional groups and surface charge on nanocellulose on vital cellular functions (including cell survival, adhesion, and proliferation). Thus, this review aims to offer an integrated platform for 3D bioprinting with cellulose-based materials for the biomedical industry.
Collapse
Affiliation(s)
- Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Muhammad Asim Raza
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Puneet Pathak
- Agriliv Research Foundation, Chidana, Sonipat, Haryana, India
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Peter R Corridon
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|
2
|
Song YE, Eckman N, Sen S, Jons CK, Saouaf OM, Appel EA. Highly Extensible Physically Crosslinked Hydrogels for High-Speed 3D Bioprinting. Adv Healthc Mater 2025; 14:e2404988. [PMID: 39955737 PMCID: PMC12004426 DOI: 10.1002/adhm.202404988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Hydrogels have emerged as promising materials for bioprinting and many other biomedical applications due to their high degree of biocompatibility and ability to support and/or modulate cell viability and function. Yet, many hydrogel bioinks have suffered from low efficiency due to limitations on accessible printing speeds, often limiting cell viability and/or the constructs which can be generated. In this study, a highly extensible bioink system created by modulating the rheology of physically crosslinked hydrogels comprising hydrophobically-modified cellulosics and either surfactants or cyclodextrins is reported. It is demonstrated that these hydrogels are highly shear-thinning with broadly tunable viscoelasticity and stress-relaxation through simple modulation of the composition. Rheological experiments demonstrate that increasing concentration of rheology-modifying additives yields hydrogel materials exhibiting extensional strain-to-break values up to 2000%, which is amongst the most extensible examples of physically crosslinked hydrogels of this type. The potential of these hydrogels for use as bioinks is demonstrated by evaluating the relationship between extensibility and printability, demonstrating that greater hydrogel extensibility enables faster print speeds and smaller print features. The findings suggest that optimizing hydrogel extensibility can enhance high-speed 3D bioprinting capabilities, reporting over 5000 fold enhancement in speed index compared to existing works reported for hydrogel-based bioinks in extrusion-based printing.
Collapse
Affiliation(s)
- Ye Eun Song
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Noah Eckman
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Samya Sen
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Carolyn K. Jons
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Olivia M. Saouaf
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- ChEM‐H InstituteStanford UniversityStanfordCA94305USA
- Woods Institute for the EnvironmentStanford UniversityStanfordCA94305USA
- Department of Pediatrics–EndocrinologyStanford University School of MedicineStanfordCA94305USA
| |
Collapse
|
3
|
Bartolomei A, D’Amato E, Scarpa M, Bergamaschi G, Gori A, Bettotti P. Ion-Specific Gelation and Internal Dynamics of Nanocellulose Biocompatible Hybrid Hydrogels: Insights from Fluctuation Analysis. Gels 2025; 11:197. [PMID: 40136902 PMCID: PMC11942523 DOI: 10.3390/gels11030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels find widespread use in bioapplications for their ability to retain large amounts of water while maintaining structural integrity. In this article, we investigate hybrid hydrogels made of nanocellulose and either amino-polyethylenglycol or sodium alginates and we present two novel results: (1) the biocompatibility of the amino-containing hybrid gel synthesized using a simplified receipt does not require any intermediate synthetic step to functionalize either component and (2) the fluctuation in the second-order correlation function of a dynamic light scattering experiment provides relevant information about the characteristic internal dynamics of the materials across the entire sol-gel transition as well as quantitative information about the ion-specific gel formation. This novel approach offers significantly better temporal (tens of μs) and spatial (tens of μm) resolution than many other state-of-the-art techniques commonly used for such analyses (such as rheometry, SAXS, and NMR) and it might find widespread application in the characterization of nano- to microscale dynamics in soft materials.
Collapse
Affiliation(s)
- Arianna Bartolomei
- Nanoscience Laboratory, Department of Physics, University of Trento, v. Sommarive 14, Povo, 38123 Trento, Italy; (A.B.); (M.S.)
| | - Elvira D’Amato
- Nanoscience Laboratory, Department of Physics, University of Trento, v. Sommarive 14, Povo, 38123 Trento, Italy; (A.B.); (M.S.)
| | - Marina Scarpa
- Nanoscience Laboratory, Department of Physics, University of Trento, v. Sommarive 14, Povo, 38123 Trento, Italy; (A.B.); (M.S.)
| | - Greta Bergamaschi
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy; (G.B.); (A.G.)
| | - Alessandro Gori
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy; (G.B.); (A.G.)
| | - Paolo Bettotti
- Nanoscience Laboratory, Department of Physics, University of Trento, v. Sommarive 14, Povo, 38123 Trento, Italy; (A.B.); (M.S.)
| |
Collapse
|
4
|
Michelutti L, Tel A, Robiony M, Vinayahalingam S, Agosti E, Ius T, Gagliano C, Zeppieri M. The Properties and Applicability of Bioprinting in the Field of Maxillofacial Surgery. Bioengineering (Basel) 2025; 12:251. [PMID: 40150715 PMCID: PMC11939734 DOI: 10.3390/bioengineering12030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Perhaps the most innovative branch of medicine is represented by regenerative medicine. It deals with regenerating or replacing tissues damaged by disease or aging. The innovative frontier of this branch is represented by bioprinting. This technology aims to reconstruct tissues, organs, and anatomical structures, such as those in the head and neck region. This would mean revolutionizing therapeutic and surgical approaches in the management of multiple conditions in which a conspicuous amount of tissue is lost. The application of bioprinting for the reconstruction of anatomical areas removed due to the presence of malignancy would represent a revolutionary new step in personalized and precision medicine. This review aims to investigate recent advances in the use of biomaterials for the reconstruction of anatomical structures of the head-neck region, particularly those of the oral cavity. The characteristics and properties of each biomaterial currently available will be presented, as well as their potential applicability in the reconstruction of areas affected by neoplasia damaged after surgery. In addition, this study aims to examine the current limitations and challenges and to analyze the future prospects of this technology in maxillofacial surgery.
Collapse
Affiliation(s)
- Luca Michelutti
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | - Alessandro Tel
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | - Massimo Robiony
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy; (L.M.); (A.T.)
| | | | - Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Tamara Ius
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35121 Padova, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
5
|
Zhu X, Li B, Fan Y, Yu J. Direct ink writing of a bio-based ink made of low concentration cellulose nanofiber crosslinked with poly (ethylene glycol) via hydroxyl-yne click chemistry. Int J Biol Macromol 2025; 306:141267. [PMID: 39988164 DOI: 10.1016/j.ijbiomac.2025.141267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Achieving both low solid content and printability for cellulose nanofiber inks remains challenging. In this study, mild hydroxyl-yne click chemistry was used to chemically crosslink dipropiolate ester of polyethylene glycol (DA-PEG) with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidized cellulose nanofibers (TOCN), forming TOCN-PEG (TP) inks. This crosslinking network allowed for effective viscosity control, with TP ink viscosity increasing by 128.5 % upon PEG addition. As a result, direct ink writing (DIW) 3D printing of TOCN was feasible at low concentrations (1.0-2.0 wt%). The printed TP hydrogel scaffolds exhibited high mechanical strength, bearing loads over 500 times their weight, and fluorescence due to conjugated double bonds and carbonyl groups. Additionally, cell viability rates exceeded 96 % at 24 h and 93 % at 48 h, indicating non-cytotoxicity (viability >80 %). Thus, the easily customizable TP inks prepared via hydroxyl-yne click chemistry hold promise for various applications, especially in 3D-printed bio-cellular scaffolds.
Collapse
Affiliation(s)
- Xinyi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Bowen Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Bektas CK, Luo J, Conley B, Le KPN, Lee KB. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomater 2025; 193:20-48. [PMID: 39793745 DOI: 10.1016/j.actbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting holds immense promise for advancing stem cell research and developing novel therapeutic strategies in the field of neural tissue engineering and disease modeling. This paper critically analyzes recent breakthroughs in 3D bioprinting, specifically focusing on its application in these areas. We comprehensively explore the advantages and limitations of various 3D printing methods, the selection and formulation of bioink materials tailored for neural stem cells, and the incorporation of nanomaterials with dual functionality, enhancing the bioprinting process and promoting neurogenesis pathways. Furthermore, the paper reviews the diverse range of stem cells employed in neural bioprinting research, discussing their potential applications and associated challenges. We also introduce the emerging field of 4D bioprinting, highlighting current efforts to develop time-responsive constructs that improve the integration and functionality of bioprinted neural tissues. In short, this manuscript aims to provide a comprehensive understanding of this rapidly evolving field. It underscores the transformative potential of 3D and 4D bioprinting technologies in revolutionizing stem cell research and paving the way for novel therapeutic solutions for neurological disorders and injuries, ultimately contributing significantly to the advancement of regenerative medicine. STATEMENT OF SIGNIFICANCE: This comprehensive review critically examines the current bioprinting research landscape, highlighting efforts to overcome key limitations in printing technologies-improving cell viability post-printing, enhancing resolution, and optimizing cross-linking efficiencies. The continuous refinement of material compositions aims to control the spatiotemporal delivery of therapeutic agents, ensuring better integration of transplanted cells with host tissues. Specifically, the review focuses on groundbreaking advancements in neural tissue engineering. The development of next-generation bioinks, hydrogels, and scaffolds specifically designed for neural regeneration complexities holds the potential to revolutionize treatments for debilitating neural conditions, especially when nanotechnologies are being incorporated. This review offers the readers both a comprehensive analysis of current breakthroughs and an insightful perspective on the future trajectory of neural tissue engineering.
Collapse
Affiliation(s)
- Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kim-Phuong N Le
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
An JH, Kim HY. Scaffolds Bioink for Three-Dimensional (3D) Bioprinting. Food Sci Anim Resour 2025; 45:126-144. [PMID: 39840242 PMCID: PMC11743847 DOI: 10.5851/kosfa.2024.e120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Rapid population growth and a corresponding increase in the demand for animal-derived proteins have led to food supply challenges and the need for alternative and sustainable meat production methods. Therefore, this study explored the importance of cell engineering technology-based three-dimensional bioprinting and bioinks, which play key roles in cultured meat production. In cultured meat production, bioinks have a significant effect on cell growth, differentiation, and mechanical stability. Hence, in this study, the characteristics of animal-, plant-, and marine-based bioinks were compared and analyzed, and the impact of each bioink on cultured meat production was evaluated. In particular, animal-based bioinks have the potential to produce cultured meat that is similar to conventional meat and are considered the most suitable bioinks for commercialization. Although plant- and marine-based bioinks are ecofriendly and have fewer religious restrictions, they are limited in terms of mechanical stability and consumer acceptance. Therefore, further research is required to develop and apply optimal animal-based bioinks for commercialization of cultured meat, particularly to improve its mechanical compatibility.
Collapse
Affiliation(s)
- Jin-Hee An
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resources Science Research Institute, Yesan 32439, Korea
| |
Collapse
|
8
|
Chen T, Jiang H, Zhang R, He F, Han N, Wang Z, Jia J. Leveraging printability and biocompatibility in materials for printing implantable vessel scaffolds. Mater Today Bio 2024; 29:101366. [PMID: 39698000 PMCID: PMC11652949 DOI: 10.1016/j.mtbio.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/10/2024] [Accepted: 11/23/2024] [Indexed: 12/20/2024] Open
Abstract
Vessel scaffolds are crucial for treating cardiovascular diseases (CVDs). It is currently feasible to fabricate vessel scaffolds from a variety of materials using traditional fabrication methods, but the risks of thrombus formation, chronic inflammation, and atherosclerosis associated with these scaffolds have led to significant limitations in the clinical usages. Bioprinting, as an emerging technology, has great potential in constructing implantable vessel scaffolds. During the fabrication of the constructs, the biomaterials used for bioprinting have offered significant contributions for the successful fabrications of the vessel scaffolds. Herein, we review recent advances in biomaterials for bioprinting implantable vessel scaffolds. First, we briefly introduce the requirements for implantable vessel scaffolds and its conventional manufacturing methods. Next, a brief overview of the classic methods for bioprinting vessel scaffolds is presented. Subsequently, we provide an in-depth analysis of the properties of the representative natural, synthetic, composite and hybrid biomaterials that can be used for bioprinting implantable vessel scaffolds. Ultimately, we underscore the necessity of leveraging biocompatibility and printability for biomaterials, and explore the unmet needs and potential applications of these biomaterials in the field of bioprinted implantable vessel scaffolds.
Collapse
Affiliation(s)
- Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruoxuan Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fan He
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Ning Han
- Department of Orthopedic Traumatology, Shanghai East Hospital, Tongji University, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Lv X, Huang Y, Hu M, Wang Y, Dai D, Ma L, Zhang Y, Dai H. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Int J Biol Macromol 2024; 277:134015. [PMID: 39038566 DOI: 10.1016/j.ijbiomac.2024.134015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Nanocellulose has been favored as one of the most promising sustainable nanomaterials, due to its competitive advantages and superior performances such as hydrophilicity, renewability, biodegradability, biocompatibility, tunable surface features, excellent mechanical strength, and high specific surface area. Based on the above properties of nanocellulose and the advantages of hydrogels such as high water absorption, adsorption, porosity and structural adjustability, nanocellulose based hydrogels integrating the benefits of both have attracted extensive attention as promising materials in various fields. In this review, the main fabrication strategies of nanocellulose based hydrogels are initially discussed in terms of different crosslinking methods. Then, the typical properties of nanocellulose based hydrogels are comprehensively summarized, including porous structure, swelling ability, adsorption, mechanical, self-healing, smart response performances. Especially, relying on these properties, the general application of nanocellulose based hydrogels in food field is also discussed, mainly including food packaging, food detection, nutrient embedding delivery, 3D food printing, and enzyme immobilization. Finally, the safety of nanocellulose based hydrogel is summarized, and the current challenges and future perspectives of nanocellulose based hydrogels are put forward.
Collapse
Affiliation(s)
- Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Difei Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China.
| |
Collapse
|
10
|
Singh P, Baniasadi H, Gupta S, Ghosh R, Shaikh S, Seppälä J, Kumar A. 3D-printed cellulose nanocrystals and gelatin scaffolds with bioactive cues for regenerative medicine: Advancing biomedical applications. Int J Biol Macromol 2024; 278:134402. [PMID: 39094885 DOI: 10.1016/j.ijbiomac.2024.134402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
3D printed scaffolds have revolutionized the field of regenerative medicine by overcoming the lacunas such as precision, customization, and reproducibility observed through traditional methods of scaffold preparation such as freeze-drying, electrospinning, etc. Combining the advantages of 3D printed scaffolds along with bioactive cues such as signaling molecules can be an effective treatment approach. In the present study, cellulose nanocrystals (CNCs) along with gelatin, in different ratios, were used for scaffold preparation through the direct ink writing technique and thoroughly characterized. The scaffolds showed porous microstructure, high swelling ratio (∼390 to 590), degradability and porosity (∼65 %). In vitro biocompatibility assays showed high biocompatibility and no toxicity through live-dead, proliferation and hemolysis assay. Further, the optimum formulation was functionalized with nitric oxide (NO)-releasing modified gelatin to enhance the scaffold's biomedical applicability. Functionality assays with this formulation, scratch, and neurite outgrowth showed positive effects of NO on cell migration and neurite length. The study presents the fabrication, modification, and biomedical applicability of the aforementioned inks, which paves new pathways in the field of 3D printing of scaffolds with significant potential for biomedical applications, soft tissue engineering, and wound dressing, for example.
Collapse
Affiliation(s)
- Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rupita Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
11
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
12
|
Rafieyan S, Ansari E, Vasheghani-Farahani E. A practical machine learning approach for predicting the quality of 3D (bio)printed scaffolds. Biofabrication 2024; 16:045014. [PMID: 39008994 DOI: 10.1088/1758-5090/ad6374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
3D (Bio)printing is a highly effective method for fabricating tissue engineering scaffolds, renowned for their exceptional precision and control. Artificial intelligence (AI) has become a crucial technology in this field, capable of learning and replicating complex patterns that surpass human capabilities. However, the integration of AI in tissue engineering is often hampered by the lack of comprehensive and reliable data. This study addresses these challenges by providing one of the most extensive datasets on 3D-printed scaffolds. It provides the most comprehensive open-source dataset and employs various AI techniques, from unsupervised to supervised learning. This dataset includes detailed information on 1171 scaffolds, featuring a variety of biomaterials and concentrations-including 60 biomaterials such as natural and synthesized biomaterials, crosslinkers, enzymes, etc.-along with 49 cell lines, cell densities, and different printing conditions. We used over 40 machine learning and deep learning algorithms, tuning their hyperparameters to reveal hidden patterns and predict cell response, printability, and scaffold quality. The clustering analysis using KMeans identified five distinct ones. In classification tasks, algorithms such as XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, and LightGBM demonstrated superior performance, achieving higher accuracy and F1 scores. A fully connected neural network with six hidden layers from scratch was developed, precisely tuning its hyperparameters for accurate predictions. The developed dataset and the associated code are publicly available onhttps://github.com/saeedrafieyan/MLATEto promote future research.
Collapse
Affiliation(s)
- Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, PO Box, 14115-143 Tehran, Iran
| | - Elham Ansari
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, PO Box, 14115-143 Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, PO Box, 14115-143 Tehran, Iran
| |
Collapse
|
13
|
Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int J Biol Macromol 2024; 272:132583. [PMID: 38795882 DOI: 10.1016/j.ijbiomac.2024.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hechun Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Amr M Bakry
- Dairy Science Department, Faculty of Agriculture, New Valley University, New Valley, El-Kharga 72511, Egypt
| | - Wanqiang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
de Kergariou C, Day GJ, Perriman AW, Armstrong JPK, Scarpa F. Flax fibre reinforced alginate poloxamer hydrogel: assessment of mechanical and 4D printing potential. SOFT MATTER 2024; 20:4021-4034. [PMID: 38695256 PMCID: PMC11095501 DOI: 10.1039/d4sm00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
The mechanical and printing performance of a new biomaterial, flax fibre-reinforced alginate-poloxamer based hydrogel, for load-bearing and 4D printing biomedical applications is described in this study. The-self suspendable ability of the material was evaluated by optimising the printing parameters and conducting a collapse test. 1% of the flax fibre weight fraction was sufficient to obtain an optimum hydrogel composite from a mechanical perspective. The collapse test showed that the addition of flax fibres allowed a consistent print without support over longer distances (8 and 10 mm) than the unreinforced hydrogel. The addition of 1% of flax fibres increased the viscosity by 39% and 129% at strain rates of 1 rad s-1 and 5 rad s-1, respectively, compared to the unreinforced hydrogel. The distributions of fibre size and orientation inside the material were also evaluated to identify the internal morphology of the material. The difference of coefficients of moisture expansion between the printing direction (1.29 × 10-1) and the transverse direction (6.03 × 10-1) showed potential for hygromorphic actuation in 4D printing. The actuation authority was demonstrated by printing a [0°; 90°] stacking sequence and rosette-like structures, which were then actuated using humidity gradients. Adding fibres to the hydrogel improved the repeatability of the actuation, while lowering the actuation authority from 0.11 mm-1 to 0.08 mm-1. Overall, this study highlighted the structural and actuation-related benefits of adding flax fibres to hydrogels.
Collapse
Affiliation(s)
- Charles de Kergariou
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol BS8 1TR, UK.
| | - Graham J Day
- Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK
- Research School of Chemistry and John Curtin School of Medical Research, Australian National University, Canberra ACT2601, Australia
| | - James P K Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol BS8 1TR, UK.
| |
Collapse
|
15
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
16
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
18
|
Cheng KC, Sun YM, Hsu SH. Development of double network polyurethane-chitosan composite bioinks for soft neural tissue engineering. J Mater Chem B 2023; 11:3592-3606. [PMID: 36943068 DOI: 10.1039/d3tb00120b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Three-dimensional (3D) bioprinting is an emerging manufacturing technology to print materials with cells for tissue engineering applications. In this study, we prepared novel ternary soft segment-based biodegradable polyurethane (tPU) using waterborne processes. The ternary soft segment included poly(ε-caprolactone) (PCL), polylactide, and poly(3-hydroxybutyrate) (PHB). tPU2 with a soft segment of PCL, poly(D,L-lactide), and PHB in a molar ratio of 0.7 : 0.2 : 0.1 demonstrated lower stiffness (∼2.3 kPa) and a greater tan δ value (∼0.64) and maintained good vitality (91.3%) of neural stem cells (NSCs) among various tPUs. The bioprinted tPU2 constructs facilitated cell proliferation (∼200% in 7 days) and neural differentiation of NSCs. Meanwhile, tPU2 formed double network composite hydrogels with gelatin or agarose, and the composite hydrogels showed good biocompatibility and achieved high-resolution (∼80 μm nozzle) bioprinting. In addition, a new series of double network polyurethane-chitosan composite (PUC) hydrogels were developed by combining tPU2 with a self-healing chitosan hydrogel. The PUC hydrogel demonstrated self-healing properties and bioprintability without the need for a post-crosslinking process. The bioprinted PUC composite hydrogel promoted cell proliferation (∼300% in 7 days) and neural differentiation of NSCs better than the tPU2 bioink. This study revealed new formulae of a polyurethane bioink and a polyurethane-chitosan composite bioink for 3D bioprinting and tissue engineering applications.
Collapse
Affiliation(s)
- Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
| | - Yi-Ming Sun
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan, Republic of China
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan University, Chung-Li, Taoyuan, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| |
Collapse
|
19
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
20
|
Österberg M, Henn KA, Farooq M, Valle-Delgado JJ. Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chem Rev 2023; 123:2200-2241. [PMID: 36720130 PMCID: PMC9999428 DOI: 10.1021/acs.chemrev.2c00492] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.
Collapse
Affiliation(s)
- Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - K Alexander Henn
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, 02150Espoo, Finland
| |
Collapse
|
21
|
Radeke C, Pons R, Mihajlovic M, Knudsen JR, Butdayev S, Kempen PJ, Segeritz CP, Andresen TL, Pehmøller CK, Jensen TE, Lind JU. Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2564-2577. [PMID: 36598781 DOI: 10.1021/acsami.2c16126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For three-dimensional (3D) bioprinting to fulfill its promise and enable the automated fabrication of complex tissue-mimicking constructs, there is a need for developing bioinks that are not only printable and biocompatible but also have integrated cell-instructive properties. Toward this goal, we here present a scalable technique for generating nanofiber 3D printing inks with unique tissue-guiding capabilities. Our core methodology relies on tailoring the size and dispersibility of cellulose fibrils through a solvent-controlled partial carboxymethylation. This way, we generate partially negatively charged cellulose nanofibers with diameters of ∼250 nm and lengths spanning tens to hundreds of microns. In this range, the fibers structurally match the size and dimensions of natural collagen fibers making them sufficiently large to orient cells. Yet, they are simultaneously sufficiently thin to be optically transparent. By adjusting fiber concentration, 3D printing inks with excellent shear-thinning properties can be established. In addition, as the fibers are readily dispersible, composite inks with both carbohydrates and extracellular matrix (ECM)-derived proteins can easily be generated. We apply such composite inks for 3D printing cell-laden and cross-linkable structures, as well as tissue-guiding gel substrates. Interestingly, we find that the spatial organization of engineered tissues can be defined by the shear-induced alignment of fibers during the printing procedure. Specifically, we show how myotubes derived from human and murine skeletal myoblasts can be programmed into linear and complex nonlinear architectures on soft printed substrates with intermediate fiber contents. Our nanofibrillated cellulose inks can thus serve as a simple and scalable tool for engineering anisotropic human muscle tissues that mimic native structure and function.
Collapse
Affiliation(s)
- Carmen Radeke
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Raphaël Pons
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Marko Mihajlovic
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Jonas R Knudsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100Copenhagen, Denmark
- Heart and Skeletal Muscle Biology, Global Drug Discovery, Novo Nordisk A/S, 2760Maaloev, Denmark
| | - Sarkhan Butdayev
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- The National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Charis-Patricia Segeritz
- Heart and Skeletal Muscle Biology, Global Drug Discovery, Novo Nordisk A/S, 2760Maaloev, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Christian K Pehmøller
- Heart and Skeletal Muscle Biology, Global Drug Discovery, Novo Nordisk A/S, 2760Maaloev, Denmark
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100Copenhagen, Denmark
| | - Johan U Lind
- Department of Health Technology, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
23
|
Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, Song R, Wang X, Wang W. 3D printing of bone and cartilage with polymer materials. Front Pharmacol 2022; 13:1044726. [PMID: 36561347 PMCID: PMC9763290 DOI: 10.3389/fphar.2022.1044726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Damage and degeneration to bone and articular cartilage are the leading causes of musculoskeletal disability. Commonly used clinical and surgical methods include autologous/allogeneic bone and cartilage transplantation, vascularized bone transplantation, autologous chondrocyte implantation, mosaicplasty, and joint replacement. 3D bio printing technology to construct implants by layer-by-layer printing of biological materials, living cells, and other biologically active substances in vitro, which is expected to replace the repair mentioned above methods. Researchers use cells and biomedical materials as discrete materials. 3D bio printing has largely solved the problem of insufficient organ donors with the ability to prepare different organs and tissue structures. This paper mainly discusses the application of polymer materials, bio printing cell selection, and its application in bone and cartilage repair.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yifan Wang
- Department of Additive Manufacturing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hao Guo
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yiming Cai
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruipeng Song
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Weidong Wang, ; Xing Wang,
| | - Weidong Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China,*Correspondence: Weidong Wang, ; Xing Wang,
| |
Collapse
|
24
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
25
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|
26
|
Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers (Basel) 2022; 14:polym14112260. [PMID: 35683932 PMCID: PMC9183181 DOI: 10.3390/polym14112260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further study on the advanced biomaterial applications. To extend the use of cellulose-based hydrogel, additive manufacturing is a suitable technique for hydrogel fabrication in complex designs. Cellulose-based biomaterial ink used in 3D bioprinting can be further used for tissue engineering, drug delivery, protein study, microalgae, bacteria, and cell immobilization. This review includes a discussion on the techniques available for additive manufacturing, bio-based material, and the formation of a cellulose-based hydrogel.
Collapse
|
27
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
28
|
Monfared M, Nothling MD, Mawad D, Stenzel MH. Effect of cell culture media on photopolymerizations. Biomacromolecules 2021; 22:4295-4305. [PMID: 34533298 DOI: 10.1021/acs.biomac.1c00864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radical polymerization is one of the most widely used methods for the synthesis of polymeric materials for biomedical applications, such as drug delivery, 3D cell culture, and regenerative medicine. Among radical polymerization reactions, thiol-ene click chemistry has shown excellent orthogonality in diverse reaction conditions. However, our preliminary investigations revealed that it fails in cell culture environment. Herein, we investigate the mechanisms by which cell culture media interfere with radical photoreactions. Three different models including free radical linear photopolymerization (N,N-dimethylacrylamide photopolymerization), free radical photohydrogelation (poly(ethylene glycol) diacrylate photohydrogelation), and thiol-ene photohydrogelation (4-arm poly(ethylene glycol)-norbornene thiol-ene photohydrogelation) were investigated. We showed that common cell culture media ingredients can interfere with radical polymerization by two different pathways; namely, radical chain transfer and radical scavenging effects. Thiol-ene photoclick hydrogelation was seriously affected by cell culture media especially under the alkaline conditions of many of them, due to the impact of deprotonation of the thiol reactant. We intend these findings to serve as a reference guide to researchers employing free radical-based molecular synthesis in cell culture settings. The nonbenign impact of media components, pH, and concentration should provide a cue for future studies that aim to prepare well-defined polymeric materials in the presence of cell culture media.
Collapse
Affiliation(s)
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | | |
Collapse
|
29
|
Cidreira ACM, de Castro KC, Hatami T, Linan LZ, Mei LHI. Cellulose nanocrystals-based materials as hemostatic agents for wound dressings: a review. Biomed Microdevices 2021; 23:43. [PMID: 34491430 DOI: 10.1007/s10544-021-00581-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/18/2022]
Abstract
Wound dressings are devices used to stop bleeding and provide appropriate environmental conditions to accelerate wound healing. The effectiveness of wound dressing materials can be crucial to prevent deaths from excessive bleeding in surgeries and promote complete restoration of the injury. Some requirements for an ideal wound dressing are rapid hemostatic effect, high swelling capacity, antibacterial properties, biocompatibility, biodegradability, and mechanical strength. However, finding all these properties in a single material remains a challenge. In this context, nanocomposites have demonstrated an excellent capacity for this application because of their multifunctionality. One of the emerging materials used in nanocomposite manufacture is cellulose nanocrystals (CNCs), which are rod-like crystalline nanometric structures present on cellulose chains. These nanoparticles are attractive for wound healing applications because of their high aspect ratio, high mechanical properties, functionality and low density. Hence, this work aimed to present an overview of nanocomposites constituted by CNCs for wound healing applications. The review focuses on the most common materials used as matrices, the types of dressing, and their fabrication techniques. Novel wound dressings composites have improved hemostatic, swelling, and mechanical properties compared to other pure biopolymers while preserving their other biological properties. Films, nanofibers mats, sponges, and hydrogels have been prepared with CNCs nanocomposites, and in vitro and in vivo tests have proved their suitability for wound healing.
Collapse
Affiliation(s)
- Anne Carolyne Mendonça Cidreira
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil.
| | - Karine Cappuccio de Castro
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil
| | - Tahmasb Hatami
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil
| | - Lamia Zuniga Linan
- Laboratory of Materials and Process Engineering (LaMEP), Chemical Engineering Department (DEEQ), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1933, Bacanga, São Luís, MA, CEP 65080-805, Brazil
| | - Lucia Helena Innocentini Mei
- Department of Material Engineering and Bioprocesses, University of Campinas (UNICAMP), School of Chemical Engineering (FEQ), University City Zeferino Vaz, Campinas, SP, CEP 13083-970, Brazil
| |
Collapse
|