1
|
Kumar S, Singh P. Novel Perylene Diimide-Benzothaizole Hybrid: A Reaction-Based Probe for the Detection and Discrimination of H 2S, Cys and DTT. LUMINESCENCE 2025; 40:e70078. [PMID: 39838542 DOI: 10.1002/bio.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
The reaction-based probe perylene diimide-hydroxyphenyl benzothiazole (PR) can be used for the detection and discrimination of H2S, DTT and Cys in 20% HEPES buffer-DMSO and DMSO. The H2S induced radical anion formation of PR in 20% HEPES buffer and thiolysis of the ether bond of PR in DMSO. However, the addition of DTT showed only a decrease in the absorbance intensity and Cys showed insignificant behaviour towards PR in DMSO. The optical, AFM and DLS studies along with isolation of the reaction product in the model reaction support the interaction of the PR with bio thiols.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
2
|
Kumar S, Sharma P, Liu S, Kumar K, Chen J, Singh P. Perylene diimide-hydroxyphenyl benzothiazole-based new class of radical anions/dianions: biochemical assay for glucose detection. Chem Commun (Camb) 2024; 60:12541-12544. [PMID: 39380370 DOI: 10.1039/d4cc03531c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We report the design, synthesis and characterization of a perylene diimide-hydroxyphenyl benzothiazole (BT-PDI) dyad as a new class for the formation of radical anion (BT-PDI˙-) and dianion (BT-PDI2-) in aqueous medium using H2S. We demonstrate the applications of BT-PDI˙- for (i) the detection of H2O2; (ii) the detection of glucose in blood serum using a biochemical assay and (iii) the reduction of Ag+ to Ag0.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Punjab, India.
| | - Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Punjab, India.
| | - Siyu Liu
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kapil Kumar
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Punjab, India.
| |
Collapse
|
3
|
Gryszel M, Byun D, Burtscher B, Abrahamsson T, Brodsky J, Simon DT, Berggren M, Glowacki ED, Strakosas X, Donahue MJ. Vertical organic electrochemical transistor platforms for efficient electropolymerization of thiophene based oligomers. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5339-5346. [PMID: 38645749 PMCID: PMC11025323 DOI: 10.1039/d3tc04730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 04/23/2024]
Abstract
Organic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date. While PEDOT:PSS is highly conductive, and benefits from optimized protocols using secondary dopants and detergents, new p-type and n-type polymers are emerging with desirable material properties. Among these, low-oxidation potential oligomers are highly enabling for bioelectronics applications, however the polymers resulting from their polymerization lag far behind in conductivity compared with the established PEDOT:PSS. In this work we show that by careful design of the OECT geometrical characteristics, we can overcome this limitation and achieve devices that are on-par with transistors employing PEDOT:PSS. We demonstrate that the vertical architecture allows for facile electropolymerization of a family of trimers that are polymerized in very low oxidation potentials, without the need for harsh chemicals or secondary dopants. Vertical and planar OECTs are compared using various characterization methods. We show that vOECTs are superior platforms in general and propose that the vertical architecture can be expanded for the realization of OECTs for various applications.
Collapse
Affiliation(s)
- Maciej Gryszel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Donghak Byun
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Bernhard Burtscher
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Jan Brodsky
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
| | - Daniel Theodore Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Eric Daniel Glowacki
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Mary Jocelyn Donahue
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
| |
Collapse
|
4
|
Kaur N, Singh P. A coronene diimide based radical anion for detection of picomolar H 2O 2: a biochemical assay for detection of picomolar glucose in aqueous medium. J Mater Chem B 2024; 12:1043-1051. [PMID: 38214029 DOI: 10.1039/d3tb02473c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Coronene diimide functionalized with 4-(2-nitrovinyl)phenyl (CDI 2) serves as a precursor for generating a stable radical anion (CDI 2˙-) using H2S as a reductant in 40% H2O-THF solution in the NIR region with stability up to >50 min. The optical, cyclic voltammetry (CV), current-voltage (I-V) and electron paramagnetic resonance (EPR) studies revealed the formation of the radical anion (CDI 2˙-). The addition of a strong oxidant NOBF4 quenches the radical anion (CDI 2˙-). The aggregation studies revealed that CDI 2 exists in the aggregated state in 40% H2O-THF solution, which points to the possibility of stabilization of the radical anion in the aggregates. The radical anion (CDI 2˙-) was explored for the detection of 58.27 pM H2O2 in aqueous medium with the naked eye colour change from green to light yellow. The biochemical assay involving the radical anion (CDI 2˙-) and glucose oxidase (GOx) enzyme can be used for the detection of 16 pM (UV-vis method) and 82.4 pM (fluorescence method) glucose. The naked eye colour change from green to light yellow (daylight) and a colorless non-fluorescent solution to a green fluorescent solution (365 nm) allow the detection of 1 nM glucose.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (pb.), India.
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (pb.), India.
| |
Collapse
|
5
|
Kaur N, Sardana S, Mahajan A, Kumar S, Singh P. Perylene diimide-based radical anions for the rapid detection of picomolar H 2O 2 in an aqueous medium. Chem Commun (Camb) 2023. [PMID: 38015427 DOI: 10.1039/d3cc03690a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The formation of radical anions (PDI 1˙-) using H2S as a sacrificial electron donor in 50% HEPES buffer-THF solution is reported. PDI 1˙- was confirmed by optical, I-V plot, CV, DPV, NOBF4 and EPR studies. PDI 1˙- has a half-life of 96 minutes in solution and 11 days in the solid state without any additive. The formation of PDI 1˙- was confirmed by AFM and SEM. PDI 1˙- can be used for the detection of 26.6 pM of H2O2 supported by optical and CV data.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Punjab, India.
| | - Sagar Sardana
- Department of Physics, Guru Nanak Dev University, Amritsar 143001, Punjab, India
| | - Aman Mahajan
- Department of Physics, Guru Nanak Dev University, Amritsar 143001, Punjab, India
| | - Subodh Kumar
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Punjab, India.
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Punjab, India.
| |
Collapse
|
6
|
Allam T, Balderston DE, Chahal MK, Hilton KLF, Hind CK, Keers OB, Lilley RJ, Manwani C, Overton A, Popoola PIA, Thompson LR, White LJ, Hiscock JR. Tools to enable the study and translation of supramolecular amphiphiles. Chem Soc Rev 2023; 52:6892-6917. [PMID: 37753825 DOI: 10.1039/d3cs00480e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This tutorial review focuses on providing a summary of the key techniques used for the characterisation of supramolecular amphiphiles and their self-assembled aggregates; from the understanding of low-level molecular interactions, to materials analysis, use of data to support computer-aided molecular design and finally, the translation of this class of compounds for real world application, specifically within the clinical setting. We highlight the common methodologies used for the study of traditional amphiphiles and build to provide specific examples that enable the study of specialist supramolecular systems. This includes the use of nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray scattering techniques (small- and wide-angle X-ray scattering and single crystal X-ray diffraction), critical aggregation (or micelle) concentration determination methodologies, machine learning, and various microscopy techniques. Furthermore, this review provides guidance for working with supramolecular amphiphiles in in vitro and in vivo settings, as well as the use of accessible software programs, to facilitate screening and selection of druggable molecules. Each section provides: a methodology overview - information that may be derived from the use of the methodology described; a case study - examples for the application of these methodologies; and a summary section - providing methodology specific benefits, limitations and future applications.
Collapse
Affiliation(s)
- Thomas Allam
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Dominick E Balderston
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Charlotte K Hind
- Research and Evaluation, UKHSA, Porton Down, Salisbury SP4 0JG, UK
| | - Olivia B Keers
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Rebecca J Lilley
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Chandni Manwani
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Alix Overton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Precious I A Popoola
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa R Thompson
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa J White
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
7
|
Kaur N, Kour R, Kaur S, Singh P. Perylene diimide-based sensors for multiple analyte sensing (Fe 2+/H 2S/ dopamine and Hg 2+/Fe 2+): cell imaging and INH, XOR, and encoder logic. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2391-2398. [PMID: 37139593 DOI: 10.1039/d3ay00290j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this report, we present our results on the recognition of multiple analytes using trisubstituted PDI-based chemosensors DNP and DNB in 50% HEPES buffered-CH3CN solution. Upon the addition of Hg2+, DNB showed a decrease and increase in absorbance intensity at 560 and 590 nm, respectively, with a detection limit of 7.17 μM and bleaching of the violet color (de-butynoxy). Similarly, the addition of Fe2+ or H2S to the solution of DNP or DNB resulted in ratiometric changes (A688nm/A560nm) with respective detection limits of 185 nM and 27.6 nM for Fe2+, respectively, and a color change from violet to green. However, the addition of >37 μM H2S caused a decrease in absorbance at 688 nm with a concomitant blue shift to 634 nm. Upon the addition of dopamine, the DNP + Fe2+ assay showed ratiometric (A560nm/A688nm) changes within 10 s along with a color change from green to violet. Moreover, DNP has been successfully used for the exogenous detection of Fe2+ in A549 cells. Further, the multiple outputs observed with DNP in the presence of H2S have been used to construct NOR, XOR, INH and 4-to-2 encoder logic gates and circuits.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (Pb.), India.
| | - Rasdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143001 (Pb.), India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143001 (Pb.), India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001 (Pb.), India.
| |
Collapse
|
8
|
Chen CW, Chen SH, Huang CF, Chen JK. Designable Poly(methacrylic Acid)/Silver Cluster Ring Arrays as Reflectance Spectroscopy-Based Biosensors for Label-Free Plague Diagnosis. Polymers (Basel) 2023; 15:polym15081919. [PMID: 37112066 PMCID: PMC10143817 DOI: 10.3390/polym15081919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
A hole array was fabricated via photolithography to wet the bottoms of holes using oxygen plasma. Amide-terminated silane, a water immiscible compound before hydrolysis, was evaporated for deposition on the plasma-treated hole template surface. The silane compound was hydrolyzed along the edges of circular sides of the hole bottom to form a ring of an initiator after halogenation. Poly(methacrylic acid) (PMAA) was grafted from the ring of the initiator to attract Ag clusters (AgCs) as AgC-PMAA hybrid ring (SPHR) arrays via alternate phase transition cycles. The SPHR arrays were modified with a Yersinia pestis antibody (abY) to detect the antigen of Yersinia pestis (agY) for plague diagnosis. The binding of the agY onto the abY-anchored SPHR array resulted in a geometrical change from a ring to a two-humped structure. The reflectance spectra could be used to analyze the AgC attachment and the agY binding onto the abY-anchored SPHR array. The linear range between the wavelength shift and agY concentration from 30 to 270 pg mL-1 was established to obtain the detection limit of ~12.3 pg mL-1. Our proposed method provides a novel pathway to efficiently fabricate a ring array with a scale of less than 100 nm, which demonstrates excellent performance in preclinical trials.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Occupational Safety and Health, Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan
| | - Shih-Hsun Chen
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu City 300093, Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan
| |
Collapse
|
9
|
Sharma P, Kumar S, Walia A, Marok SS, Vanita V, Singh P. A naphthalimide-tyrosine-based dicationic amphiphile for intracellular ' turn-on' simultaneous detection of ATP and CTP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:203-211. [PMID: 36520082 DOI: 10.1039/d2ay01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have developed a new naphthalimide-based amphiphile (YN-1) for the simultaneous detection of ATP and CTP. In YN-1, the cationic tyrosine-linked polyamine (+2 charge, hydrophilic unit) is appended at the -peri position of naphthalimide (hydrophobic unit). YN-1 and its Boc-protected compound 4 were characterized using state-of-the-art spectroscopic and optical techniques such as NMR, IR, UV-vis and fluorescence. The fluorescence data revealed that YN-1 showed a 'turn-on' (λem = 440 nm) fluorescence response for nanomolar detection of nucleoside triphosphates such as ATP and CTP in 20% HEPES buffer-DMSO solution. YN-1 also showed a concentration-based discrimination between ATP and CTP. YN-1 has been successfully applied for bioimaging of nucleoside triphosphates in MCF-7 live cancer cells with good compatibility. Therefore, the important findings from the present work will provide insight for future development of fluorescent probes to detect various kinds of essential nucleoside triphosphates.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Pb, India.
| | - Sugandha Kumar
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Pb, India.
- School of Physical Sciences, Starex University, Gurugram, India
| | - Amandeep Walia
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Pb, India.
| | | | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Pb, India.
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Pb, India.
| |
Collapse
|
10
|
Kumar S, Sharma N, Kaur S, Singh P. Pseudo-crown ether III: Naphthalimide-Pd(II) based fluorogenic ensemble for solution, vapour and Intracellular detection of amine and anti-counterfeiting applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Sharma P, Sharma N, Kaur S, Singh P. Synthesis, self-assembly and biolabeling of perylene diimide-tyrosine alkyl amide based amphiphiles: nanomolar detection of AOT surfactant. NEW J CHEM 2022. [DOI: 10.1039/d2nj00093h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perylene diimide-tyrosine alkyl amide based amphiphiles were synthesized and characterized. PDI 3a showed ‘beehive’ nanostructure and applied for biolabeling of MG-63 live cells. PDI 3b can be used for NIR detection of anionic surfactant.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies II, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143 005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143 005, India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies II, Guru Nanak Dev University, Amritsar 143 005, India
| |
Collapse
|