1
|
Ye Y, Poncet M, Yaltseva P, Salcedo-Abraira P, Rodríguez-Diéguez A, Martín JH, Cuevas-Contreras L, Cruz CM, Doistau B, Piguet C, Wenger OS, Herrera JM, Jiménez JR. Modulating the spin-flip rates and emission energies through ligand design in chromium(iii) molecular rubies. Chem Sci 2025; 16:5205-5213. [PMID: 39991562 PMCID: PMC11841681 DOI: 10.1039/d4sc08021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Three homoleptic spin-flip (SF) emitters, namely [Cr(Mebipzp)2]3+ (1), [Cr(IMebipzp)2]3+ (2) and [Cr(bip*)2]3+ (3), have been successfully synthesized and characterized. The weak distortion compared to a perfect octahedron imparts favourable structural properties to the three complexes, which display spin-flip (SF) luminescence at approximately 740 nm with quantum yields in the range of 9-11% for 1 and 2 in deaerated acetonitrile solutions at 25 °C. Time-resolved luminescence and transient UV-vis absorption experiments unveiled lifetimes for the lowest-lying 2MC (metal-centered) of 1.5 ms for 1 and 350 μs for 2. The incorporation of iodine atoms onto the ligand scaffold in 2 accelerates the 2MC → 4A2 relaxation process through simultaneous enhancements in the radiative and non-radiative rate constants. In agreement, the experimentally calculated absorption oscillator strength for the 2MC ← 4A2 transition amounts to 9.8 × 10-7 and 2.5 × 10-6 for 1 and 2, respectively. The 2.5 factor enhancement observed in the iodine derivative indicates a higher spin-flip transition probability, translating into higher values of radiative rate constant (k rad). Interestingly, in compound 3, the substitution of the distal methyl-pyrazole with indazole rings causes an important bathochromic shift of the SF emission energy to 12 000 cm-1 (830 nm). Likely, the extended π-system and the more covalent bond character induced by the indazole decrease the interelectronic repulsion further stabilizing the SF excited states. The recorded excited state lifetime of 111 μs in 3 remains among the longest for a molecular ruby emitting beyond 800 nm. These discoveries signify an underexplored avenue for modifying deactivation pathways and emission energy while retaining high quantum yields and long-lived excited states in molecular rubies.
Collapse
Affiliation(s)
- Yating Ye
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Maxime Poncet
- Department of Analytical and Inorganic Chemistry, University of Geneva 30 Quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Polina Yaltseva
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Pablo Salcedo-Abraira
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Javier Heredia Martín
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Laura Cuevas-Contreras
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Carlos M Cruz
- Department of Organic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Benjamin Doistau
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS 45 Rue des Saint-Pères F-75006 Paris France
| | - Claude Piguet
- Department of Analytical and Inorganic Chemistry, University of Geneva 30 Quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Juan Manuel Herrera
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| | - Juan-Ramón Jiménez
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia enQuímica (UEQ)" Avda Fuente Nueva s/n Granada 18071 Spain
| |
Collapse
|
2
|
Reichenauer F, Zorn D, Naumann R, Förster C, Heinze K. Factorizing the Nephelauxetic Effect in Heteroleptic Molecular Rubies. Inorg Chem 2024; 63:23487-23496. [PMID: 39620368 DOI: 10.1021/acs.inorgchem.4c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The interest in chromium(III) complexes has been renewed over the past decade for the design of efficient earth-abundant phosphorescent red-to-near-infrared spin-flip emitters and photocatalysts with long excited state lifetimes. In this context, we report the energy tuning of spin-flip excited states based on heteroleptic bis(tridentate) polypyridine chromium(III) complexes [3X,Y]3+, namely, [3NMe,CH2]3+, [3NMe,S]3+ and [3CH2,S]3+ with the tridentate ligands LX and LY [X/Y = NMe, N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine; X/Y = CH2, 2,6-bis(2-pyridylmethyl)pyridine and X/Y = S, 2,6-bis(pyridine-2-ylthio)pyridine]. The heteroleptic complexes [3X,Y]3+ are obtained via a novel synthetic approach toward the required intermediate labile triflato complexes Cr(LX)(OTf)3 (2X) from the respective chlorido precursors CrCl3(LX) (1X) using trimethylsilyl trifluoromethanesulfonate. Spin-flip energies were experimentally detected by vis/near-infrared absorption and emission spectroscopy as well as computationally derived by multireference calculations. Together with the known homoleptic molecular ruby complexes, the three resulting series of luminescent complexes [3X,X]3+/[3X,Y]3+/[3Y,Y]3+ allow delineation of an additive nephelauxetic effect of the ligands with chromium(III) ions and thus prediction of spin-flip emission energies of derived molecular rubies.
Collapse
Affiliation(s)
- Florian Reichenauer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dimitri Zorn
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Reichenauer F, Naumann R, Förster C, Kitzmann WR, Reponen APM, Feldmann S, Heinze K. Bridge editing of spin-flip emitters gives insight into excited state energies and dynamics. Chem Sci 2024; 15:20251-20262. [PMID: 39568889 PMCID: PMC11575611 DOI: 10.1039/d4sc05860g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Six-coordinate chromium(iii) complexes with high spin-flip (SF) photoluminescence quantum yields and lifetimes (molecular rubies) have attracted huge interest in the past years due to their applicability in sensing, photocatalysis or circularly polarised emission. However, clearcut design rules for high quantum yields and lifetimes are still lacking due to the multidimensional problem of the non-radiative decay of the SF states. Based on an isostructural series of complexes differing in the ligand backbone, we disentangle decisive structural and electronic features for SF excited state energies and non-radiative decays promoted by spin-orbit coupling, Jahn-Teller distortions and (thermally activated) multiphonon relaxation. This analysis goes beyond the classical increasing of the ligand field strength or the metal-ligand covalency to reduce non-radiative decay or to tune the SF energy. The results underscore the utility of the combination of near-infrared absorption, variable temperature emission and fs-transient absorption spectroscopy as well as photolysis and high-level quantum chemical calculations to obtain a comprehensive picture of the excited dynamics on ultrafast and long timescales.
Collapse
Affiliation(s)
- Florian Reichenauer
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University 100 Edwin H. Land Boulevard Cambridge MA 02142 USA
| | - Sascha Feldmann
- Rowland Institute, Harvard University 100 Edwin H. Land Boulevard Cambridge MA 02142 USA
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
4
|
Huang T, Du P, Cheng X, Lin YM. Manganese Complexes with Consecutive Mn(IV) → Mn(III) Excitation for Versatile Photoredox Catalysis. J Am Chem Soc 2024; 146:24515-24525. [PMID: 39079011 DOI: 10.1021/jacs.4c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Manganese complexes stand out as promising candidates for photocatalyst design, attributed to their eco- and biocompatibility, versatile valence states, and capability for facilitating multiple electronic excitations. However, several intrinsic constraints, such as inadequate visible light response and short excited-state lifetimes, hinder effective photoinduced electron transfer and impede photoredox activation of substrates. To overcome this obstacle, we have developed a class of manganese complexes featuring boron-incorporated N-heterocyclic carbene ligands. These complexes enable prolonged excited-state durations encapsulating both Mn(IV) and Mn(III) oxidation stages, with lifetimes reaching microseconds for Mn(IV) and nanoseconds for Mn(III), concurrently exhibiting robust redox capabilities. They efficiently catalyze direct, site-selective cross-couplings between diverse arenes and aryl bromides, at a low catalyst loading of 0.5 mol %. Their proficiency spans an extensive array of substrates including both highly electron-rich and electron-deficient molecules, which underscore the superior performance of these manganese complexes in tackling intricate transformations. Furthermore, the versatility of these complexes is further highlighted by their successful applications in various photochemical transformations, encompassing reductive cross-couplings for the formation of C-P, C-B, C-S and C-Se bonds, alongside oxidative couplings for creating C-N bonds. This study sheds light on the distinctive photoredox properties and the remarkable catalytic flexibility of manganese complexes, highlighting their immense potential to drive progress in photochemical synthesis and green chemistry applications.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pangang Du
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiuliang Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Trippmacher S, Demeshko S, Prescimone A, Meyer F, Wenger OS, Wang C. Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry 2024; 30:e202400856. [PMID: 38523568 DOI: 10.1002/chem.202400856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
There has been much progress on mononuclear chromium(III) complexes featuring luminescence and photoredox activity, but dinuclear chromium(III) complexes have remained underexplored in these contexts until now. We identified a tridentate chelate ligand able to accommodate both meridional and facial coordination of chromium(III), to either access a mono- or a dinuclear chromium(III) complex depending on reaction conditions. This chelate ligand causes tetragonally distorted primary coordination spheres around chromium(III) in both complexes, entailing comparatively short excited-state lifetimes in the range of 400 to 800 ns in solution at room temperature and making photoluminescence essentially oxygen insensitive. The two chromium(III) ions in the dimer experience ferromagnetic exchange interactions that result in a high spin (S=3) ground state with a coupling constant of +9.3 cm-1. Photoinduced energy transfer from the luminescent ferromagnetically coupled dimer to an anthracene derivative results in sensitized triplet-triplet annihilation upconversion. Based on these proof-of-principle studies, dinuclear chromium(III) complexes seem attractive for the development of fundamentally new types of photophysics and photochemistry enabled by magnetic exchange interactions.
Collapse
Affiliation(s)
- Simon Trippmacher
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Alessandro Prescimone
- Department of Chemistry, BPR 1096, University of Basel, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
6
|
Jones R, Cowin RA, Ivalo II, Chekulaev D, Roseveare TM, Rice CR, Weinstein JA, Elliott PIP, Scattergood PA. A Near-Infrared Luminescent Cr(III) N-Heterocyclic Carbene Complex. Inorg Chem 2024; 63:8526-8530. [PMID: 38696219 PMCID: PMC11094792 DOI: 10.1021/acs.inorgchem.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Photoluminescent coordination complexes of Cr(III) are of interest as near-infrared spin-flip emitters. Here, we explore the preparation, electrochemistry, and photophysical properties of the first two examples of homoleptic N-heterocyclic carbene complexes of Cr(III), featuring 2,6-bis(imidazolyl)pyridine (ImPyIm) and 2-imidazolylpyridine (ImPy) ligands. The complex [Cr(ImPy)3]3+ displays luminescence at 803 nm on the microsecond time scale (13.7 μs) from a spin-flip doublet excited state, which transient absorption spectroscopy reveals to be populated within several picoseconds following photoexcitation. Conversely, [Cr(ImPyIm)2]3+ is nonemissive and has a ca. 500 ps excited-state lifetime.
Collapse
Affiliation(s)
- Robert
W. Jones
- Department
of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Rory A. Cowin
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Iona I. Ivalo
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Thomas M. Roseveare
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Craig R. Rice
- Department
of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Julia. A. Weinstein
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Paul I. P. Elliott
- Department
of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Paul A. Scattergood
- Department
of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
7
|
Benchohra A, Chong J, Cruz CM, Besnard C, Guénée L, Rosspeintner A, Piguet C. Additional Insights into the Design of Cr(III) Phosphorescent Emitters Using 6-Membered Chelate Ring Bis(imidazolyl) Didentate Ligands. Inorg Chem 2024; 63:3617-3629. [PMID: 38206181 DOI: 10.1021/acs.inorgchem.3c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The interest in Cr(III) complexes has been renewed over the past decades for building practical guidelines in the design of efficient earth-abundant phosphorescent near-infrared emitters. In that context, we report the first family of homoleptic tri(didentate) Cr(III) complexes [CrL3]3+ based on polyaromatic ligands inducing 6-membered chelate rings, namely, the bis(1-methylimidazol-2-yl)ketone (L = bik), bis(1-methylimidazol-2-yl)methane (L = bim), and bis(1-methylimidazol-2-yl)ethane (L = bie) ligands. The programmed close-to-perfect octahedral microsymmetry of {CrIIIN6} chromophores found in [Cr(bik)3](OTf)3 (1), [Cr(bim)3](OTf)3 (2), and [Cr(bie)3](BF4)3 (3) ensures a ligand-field strength large enough to induce intense and long-lived Cr-based phosphorescence. Impressive excited-state lifetimes (5.0-8.2 ms) were obtained at low temperatures for the [Cr(L)3]3+ series. Additionally, the photoluminescent quantum yield climbs to 0.8% for compound 1 in deaerated solutions. Moreover, the photophysical features of the three homoleptic complexes are barely influenced by the presence of dioxygen presumably because of the poor overlap between the Cr-based phosphorescence spectra (ca. 14100 cm-1) and the 1Σg+ ← 3Σg- transition in the absorption spectrum of dioxygen (13100 cm-1). The multiredox electrochemical pattern of 1 is evidenced by cyclic voltammetry as well as its strong photooxidant behavior. The pH sensitivity of 2 and 3 luminescence is discussed, along with the reactivity of their β-diketiminate derivatives.
Collapse
Affiliation(s)
- Amina Benchohra
- Department of Inorganic Analytical and Applied Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Julien Chong
- Department of Inorganic Analytical and Applied Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ) University of Granada, Avenida Fuente Nueva, ES-18071 Granada, Spain
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic Analytical and Applied Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
8
|
Wojnar MK, Kundu K, Kairalapova A, Wang X, Ozarowski A, Berkelbach TC, Hill S, Freedman DE. Ligand field design enables quantum manipulation of spins in Ni 2+ complexes. Chem Sci 2024; 15:1374-1383. [PMID: 38274078 PMCID: PMC10806831 DOI: 10.1039/d3sc04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024] Open
Abstract
Creating the next generation of quantum systems requires control and tunability, which are key features of molecules. To design these systems, one must consider the ground-state and excited-state manifolds. One class of systems with promise for quantum sensing applications, which require water solubility, are d8 Ni2+ ions in octahedral symmetry. Yet, most Ni2+ complexes feature large zero-field splitting, precluding manipulation by commercial microwave sources due to the relatively large spin-orbit coupling constant of Ni2+ (630 cm-1). Since low lying excited states also influence axial zero-field splitting, D, a combination of strong field ligands and rigidly held octahedral symmetry can ameliorate these challenges. Towards these ends, we performed a theoretical and computational analysis of the electronic and magnetic structure of a molecular qubit, focusing on the impact of ligand field strength on D. Based on those results, we synthesized 1, [Ni(ttcn)2](BF4)2 (ttcn = 1,4,7-trithiacyclononane), which we computationally predict will have a small D (Dcalc = +1.15 cm-1). High-field high-frequency electron paramagnetic resonance (EPR) data yield spin Hamiltonian parameters: gx = 2.1018(15), gx = 2.1079(15), gx = 2.0964(14), D = +0.555(8) cm-1 and E = +0.072(5) cm-1, which confirm the expected weak zero-field splitting. Dilution of 1 in the diamagnetic Zn analogue, [Ni0.01Zn0.99(ttcn)2](BF4)2 (1') led to a slight increase in D to ∼0.9 cm-1. The design criteria in minimizing D in 1via combined computational and experimental methods demonstrates a path forward for EPR and optical addressability of a general class of S = 1 spins.
Collapse
Affiliation(s)
- Michael K Wojnar
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Krishnendu Kundu
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | | | - Xiaoling Wang
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | | | - Stephen Hill
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
- Department of Physics, Florida State University Florida 32306 USA
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
9
|
Kitzmann WR, Hunger D, Reponen APM, Förster C, Schoch R, Bauer M, Feldmann S, van Slageren J, Heinze K. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorg Chem 2023; 62:15797-15808. [PMID: 37718553 DOI: 10.1021/acs.inorgchem.3c02186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - David Hunger
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roland Schoch
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Centre for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, United States
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
10
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
11
|
McNamara LE, Boyn JN, Melnychuk C, Anferov SW, Mazziotti DA, Schaller RD, Anderson JS. Bright, Modular, and Switchable Near-Infrared II Emission from Compact Tetrathiafulvalene-Based Diradicaloid Complexes. J Am Chem Soc 2022; 144:16447-16455. [PMID: 36037407 DOI: 10.1021/jacs.2c04976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Near-infrared (NIR)-emitting molecules are promising candidates for biological sensing and imaging applications; however, many NIR dyes are large conjugated systems which frequently have issues with stability, solubility, and tunability. Here, we report a novel class of compact and tunable fluorescent diradicaloid complexes which are air-, water-, light-, and temperature-stable. These properties arise from a compressed π manifold which promotes an intense ligand-centered π-π transition in the NIR II (1000-1700 nm) region and which subsequently emits at ∼1200 nm. This emission is among the brightest known for monomolecular lumiphores with deep NIR II (>1100 nm) emission, nearly an order of magnitude brighter than the commercially available NIR II dye IR 26. Furthermore, this fluorescence is electrochemically sensitive, with efficient switching upon addition of redox agents. The brightness, stability, and modularity of this system distinguish it as a promising candidate for the development of new technologies built around NIR emission.
Collapse
Affiliation(s)
- Lauren E McNamara
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Christopher Melnychuk
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Doistau B, Jiménez JR, Lawson Daku LM, Piguet C. Complex-as-Ligand Strategy as a Tool for the Design of a Binuclear Nonsymmetrical Chromium(III) Assembly: Near-Infrared Double Emission and Intramolecular Energy Transfer. Inorg Chem 2022; 61:11023-11031. [PMID: 35820089 DOI: 10.1021/acs.inorgchem.2c01940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chromium(III) polypyridyl complexes are appealing for their long-lived near-infrared (NIR) emission reaching the millisecond range and for the strong circularly polarized luminescence of their isolated enantiomers. However, harnessing those properties in functional polynuclear CrIII devices remains mainly inaccessible because of the lack of synthetic methods for their design and functionalization. Even the preparation and investigation of most basic nonsymmetrical CrIII dyads exhibiting directional intramolecular intermetallic energy transfer remain unexplored. Taking advantage of the inertness of heteroleptic chromium(III) polypyridyl building blocks, we herein adapt the "complex-as-ligand" strategy, largely used with precious 4d and 5d metals, for the preparation of a binuclear nonsymmetrical CrIII complex (3d metal). The resulting [(phen)2Cr(L)Cr(tpy)]6+ dyad shows dual long-lived NIR emission and a directional intermetallic energy transfer that is controlled by the specific arrangements of the different coordination spheres. This strategy opens a route for building predetermined polynuclear assemblies with this earth-abundant metal.
Collapse
Affiliation(s)
- Benjamin Doistau
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Juan-Ramón Jiménez
- Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química", Avenida Fuentenueva, E-18071 Granada, Spain
| | - Latévi Max Lawson Daku
- Department of Physical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
13
|
Joyce JP, Portillo RI, Rappé AK, Shores MP. Doublet Ground State in a Vanadium(II) Complex: Redox and Coordinative Noninnocence of Tripodal Ligand Architecture. Inorg Chem 2022; 61:6376-6391. [DOI: 10.1021/acs.inorgchem.1c03418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Justin P. Joyce
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Romeo I. Portillo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
14
|
Abstract
In molecular photochemistry, charge-transfer emission is well understood and widely exploited. In contrast, luminescent metal-centered transitions only came into focus in recent years. This gave rise to strongly phosphorescent CrIII complexes with a d3 electronic configuration featuring luminescent metal-centered excited states which are characterized by the flip of a single spin. These so-called spin-flip emitters possess unique properties and require different design strategies than traditional charge-transfer phosphors. In this review, we give a brief introduction to ligand field theory as a framework to understand this phenomenon and outline prerequisites for efficient spin-flip emission including ligand field strength, symmetry, intersystem crossing and common deactivation pathways using CrIII complexes as instructive examples. The recent progress and associated challenges of tuning the energies of emissive excited states and of emerging applications of the unique photophysical properties of spin-flip emitters are discussed. Finally, we summarize the current state-of-the-art and challenges of spin-flip emitters beyond CrIII with d2, d3, d4 and d8 electronic configuration, where we mainly cover pseudooctahedral molecular complexes of V, Mo, W, Mn, Re and Ni, and highlight possible future research opportunities.
Collapse
|
15
|
Kitzmann WRR, Ramanan C, Naumann R, Heinze K. Molecular Ruby: Exploring the Excited State Landscape. Dalton Trans 2022; 51:6519-6525. [DOI: 10.1039/d2dt00569g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of the highly NIR-luminescent Molecular Ruby [Cr(ddpd)2]3+ 13+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) has been a milestone in the development of earth-abundant luminophors and has led to important new impulses...
Collapse
|