1
|
Han Y, Zeng H, Hao H, Li H, Niu X, Liu X, Zhang D, Chen L, Qi W, Fan H, Wang K. Self-driven charge transfer mechanism of Bi NPs/PCN-224 for enhanced photodynamic antimicrobial chemotherapy effect. J Colloid Interface Sci 2025; 689:137207. [PMID: 40054254 DOI: 10.1016/j.jcis.2025.02.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Semiconductor nanomaterials with photocatalytic activity have been identified as a promising class of antimicrobial agents to combat bacterial infections. In this study, a photocatalytic antibacterial and anticancer agent, Bi NPs/PCN-224, was synthesized by doping Bi NPs in PCN-224, obtained through hydrothermal process of porphyrin, using benzoic acid as a morphology modifier. The resulting Bi NPs/PCN-224 exhibited impressive photocatalytic activity with a great potential for therapeutic treatment of bacterial infections. An in-situ reductive growth method was adopted to form interfaces between the Bi NPs and the Schottky groups of PCN-224, which was believed to play key role to sustain the photo-induced electron-hole separation. The underlying mechanism is then revealed, where Bi NPs initiate a self-driven charge transfer to PCN-224 MOF through the Schottky interface, exerting large quantities of free electrons to surrounding oxygen species, thereby generating radical oxygen species (ROS). Furthermore, when exposed to the physiological environment of bacteria, the redox potential of Bi NPs/PCN-224 enable the electron to transfer to the interior of bacterial cells through electron pathways located on cell membrane, which interferes with the respiratory process and subsequent metabolism of the bacteria. In a similar mechanism, Bi NPs/PCN-224 demonstrated inhibition of the growth of HepG2 cells. The combination of Density Functional Theory (DFT) calculations and experimental characterization indicated that Bi clusters are bound to the MOFs via the N site on the TCPP ligand.
Collapse
Affiliation(s)
- Yujia Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haixiang Zeng
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongyan Hao
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaoyu Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Li Chen
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wei Qi
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
2
|
Li HS, Zheng R, Liu Y, Pei L, Wu P, Yang Y, Wang J. Synergistic Enhancement of Ligand & Cluster Connectivity to Construct Highly Stable Fluorescein-Based MOFs with Thickened Channel Walls for Boosting Photocatalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410922. [PMID: 39831830 DOI: 10.1002/smll.202410922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Fabricating visible-light-responsive metal-organic frameworks (MOFs) with high stability and effective catalytic functionality remains a long-term pursuit yet a great challenge. Herein, a strategy of increasing ligand and cluster connectivity is developed to construct highly stable fluorescein MOFs, La-CFL, presenting a new (4,8)-connected topological structure compared to Cd-FL constructed using 6-connected dinuclear clusters and 3-connected tritopic ligands. La8(CFL)4 containers like Chinese "Ritual Wine Vessels (Jue)" resemble linear arrangements interconnected by the [La2(COO)4] clusters. This arrangement induces benzene rings and xanthene rings to locate on the inner walls of 1D channels, resulting in thicker channel walls that contribute to enhanced stability. Consequently, La-CFL demonstrates outstanding catalytic performance in thiol-ene reactions under green LED irradiation. It exhibits 2.3 times higher efficiency than Cd-FL while reducing reaction time to one-fifth at 20 min. Furthermore, La-CFL displays size-selective catalysis and retains full activity for 20 cycles without degradation, an improvement over Cd-FL's recyclability limitations.
Collapse
Affiliation(s)
- Han-Shu Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Ruiting Zheng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Yanhong Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Li Pei
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Pengyan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Yan Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| | - Jian Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China
| |
Collapse
|
3
|
Body N, Lefebvre C, Eeckhout S, Léonard AS, Troian-Gautier L, Hermans S, Riant O. Structure-Activity Relationship of Benzophenazine Derivatives for Homogeneous and Heterogenized Photooxygenation Catalysis. Chemistry 2024; 30:e202400242. [PMID: 38805006 DOI: 10.1002/chem.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Singlet oxygen is a powerful oxidant used in various applications, such as organic synthesis, medicine, and environmental remediation. Organic and inorganic photosensitizers are commonly used to generate this reactive species through energy transfer with the triplet ground state of oxygen. We describe here a series of novel benzophenazine derivatives as a promising class of photosensitizers for singlet oxygen photosensitization. In this study, we investigated the structure-activity relationship of these benzophenazine derivatives. Akin to a molecular compass, the southern fragment was first functionalized with either aromatic tertiary amines, alkyl tertiary amines, aromatic sulfur groups, alkyl sulfur groups, or cyclic ethers. Enhanced photophysical properties (in terms of triplet excited-state lifetime, absorption wavelength, triplet state energy, and O2 quenching capabilities) were obtained with cyclic ether and sulfur groups. Conversely, the presence of an amine moiety was detrimental to the photocatalysts. The western and northern fragments were also investigated and slightly undesirable to negligible changes in photophysical properties were observed. The most promising candidate was then immobilized on silica nanoparticles and its photoactivity was evaluated in the citronellol photooxidation reaction. A high NMR yield of 97 % in desired product was obtained, with only a slight decrease over several recycling runs (85 % in the fourth run). These results provide insights into the design of efficient photosensitizers for singlet oxygen generation and the development of heterogeneous systems.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Sarah Eeckhout
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Anne-Sophie Léonard
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Hennessey S, González-Gómez R, McCarthy K, Burke CS, Le Houérou C, Sarangi NK, McArdle P, Keyes TE, Cucinotta F, Farràs P. Enhanced Photostability and Photoactivity of Ruthenium Polypyridyl-Based Photocatalysts by Covalently Anchoring Onto Reduced Graphene Oxide. ACS OMEGA 2024; 9:13872-13882. [PMID: 38559923 PMCID: PMC10976380 DOI: 10.1021/acsomega.3c08800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Recentstudies toward finding more efficient ruthenium metalloligands for photocatalysis applications have shown that the derivatives of the linear [Ru(dqp)2]2+ (dqp: 2,6-di(quinolin-8-yl)-pyridine) complexes hold significant promise due to their extended emission lifetime in the μs time scale while retaining comparable redox potential, extinction coefficients, and absorption profile in the visible region to [Ru(bpy)3]2+ (bpy: 2,2'-bipyridine) and [Ru(tpy)2]2+ (tpy: 2,2':6',2″-terpyridine) complexes. Nevertheless, its photostability in aqueous solution needs to be improved for its widespread use in photocatalysis. Carbon-based supports have arisen as potential solutions for improving photostability and photocatalytic activity, yet their effect greatly depends on the interaction of the metal complex with the support. Herein, we present a strategy for obtaining Ru-polypyridyl complexes covalently linked to aminated reduced graphene oxide (rGO) to generate novel materials with long-term photostability and increased photoactivity. Specifically, the hybrid Ru(dqp)@rGO system has shown excellent photostable behavior during 24 h of continual irradiation, with an enhancement of 10 and 15% of photocatalytic dye degradation in comparison with [Ru(dqp)2]2+ and Ru(tpy)@rGO, respectively, as well as remarkable recyclability. The presented strategy corroborates the potential of [Ru(dqp)2]2+ as an interesting photoactive molecule to produce more advantageous light-active materials by covalent attachment onto carbon-based supports.
Collapse
Affiliation(s)
- Seán Hennessey
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Roberto González-Gómez
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Kathryn McCarthy
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Christopher S. Burke
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- School
of Chemistry and Analytical and Biological Chemistry Research Facility
(ABCRF), University College Cork, T12 K8AF Cork, Ireland
| | - Camille Le Houérou
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Nirod Kumar Sarangi
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Patrick McArdle
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Fabio Cucinotta
- School
of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
| | - Pau Farràs
- School
of Biological and Chemical Sciences, Energy Research Centre, Ryan Institute, University of Galway, H91 CF50 Galway, Ireland
| |
Collapse
|
5
|
Hu HC, Wang ZP, Liang L, Du XY, Li T, Feng J, Xiao TT, Jin ZM, Ding SY, Liu Q, Lu LQ, Xiao WJ, Wang W. Bottom-Up Construction of Ni(II)-Incorporated Covalent Organic Framework for Metallaphotoredox Catalysis. Chemistry 2024; 30:e202303476. [PMID: 38065837 DOI: 10.1002/chem.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 12/30/2023]
Abstract
The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.
Collapse
Affiliation(s)
- Hai-Chao Hu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Lin Liang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xin-Yu Du
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tian-Tian Xiao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze-Ming Jin
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
6
|
Body N, Bevernaegie R, Lefebvre C, Jabin I, Hermans S, Riant O, Troian-Gautier L. Photo-Catalyzed α-Arylation of Enol Acetate Using Recyclable Silica-Supported Heteroleptic and Homoleptic Copper(I) Photosensitizers. Chemistry 2023; 29:e202301212. [PMID: 37582678 DOI: 10.1002/chem.202301212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Earth-abundant photosensitizers are highly sought after for light-mediated applications, such as photoredox catalysis, depollution and energy conversion schemes. Homoleptic and heteroleptic copper(I) complexes are promising candidates in this field, as copper is abundant and the corresponding complexes are easily obtained in smooth conditions. However, some heteroleptic copper(I) complexes suffer from low (photo)stability that leads to the gradual formation of the corresponding homoleptic complex. Such degradation pathways are detrimental, especially when recyclability is desired. This study reports a novel approach for the heterogenization of homoleptic and heteroleptic Cu complexes on silica nanoparticles. In both cases, the photophysical properties upon surface immobilization were only slightly affected. Excited-state quenching with aryl diazonium derivatives occurred efficiently (108 -1010 M-1 s-1 ) with heterogeneous and homogeneous photosensitizers. Moderate but almost identical yields were obtained for the α-arylation of enol acetate using the homoleptic complex in homogeneous or heterogeneous conditions. Importantly, the silica-supported photocatalysts were recycled with moderate loss in photoactivity over multiple experiments. Transient absorption spectroscopy confirmed that excited-state electron transfer occurred from the homogeneous and heterogeneous homoleptic copper(I) complexes to aryl diazonium derivatives, generating the corresponding copper(II) center that persisted for several hundreds of microseconds, compatible with photoredox catalysis applications.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Robin Bevernaegie
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Service de Chimie et PhysicoChimie Organiques (CPCO), Laboratoire de Chimie Organique (LCO), Avenue F. D. Roosevelt 50, 1050, Bruxelles, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Rana P, Saini KM, Kaushik B, Solanki K, Dixit R, Sharma RK. Unleashing the photocatalytic potential of a noble-metal-free heteroleptic copper complex-based nanomaterial for an enhanced aza-Henry reaction. NANOSCALE 2023; 15:14007-14017. [PMID: 37539685 DOI: 10.1039/d3nr01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
In this work, we fabricated a versatile and noble metal free copper-based heterogeneous photocatalyst, representing a green shift away from precious group metals such as Ir, Ru, Pt, which have been widely utilized as photocatalysts. The successfully synthesized and characterized copper photocatalyst was employed to establish a cross dehydrogenative coupling via C-H activation between tertiary amines and carbon nucleophiles. The highly efficient copper-based photocatalyst was characterized by numerous physico-chemical techniques, which confirmed its successful formation as well as its high activity. Inductively coupled plasma (ICP-OES) analysis revealed that the composite Cu@Xantphos@ASMNPs had a very high loading of 0.423 mmol g-1 of copper. The magnetic Cu@Xantphos@ASMNPs were utilized as a potential heterogeneous photocatalyst for the very facile and regioselective conversion of aryl tetrahydroqinoline to the respective nitroalkyl aryl tetrahydroisoquinoline in high yield using air as an oxidant and methanol as a green solvent with irradiation with visible light under mild reaction conditions. Additionally, the catalyst shows exceptional chemical stability and reusability without any agglomeration even after several cycles of use, which is one of the key features of this material, rendering it a potential candidate from economic and environmental perspectives.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kapil Mohan Saini
- Kalindi College, University of Delhi, New Delhi, Delhi-110008, India
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi-110019, India
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Shyamlal College, University of Delhi, New Delhi, Delhi-1100032, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
- Ramjas College, University of Delhi, New Delhi-110007, India
| | - Rakesh K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|