1
|
Liu L, Zuo ZJ, Du Y, Wu T, Wu J, Gao J, Mu T, Zhang YC, Zhu XD. Role of synergies of Cu/Fe 3O 4 electrocatalyst for nitric oxide reduction to ammonia. J Colloid Interface Sci 2025; 691:137376. [PMID: 40121901 DOI: 10.1016/j.jcis.2025.137376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The electrochemical nitric oxide reduction reaction (NORR) is a promising green process for nitric oxide (NO) removal and ammonia (NH3) synthesis. Among existing catalysts, copper (Cu) exhibits relatively high activity but is less stable and does not provide enough *H to further increase the NH3 yield. In this study, a Cu/Fe3O4 electrocatalyst with synergistic catalysis was synthesized. Cu contributes to NO activation and sequential hydrogenation, while Fe3O4 promotes the decomposition of H2O to provide more *H and jointly promote NH3 synthesis. The Cu/Fe3O4 shows a high NH3 yield of 347.5 ± 5.9 μmol h-1 cm-2 at -0.5 V vs. RHE and high Faraday efficiency (FE) of 95.8 ± 0.4 %, superior to most reported non-precious metal catalysts. Moreover, the catalyst activity was not attenuate after the 100 h stability test. The aqueous Zn-NO battery system demonstrates concurrent energy generation and ammonia synthesis capabilities, delivering a peak power output of 9.53 mW cm-2 alongside efficient NH3 production with a yield of 595.7 ± 5.1 μg h-1 cm-2.
Collapse
Affiliation(s)
- Long Liu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhi-Jun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China
| | - Yue Du
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tingkai Wu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jinting Wu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Gao
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tiansheng Mu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yong-Chao Zhang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Xiao-Dong Zhu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
2
|
Wang M, Deng M, Zhao G, Fan Y, Liu T, Huang Y, Peng L, Fu H, Fang S. Optimizing the thiosulfate-mediated zerovalent iron/persulfate activation systems: Trade-off between Fe(III)/Fe(II) cycling and quenching effects in environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124817. [PMID: 40086275 DOI: 10.1016/j.jenvman.2025.124817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The remediation of organic-contaminated water is a critical environmental challenge, and iron-based persulfate (PS) activation processes have emerged as a promising solution. However, the introduction of reductive sulfur species, while accelerating the Fe(III)/Fe(II) redox cycle, may also quench reactive species, potentially compromising the efficiency of Fenton-like systems. Here we systematically investigate the trade-off between accelerated Fe(III)/Fe(II) cycling and quenching effects in the zerovalent iron/PS (ZVI/PS) system using thiosulfate (TSF) as an activator. Our results show that low-level TSF (0.03-1.00 mmol/L) effectively facilitated the removal of naphthalene (Nap) and atrazine (ATZ), respectively. This enhancement is attributed to accelerated ZVI dissolution and FeSx formation, which promote the Fe(III)/Fe(II) cycle, with Fe(IV) was identified as the primary active species. However, high-level TSF (>1.0 mmol/L) drastically reduced Nap removal due to PS consumption and active species elimination. The optimal TSF dosage of 0.20 mmol/L (TSF/PS molar ratio of 1:10) demonstrated robust organic pollutant degradation, achieving a 22-fold increase in the rate constant (kobs) for Nap removal and 0.47-7.5-fold increases for ATZ removal. These findings highlight the potential of the TSF-ZVI/PS system as a versatile and efficient solution for degrading a wide range of organic pollutants, including PAHs and herbicides, in water treatment applications.
Collapse
Affiliation(s)
- Maolin Wang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Mi Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Gang Zhao
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Yanchun Fan
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Tianwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Ying Huang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Lan Peng
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore.
| | - Shengqiong Fang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
3
|
Zeng T, Fu Y, Yang M, Deng Q, Chen S, Liu Y, Li J. U(VI) removal by zerovalent manganese modified corn straw biochar in acidic wastewater: Efficiency, characteristics and mechanism. CHEMOSPHERE 2025; 373:144163. [PMID: 39884138 DOI: 10.1016/j.chemosphere.2025.144163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
The chemical and radiological toxicity of uranium can present a significant risk to both human health and environmental safety. Thus, ZVMn-BC was synthesized through borohydride reduction aimed at investigating its performance in removing U(VI) in acidic environment (pH = 3). Several batch experiments were conducted to assess the sorption capability under various operational conditions and the relevant experimental data were investigated by kinetics, isotherms and thermodynamic equations. ZVMn-BC exhibited excellent resistance to interference and showed a superiority on U(VI) removal over zerovalent manganese (ZVMn) and corn straw biochar (BC). Under condition of pH 3, and ambient temperature of 303 K with 0.4 g/L of adsorbent, ZVMn-BC exhibited a theoretical sorption quantity of 274.78 mg/g. The sorption process was spontaneous and endothermic, primarily relying on chemical adsorption. The interaction mechanism involved electrostatic interaction, hydrolysis precipitation, complexation, and redox reactions. This study verified that ZVMn-BC exhibits effective performance for U(VI) eliminating in acidic wastewater.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Yusong Fu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Min Yang
- School of Environment and Civil Engineering, Harbin Institute of Technology (Shenzhen), Shenzheng 518055, China; Hunan Vch Environment Technology Co., Ltd, Changsha, 410014, China
| | - Qiqi Deng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Shengbin Chen
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Zhuo M, Zheng D, Lu G, Zhang G, Chen J, Song Y. Surface-bound Fe(0) and Fe(II) mediated by 2-picolinic acid functionalized zero-valent iron for highly Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136670. [PMID: 39603125 DOI: 10.1016/j.jhazmat.2024.136670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Electron transfer of zero-valent iron (ZVI) is significantly impeded by its oxide layer, and limiting its removal of pollutants. In this study, 2-picolinic acid (PA) and ZVI were co-ball milled to improve electron transfer in ZVI (PA-ZVIbm), and used for the removal of heavy metal Cr(VI). Characterization analysis showed that the presence of electron-rich groups on the surface of PA-ZVIbm promoted the transfer of electrons from the Fe(0) core to the surface, and the surface Fe(0) and Fe(II) contents increased from 1.1 % to 6.3 % and from 60.2 % to 72.9 %, respectively, effectively reducing Cr(VI) through an electron transfer mechanism. Theoretical calculations showed that the modification of PA enhanced the adsorption of Cr(VI) on the ZVI surface, and the adsorption energy decreased from -3.561 eV to -5.119 eV. PA-ZVIbm showed strong advantages in the removal of Cr(VI), with a reaction rate constant and adsorption capacity 17 and 13 times that of ZVIbm, respectively, and a conversion rate of 100 %. Moreover, PA-ZVIbm showed excellent performance over a wide pH range (3-10) and under different coexisting ions, while being cost-effective and having low environmental risks. This study explored the relationship between ZVI surface modification and performance, and provided new insights into the modification of ZVI using small molecule oxygen-containing organic acids.
Collapse
Affiliation(s)
- Meng Zhuo
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | | | - Gang Lu
- Nanjing Tech University, 2111816, China
| | - Gaoyuan Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaqin Song
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Wang W, Wang X, Wu X, Zhang J, Qin H, Li J. Relationships of ternary activities for the enhanced Cr(VI) removal by coupling nanoscale zerovalent iron with sulfidation and carboxymethyl cellulose. ENVIRONMENTAL RESEARCH 2024; 263:120274. [PMID: 39486681 DOI: 10.1016/j.envres.2024.120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Nanoscale zerovalent iron (nZVI) has been extensively applied in water pollution control. However, the reactivity of nZVI toward contaminants is mainly limited by its corrosion and agglomeration. In this study, the nZVI modified by sulfidation coupled with carboxymethyl cellulose (CMC) (C-S-nZVI) was synthesized and characterized by TEM and electrochemical techniques. Taking Cr(VI) as the contaminant, it was found that the sulfidation could couple with CMC modification to not only enhance the reactivity of nZVI toward Cr(VI), but also regulate the sedimentation activity and corrosion activity of nZVI in water. Particularly, the optimal kobs (0.0816 min-1) obtained by the C-S-nZVIone-0.16 (i.e., one-step sulfidation and its S/Fe molar ratio was 0.16) was approximately 27.2 times higher than that by the nZVI (0.0030 min-1). Moreover, based on the correlation analysis of the ternary activities, this study confirmed that the reactivity of C-S-nZVI toward Cr(VI) was negatively correlated with its sedimentation activity (slope = -0.7623, R = 0.59) and corrosion activity (slope = -0.0171, R = 0.56), respectively. XPS and TEM results further revealed that CMC could couple with iron sulfides (FeSx) to enhance the mass transfer of Cr(VI) toward nZVI and subsequent electron transfer from Fe0 core to out, ultimately improving the reduction of Cr(VI) by nZVI. Overall, this study introduced a new evaluation method based on the ternary activity of nZVI, providing theoretical support for the practical application of nZVI-based technology.
Collapse
Affiliation(s)
- Wenhao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xuechen Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hejie Qin
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
6
|
Hou J, Lu Y, Chen Q, Liao X, Wu X, Sang K, White JC, Gardea-Torresdey JL, Xu J, Zhang J, Yang K, Zhu L, Lin D. Multifunctional biomolecular corona-inspired nanoremediation of antibiotic residues. Proc Natl Acad Sci U S A 2024; 121:e2409955121. [PMID: 39190351 PMCID: PMC11388419 DOI: 10.1073/pnas.2409955121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Facing complex and variable emerging antibiotic pollutants, the traditional development of functional materials is a "trial-and-error" process based on physicochemical principles, where laborious steps and long timescales make it difficult to accelerate technical breakthroughs. Notably, natural biomolecular coronas derived from highly tolerant organisms under significant contamination scenarios can be used in conjunction with nanotechnology to tackling emerging contaminants of concern. Here, super worms (Tubifex tubifex) with high pollutant tolerance were integrated with nano-zero valent iron (nZVI) to effectively reduce the content of 17 antibiotics in wastewater within 7 d. Inspired by the synergistic remediation, nZVI-augmented worms were constructed as biological nanocomposites. Neither nZVI (0.3 to 3 g/L) nor worms (104 to 105 per liter) alone efficiently degraded florfenicol (FF, as a representative antibiotic), while their composite removed 87% of FF (3 μmol/L). Under antibiotic exposure, biomolecules secreted by worms formed a corona on and modified the nZVI particle surface, enabling the nano-bio interface greater functionality, including responsiveness, enrichment, and reduction. Mechanistically, FF exposure activated glucose-alanine cycle pathways that synthesize organic acids and amines as major metabolites, which were assembled into vesicles and secreted, thereby interacting with nZVI in a biologically response design strategy. Lactic acid and urea formed hydrogen bonds with FF, enriched analyte presence at the heterogeneous interface. Succinic and lactic acids corroded the nZVI passivation layer and promoted electron transfer through surface conjugation. This unique strategy highlights biomolecular coronas as a complex resource to augment nano-enabled technologies and will provide shortcuts for rational manipulation of nanomaterial surfaces with coordinated multifunctionalities.
Collapse
Affiliation(s)
- Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou311200, China
| | - Yuqi Lu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Qiqi Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Xinyi Liao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Kaijian Sang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, CT06511
| | | | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
- National Demonstration Center for Experimental Environment and Resources Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou311200, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
7
|
Deng S, Yang Y, Han X, Liu Q, Li M, Su J, Jiang Y, Xi B, Liu Y. Unlocking the potential of surface modification with phosphate on ball milled zero-valent iron reactivity:Implications for radioactive metal ions removal. WATER RESEARCH 2024; 260:121912. [PMID: 38875858 DOI: 10.1016/j.watres.2024.121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Numerous investigations have illuminated the profound impact of phosphate on the adsorption of uranium, however, the effect of phosphate-mediated surface modification on the reactivity of zero-valent iron (ZVI) remained enigmatic. In this study, a phosphate-modified ZVI (P-ZVIbm) was prepared with a facile ball milling strategy, and compared with ZVIbm, the U(VI) removal amount (435.2 mg/g) and efficiency (3.52×10-3 g·mg-1·min-1) of P-ZVIbm were disclosed nearly 2.0 and 54 times larger than those of ZVIbm respectively. The identification of products revealed that the adsorption mechanism dominated the removal process for ZVIbm, while the reactive modified layer strengthened both the adsorption pattern and reduction performance on P-ZVIbm. DFT calculation result demonstrated that the binding configuration shifted from bidentate binuclear to multidentate configuration, further shortening the Fe-U atomic distance. More importantly, the electron transferred is more accessible through the surface phosphate layer, and selectively donated to U(VI), accounting for the elevated reduction performance of P-ZVIbm. This investigation explicitly underscores the critical role of ZVI's surface microenvironment in the domain of radioactive metal ion mitigation and introduces a novel methodology to amplify the sequestration of U(VI) from aqueous environments.
Collapse
Affiliation(s)
- Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yu Yang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xu Han
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiyuan Liu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingxiao Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing Su
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yonghai Jiang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - YuHui Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, PR China.
| |
Collapse
|
8
|
Zhou B, Yu L, Zhang W, Liu X, Zhang H, Cheng J, Chen Z, Zhang H, Li M, Shi Y, Jia F, Huang Y, Zhang L, Ai Z. Cu 1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. Angew Chem Int Ed Engl 2024; 63:e202406046. [PMID: 38771293 DOI: 10.1002/anie.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
Collapse
Affiliation(s)
- Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jundi Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meiqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
9
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Synthesis of surface-modified porous polysulfides from soybean oil by inverse vulcanization and its sorption behavior for Pb(II), Cu(II), and Cr(III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29264-29279. [PMID: 38573576 DOI: 10.1007/s11356-024-33152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
10
|
Shen W, Gao Y, Liu Z, Zhang X, Quan F, Peng X, Wang X, Li J, Qin Z, He Y, Li H. Enhanced Fe(ii)/Fe(iii) cycle by boron enabled efficient Cr(vi) removal with microscale zero-valent iron. RSC Adv 2024; 14:6719-6726. [PMID: 38405066 PMCID: PMC10884888 DOI: 10.1039/d3ra08163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024] Open
Abstract
Recently, researchers have been paying much attention to zero-valent iron (ZVI) in the field of pollution remediation. However, the depressed electron transport from the iron reservoir to the iron oxide shell limited the wide application of ZVI. This study was aimed at promoting the performance of microscale ZVI (mZVI) for hexavalent chromium (Cr(vi)) removal by accelerating iron cycle with the addition of boron powder. It was found that the addition of boron powder enhanced the Cr(vi) removal rate by 2.1 times, and the proportion of Cr(iii) generation after Cr(vi) removal process also increased, suggesting that boron could promote the reduction pathway of Cr(vi) to Cr(iii). By further comparing the Cr(vi) removal percentage of Fe(iii) with or without the boron powder, we found that boron powder could promote the percentage removal of Cr(vi) with Fe(iii) from 10.1% to 33.6%. Moreover, the presence of boron powder could decrease the potential gap values (ΔEp) between Fe(iii) reduction and Fe(ii) oxidation from 0.668 V to 0.556 V, further indicating that the added boron powder could act as an electron sacrificial agent to promote the reduction process of Fe(iii) to Fe(ii), and thus enhancing the reduction of Cr(vi) with Fe(ii). This study shed light on the promoted mechanism of Cr(vi) removal with boron powder and provided an environmentally friendly and efficient approach to enhance the reactivity of the mZVI powder, which would benefit the wide application of mZVI technology in the environmental remediation field.
Collapse
Affiliation(s)
- Wenjuan Shen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yan Gao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhan Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Fengjiao Quan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Xiaobing Wang
- School of Chemistry and Civil Engineering, Shaoguan University Shaoguan 512023 P. R. China
| | - Jianfen Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhenhua Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hui Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| |
Collapse
|