1
|
Schlachta TP, Zámbó GG, Sauer MJ, Rüter I, Kühn FE. Impact of Ligand Design on an Iron NHC Epoxidation Catalyst. ChemistryOpen 2024; 13:e202400071. [PMID: 39318071 PMCID: PMC11625922 DOI: 10.1002/open.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/04/2024] [Indexed: 09/26/2024] Open
Abstract
An open-chain iron pyridine-NHC framework is expanded utilizing a benzimidazole moiety to deepen the understanding of the impact of electronic variations on iron NHC epoxidation catalysts, especially regarding the stability. The thereby newly obtained iron(II) NHC complex is characterized and employed in olefin epoxidation. It is remarkably temperature tolerant and achieves a TOF of ca. 10 000 h-1 and TON of ca. 700 at 60 °C in the presence of the Lewis acid Sc(OTf)3, displaying equal stability, but lower activity than the unmodified iron pyridine-NHC (pre-)catalyst. In addition, a synthetic approach towards another ligand containing 2-imidazoline units is described but formylation as well as hydrolysis hamper its successful synthesis.
Collapse
Affiliation(s)
- Tim P. Schlachta
- Technical University of MunichSchool of Natural SciencesDepartment of Chemistry and Catalysis Research Center, Molecular CatalysisLichtenbergstraße 485748GarchingGermany
| | - Greta G. Zámbó
- Technical University of MunichSchool of Natural SciencesDepartment of Chemistry and Catalysis Research Center, Molecular CatalysisLichtenbergstraße 485748GarchingGermany
| | - Michael J. Sauer
- Technical University of MunichSchool of Natural SciencesDepartment of Chemistry and Catalysis Research Center, Molecular CatalysisLichtenbergstraße 485748GarchingGermany
| | - Isabelle Rüter
- Institut für Anorganische ChemieGeorg-August-Universität GöttingenTammannstraße 437077GöttingenGermany
| | - Fritz E. Kühn
- Technical University of MunichSchool of Natural SciencesDepartment of Chemistry and Catalysis Research Center, Molecular CatalysisLichtenbergstraße 485748GarchingGermany
| |
Collapse
|
2
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
3
|
Gravogl L, Kass D, Pyschny O, Heinemann FW, Haumann M, Katz S, Hildebrandt P, Dau H, Swain A, García-Serres R, Ray K, Munz D, Meyer K. A bis-Phenolate Carbene-Supported bis-μ-Oxo Iron(IV/IV) Complex with a [Fe IV(μ-O) 2Fe IV] Diamond Core Derived from Dioxygen Activation. J Am Chem Soc 2024; 146:28757-28769. [PMID: 39382653 DOI: 10.1021/jacs.4c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The diiron(II) complex, [(OCO)Fe(MeCN)]2 (1, MeCN = acetonitrile), supported by the bis-phenolate carbene pincer ligand, 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)benzimidazolin-2-ylidene (OCO), was synthesized and characterized by single-crystal X-ray diffraction, 1H nuclear magnetic resonance, infrared (IR) vibrational, ultraviolet/visible/near-infrared (UV/vis/NIR) electronic absorption, 57Fe Mössbauer, X-band electron paramagnetic resonance (EPR) and SQUID magnetization measurements. Complex 1 activates dioxygen to yield the diferric, μ-oxo-bridged complex [(OCO)Fe(py)(μ-O)Fe(O(C═O)O)(py)] (2) that was isolated and fully characterized. In 2, one of the iron-carbene bonds was oxidized to give a urea motif, resulting in an O(CNHC═O)O binding site, while the other Fe(OCO) unit remained unchanged. When the reaction is performed at -80 °C, an intensively colored, purple intermediate is observed (INT, λmax = 570 nm; ε = 5600 mol L-1 cm-1). INT acts as a sluggish oxidant, reacting only with easily oxidizable substrates, such as PPh3 or 2-phenylpropionic aldehyde (2-PPA). The identity of INT can be best described as a dinuclear complex containing a closed diamond core motif [(OCO)FeIV(μ-O)2FeIV(OCO)]. This proposal is based on extensive spectroscopic [UV/vis/NIR electronic absorption, 57Fe Mössbauer, X-band EPR, resonance Raman (rRaman), X-ray absorption, and nuclear resonance vibrational (NRVS)] and computational studies. The conversion of the diiron(II) complex 1 to the oxo diiron(IV) intermediate INT is reminiscent of the O2 activation process in soluble methane monooxygenases (sMMO). Most importantly, the low reactivity of INT supports the consensus that the [FeIV(μ-O)2FeIV] diamond core in sMMO is kinetically inert and needs to open up to terminal FeIV═O cores to react with the strong C-H bonds of methane.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Oliver Pyschny
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Abinash Swain
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Ricardo García-Serres
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Schlachta TP, Sauer MJ, Richter LF, Kühn FE. Formation of a diiron-(μ-η 1:η 1-CN) complex from acetonitrile solution. Acta Crystallogr C Struct Chem 2024; 80:534-537. [PMID: 39115534 PMCID: PMC11370999 DOI: 10.1107/s2053229624007058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The activation of C-C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ-η1:η1-CN-bridged complex was obtained from a crystallization experiment of an open-chain iron-NHC complex, namely, μ-cyanido-κ2C:N-bis{[(acetonitrile-κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C-C bond cleavage or through carbon-hydrogen oxidation.
Collapse
Affiliation(s)
- Tim P. Schlachta
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Michael J. Sauer
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Leon F. Richter
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Fritz E. Kühn
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
5
|
Stroek W, Albrecht M. Application of first-row transition metal complexes bearing 1,2,3-triazolylidene ligands in catalysis and beyond. Chem Soc Rev 2024; 53:6322-6344. [PMID: 38726664 PMCID: PMC11181992 DOI: 10.1039/d4cs00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/18/2024]
Abstract
Triazole-derived N-heterocyclic carbenes, triazolylidenes (trz) have become an interesting alternative to the ubiquitous Arduengo-type imidazole-derived carbenes, in part because they are stronger donors, and in other parts due to their versatile synthesis through different types of click reactions. While the use of trz ligands has initially focused on their coordination to precious metals for catalytic applications, the recent past has seen a growing interest in their impact on first-row transition metals. Coordination of trz ligands to such 3d metals is more challenging due to the orbital mismatch between the carbene and the 3d metal center, which also affects the stability of such complexes. Here we summarize the strategies that have been employed so far to overcome these challenges and to prepare first-row transition metal complexes containing at least one trz ligand. Both properties and reactivities of these trz complexes are comprehensively compiled, with a focus on photophysical properties and, in particular, on the application of these complexes in homogeneous catalysis. The diversity of catalytic transformations entailed with these trz 3d metal complexes as well as the record-high performance in some of the reactions underpins the benefits imparted by trz ligands.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
6
|
Wang M, Zhang GP. Tuning the polarity of charge carriers in N-heterocyclic carbene-based single-molecule junctions via atomic manipulation. Phys Chem Chem Phys 2024; 26:9051-9059. [PMID: 38441317 DOI: 10.1039/d3cp04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Tuning the polarity of charge carriers at a single-molecular level is essential for designing complementary logic circuits in the field of molecular electronics. Herein, the transport properties of N-heterocyclic carbene (NHC)-linked single-molecule junctions are investigated using the ab initio quantum transport approach. The results reveal that the hydrogen atoms in NHCs function as a switch for regulating the polarity of charge carriers. Dehydrogenation changes the chemical nature of NHC anchors, thereby rendering holes as the major charge carriers rather than electrons. Essentially, dehydrogenation changes the anchoring group from electron-rich to electron-deficient. The electrons transferred to molecules from the electrodes raise the molecular level closer to the Fermi level, thus resulting in charge carrier polarity conversion. This conversion is influenced by the position and number of hydrogen atoms in the NHC anchors. To efficiently and decisively alter charge carrier polarity via atomic manipulation, a methyl substitution approach is developed and verified. These results confirm that atomic manipulation is a significant method for modulating the polarity of charge carriers in NHC-based single-molecule devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|