1
|
Tu Y, Lin X, Lin J, Zhang C, Sun J. Iridium-Catalyzed Asymmetric Allenylic Substitution via Kinetic Resolution Enabled by New Monodentate Ligands. Angew Chem Int Ed Engl 2025; 64:e202506350. [PMID: 40152089 PMCID: PMC12124433 DOI: 10.1002/anie.202506350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 03/29/2025]
Abstract
Iridium-catalyzed asymmetric allenylic substitution represents a useful method for the construction of allenes bearing an allenylic central chirality, but current success has uniformly relied on only one specific chiral bidentate ligand. Herein, we address the limitation by the design of a new type of monodentate ligands leading to not only excellent enantiocontrol in allenylic substitution but also efficient kinetic resolution of α-allenylic alcohols, a new phenomenon never observed before in iridium-catalyzed allenylic substitution. This is also a rare demonstration of the non-enzymatic kinetic resolution of α-allenylic alcohols. A range of highly enantioenriched allenylic diarylmethanes and α-allenylic alcohols could be accessed under mild conditions. Control experiments and DFT studies indicated that this process proceeds by an SN1 pathway featuring a rate-determining ionization step followed by ligand-controlled enantiodetermining nucleophilic addition. The newly designed rigid and bulky ligands modified from SPHENOL were believed to assemble the key iridium-bound allenylic carbocation intermediate in a different complexation mode, thus serving as the origin of enantiocontrol and the unprecedented kinetic resolution.
Collapse
Affiliation(s)
- Youshao Tu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction The Hong KongUniversity of Science and TechnologyClear Water BayKowloonHong Kong SAR99907China
| | - Xiangfeng Lin
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction The Hong KongUniversity of Science and TechnologyClear Water BayKowloonHong Kong SAR99907China
| | - Jie Lin
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction The Hong KongUniversity of Science and TechnologyClear Water BayKowloonHong Kong SAR99907China
| | - Chaoshen Zhang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction The Hong KongUniversity of Science and TechnologyClear Water BayKowloonHong Kong SAR99907China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction The Hong KongUniversity of Science and TechnologyClear Water BayKowloonHong Kong SAR99907China
| |
Collapse
|
2
|
Liu JJ, Ni ZB, Li L, Wei K, Yang YR. Ir-Catalyzed, Stereoselective Total Synthesis of (+)-Rubriflordilactone A. J Am Chem Soc 2025; 147:16792-16797. [PMID: 40343753 DOI: 10.1021/jacs.5c05000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
A stereocontrolled asymmetric total synthesis of the Schisandra nortriterpenoid (+)-rubriflordilactone A employing Krische's Ir-catalyzed 2-(alkoxycarbonyl)allylation for late-stage γ-butenolide formation is described. Additional noteworthy aspects include the integration of Carreira's Ir/amine dual-catalyzed allylation, Suzuki coupling, and Catellani reaction, resulting in the formation of an indane iodide. The alkylation of lactone 7, followed by RCM, A-ring formation via condensation of the B-ring lactone with Bestmann ylide, and Morken's Pt-catalyzed diboration/oxidation, facilitates the stereoselective formation of the ABCDEF ring system.
Collapse
Affiliation(s)
- Jun-Jie Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Bin Ni
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Ma X, Miao E, Sun Y, Sun L, Huang C, Zhang X, Hou KQ, Xu Z, Zang Y, Bi T, Yang W. Divergent Synthesis of Dihydrofuran and Dienol Scaffolds via Pd-Catalyzed Decarboxylative Carbene Cross-Coupling. Org Lett 2025; 27:4753-4761. [PMID: 40272503 DOI: 10.1021/acs.orglett.5c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Herein, we report a novel ligand-switchable Pd-catalyzed carbene coupling reaction employing vinylethylene carbonates and sulfoxonium ylides. By proper choice of ligands, the chemoselectivity of the process could be efficiently regulated, allowing for the availability of dihydrofuran or dienol scaffolds. This method features mild reaction conditions, broad scope, and remarkable synthetic utility. Compound 6f can effectively stimulate the secretion of GLP-1, providing promising insight into the development of small-molecule agonists for the GLP-1 receptor.
Collapse
Affiliation(s)
- Xiaolong Ma
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erfei Miao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Sun
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chaoying Huang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xun Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Ke-Qiang Hou
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongyu Bi
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
4
|
Sawano T, Suzuki N, Takahashi K, Goto Y, Miyashita K, Takeuchi R. Iridium-Catalyzed Asymmetric Allylation of Silyl Enol Ethers Derived from α-Ketoesters and α-Diketones with Allylic Alcohols. Org Lett 2025; 27:2389-2394. [PMID: 40020153 DOI: 10.1021/acs.orglett.5c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We report an asymmetric allylation of silyl enol ethers derived from α-ketoesters with allylic alcohols by an iridium/chiral (P,olefin)-ligand catalyst. Allylation with a broad range of silyl enol ethers and allylic alcohols formed the allylated products with excellent enantioselectivities. Silyl enol ethers derived from α-diketones as well as α-ketoesters were also compatible with the asymmetric allylation to achieve nearly perfect enantioselectivities. The utility of allylated products bearing an α-ketoester group and an α-diketone group is demonstrated by transformation to valuable functional groups, exemplified by α-aminoester, aldehyde, 2(1H)-quinoxalinone, and quinoxaline.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Materials for Energy, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Natsuki Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Kana Takahashi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yuta Goto
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Kazunori Miyashita
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
5
|
Zhang YY, Deng Y, Wei K, Yang YR. Synthesis of vinyl, alkyl-substituted chiral acrylates via Krische iridium complex-catalysed allylic phosphonation. Chem Commun (Camb) 2025; 61:4567-4570. [PMID: 40008590 DOI: 10.1039/d5cc00072f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
An enantioselective preparation of vinyl, alkyl-substituted chiral α-stereogenic acrylates is reported using two consecutive steps of Ir-catalysed allylic alkylation of aliphatic allylic acetates with phosphonates and Horner-Wadsworth-Emmons olefination. Unlike commonly utilised iridium-phosphoramidite catalysts, Krische's catalyst was uniquely effective in promoting highly regio- and enantioselective reactions of alkyl-substituted allylic substrates, thus constituting a significant alternative to the known protocol.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yu-Rong Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
6
|
Shen HC, Aggarwal VK. Iridium-Catalyzed Stereocontrolled C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates Enabled by Boron-to-Zinc Transmetalation. J Am Chem Soc 2025; 147:5583-5589. [PMID: 39912599 PMCID: PMC11848825 DOI: 10.1021/jacs.4c17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The stereocontrolled C(sp3)-C(sp3) cross-coupling represents a considerable challenge of great contemporary interest. While this has been achieved through the reactions of boronate complexes with π-allyl iridium complexes, such reactions suffered from a limited substrate scope. We now report that following transmetalation from boronate complexes to organozinc reagents enables previously unreactive substrates to engage in stereocontrolled C(sp3)-C(sp3) cross-coupling. The broader substrate scope has enabled their application to the synthesis of biologically active molecules. The organozinc reagents react through a stereoinvertive coupling pathway with π-allyl iridium complexes, in contrast to reactions with other electrophiles that occur with retention of stereochemistry. The reaction uniquely combines the enantiospecific reactivity of an enantioenriched organometallic nucleophile with the enantioselective engagement of a racemic electrophile, enabling access to all stereoisomers.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University
of Bristol, Cantock’s
Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University
of Bristol, Cantock’s
Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
7
|
Shikari A, Chandra Pan S. Iridium/Acid-Dual Catalyzed Enantioselective Intramolecular Allylic Dearomatization Reaction of Allylic Alcohol Tethered α- and β-Naphthols. Chemistry 2025; 31:e202403664. [PMID: 39573944 DOI: 10.1002/chem.202403664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The first catalytic enantioselective intramolecular allylic dearomatization of allylic alcohol tethered α- and β-naphthols has been developed with iridium/acid-dual catalysis. A wide range of polycyclic spiroketones containing vicinal tertiary and quaternary carbon stereocenters were readily prepared in good to high yields with high diastereo- and moderate to excellent enantioselectivities. An unusual anti-Markovnikov Wacker oxidation has also been shown in synthetic transformations.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
8
|
Mondal S, Das P, Mukherjee S. Difluoroenoxysilanes in Catalytic Asymmetric Allylic Alkylation. Org Lett 2024; 26:11073-11079. [PMID: 39630127 DOI: 10.1021/acs.orglett.4c04279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An allylic substitution with difluoroenoxysilanes as the nucleophile is accomplished for the enantioselective synthesis of α-allylic α,α-difluoroketones. With racemic branched allylic alcohols as the easily accessible allylic electrophile, this branched-selective and enantioconvergent allylic alkylation reaction is catalyzed by an Ir(I)/(P,olefin) complex and overcomes the low nucleophilicity of difluoroenoxysilanes to furnish β-chiral α,α-difluoroketones in moderate to good yields with high enantioselectivity (up to >99.9:0.1 er).
Collapse
Affiliation(s)
- Subhajit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Priyotosh Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Sun S, Zhang Y, Banwell MG, White LV, Zhou L. Iridium-Catalyzed, Highly Selective Allylation of Pyrazolones for the Convenient Construction of Adjacent Stereocenters. Org Lett 2024; 26:10229-10234. [PMID: 39576759 DOI: 10.1021/acs.orglett.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology. The use of Cu(OTf)2 as a co-catalyst greatly enhances the regioselectivity of the reaction and permits selective syntheses of branched allylation products.
Collapse
Affiliation(s)
- Shixiang Sun
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuqi Zhang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| | - Leijie Zhou
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
10
|
Das P, Ghosh D, Mukherjee S. Catalytic Enantioselective Friedel-Crafts Allenylation. Angew Chem Int Ed Engl 2024; 63:e202413609. [PMID: 39108038 DOI: 10.1002/anie.202413609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 10/15/2024]
Abstract
The first enantioselective Friedel-Crafts (FC) allenylation reaction for the creation of central chirality is developed under cooperative Ir(I)/(phosphoramidite,olefin) and Lewis acid catalysis. This enantioconvergent reaction utilizes racemic allenylic alcohol as the electrophile and shows compatibility with a variety of electron-rich arenes and heteroarenes. The resulting highly enantioenriched (up to >99.5 : 0.5 e.r.) 1,1-disubstituted allenylic methanes, bearing a benzylic carbon stereocenter, are obtained with complete regiocontrol - both on (hetero)arenes as well as on the allenylic fragment. This protocol allows for the enantioselective formal introduction of a 4-carbon alkyl chain into (hetero)arenes, along with the creation of a benzylic stereocenter. Judicious synthetic elaborations not only lead to formal enantioselective FC alkylation products of less electron-rich arenes but also of substituted arenes in ortho- and even meta-selective fashion. An intramolecular version of this FC allenylation is shown to proceed with promising enantioselectivity under the same catalytic conditions. Mechanistic studies revealed the involvement of dynamic kinetic asymmetric transformation (DyKAT) of racemic allenylic alcohols in this reaction.
Collapse
Affiliation(s)
- Priyotosh Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Debangshu Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
11
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
12
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
13
|
Zhao S, Yue W, Yang M, Li X, Chen B, Gao Y, Yu W, Ni HL, Hu P, Wang BQ, Cao P. Enantioselective Ir-Catalyzed Allyl Alkylation/Semipinacol Rearrangement. Org Lett 2024; 26:1224-1228. [PMID: 38305744 DOI: 10.1021/acs.orglett.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The semipinacol rearrangement is a powerful and versatile method for constructing all-carbon quaternary stereocenters. The development of catalytic asymmetric semipinacol rearrangements using multifunctionalizable electrophiles remains highly sought-after in organic synthesis. In this study, a catalytic enantioselective allylic cation-induced semipinacol rearrangement reaction was presented that enables the simultaneous construction of two skipped chiral carbon centers. Chiral Ir(I)-(P,olefin) and Sc(OTf)3 catalysts cooperatively initiate the asymmetric allylic alkylation of alkenyl cyclobutanols with allylic alcohols, triggering ring expansion of the cyclobutanol moiety through a stereoselective 1,2-alkyl migration. The reaction afforded a range of cyclopentanones bearing an α-quaternary carbon that is adjacent to a chiral allyl scaffold. The products were applied to synthesize enantioenriched fused tricyclopentanoids bearing four stereogenic carbon centers.
Collapse
Affiliation(s)
- Sumei Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Wenxing Yue
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Min Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xuanfeng Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
14
|
Xie XQ, Li X, Liu PN. Enantioselective synthesis of spiro- N, O-ketals via iridium and Brønsted acid co-catalyzed asymmetric formal [4+2] cycloaddition. Chem Commun (Camb) 2024; 60:1448-1451. [PMID: 38213273 DOI: 10.1039/d3cc05923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
We present an iridium and Brønsted acid co-catalyzed enantioselective formal [4+2] cycloaddition reaction of cyclic enamides with 2-(1-hydroxyallyl)phenols. This method yields a wide range of N-unsubstituted spiro-N,O-ketals, with good efficiency (up to 94%) and excellent enantioselectivities (most >95% ee). The protocol features easy scale-up and facile product derivatization.
Collapse
Affiliation(s)
- Xiang-Qi Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
15
|
Chen D, Zhang M, Zhang D, Zhang Z, Shao X, Xu X, Li Z, Yang WL. Iridium/Acid Dual-Catalyzed Enantioselective Aza-ene-type Allylic Alkylation of Nitro Ketene Aminals with Racemic Allylic Alcohols. Org Lett 2024. [PMID: 38179928 DOI: 10.1021/acs.orglett.3c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The enantioselective allylic alkylation of nitro ketene aminals with racemic allylic alcohols was realized by iridium/acid dual catalysis. An allyl group was installed on the α-position of nitro ketene aminals in a branched-selective manner in high efficiency with excellent enantioselectivities (93-99% ee). The protocol was applied to the late-stage modification of neonicotinoid insecticides, which directly furnished a novel neonicotinoid analogue with good insecticidal activity against Aphis craccivora (LC50 = 6.40 mg/L). On the basis of the control experiment, an aza-ene-type allylic alkylation reaction mechanism was proposed.
Collapse
Affiliation(s)
- Diancong Chen
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Man Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dongxu Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ziqi Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
17
|
Yang P, Wang RX, Huang XL, Cheng YZ, You SL. Enantioselective Synthesis of Cyclobutane Derivatives via Cascade Asymmetric Allylic Etherification/[2 + 2] Photocycloaddition. J Am Chem Soc 2023; 145:21752-21759. [PMID: 37768553 DOI: 10.1021/jacs.3c08792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Chiral cyclobutane presents as a popular motif in natural products and biologically active molecules, and its derivatives have been extensively used as key synthons in organic synthesis. Herein, we report an efficient synthetic method toward enantioenriched cyclobutane derivatives. The reaction proceeds in a cascade fashion involving Ir-catalyzed asymmetric allylic etherification and visible-light induced [2 + 2] cycloaddition. Readily available branched allyl acetates and cinnamyl alcohols are directly used as the substrates under mild reaction conditions, providing a broad range of chiral cyclobutanes in good yields with excellent diastereo- and enantioselectivities (up to 12:1 dr, >99% ee). It is worth noting that all substrates and catalysts were simultaneously added without any separated step in this approach. The gram-scale reaction and diverse transformations of product further enhance the potential utility of this method.
Collapse
Affiliation(s)
- Pusu Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Rui-Xiang Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
18
|
Zou JY, Yang YY, Gu J, Liu F, Ye Z, Yi W, He Y. Asymmetric Allylic Substitution-Isomerization for the Modular Synthesis of Axially Chiral N-Vinylquinazolinones. Angew Chem Int Ed Engl 2023; 62:e202310320. [PMID: 37582683 DOI: 10.1002/anie.202310320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Axially chiral N-substituted quinazolinones are important bioactive molecules, which are presented in many synthetic drugs. However, most strategies toward their atroposelective synthesis are mainly limited to the axially chiral arylquinazolinone frameworks. The development of modular synthetic methods to access diverse quinazolinone-based atropisomers remains scarce and challenging. Herein, we report the regio- and atroposelective synthesis of axially chiral N-vinylquinazolinones via the strategy of asymmetric allylic substitution-isomerization. The catalysis system utilized both asymmetric transition-metal catalysis and organocatalysis to efficiently afford trisubstituted and tetrasubstituted N-vinylquinazolinone atropisomers, respectively. With the meticulous design of β-substituted allylic substrates, both Z- and E-tetrasubstituted axially chiral N-vinylquinazolinones were obtained in good yields and high enantioselectivities.
Collapse
Affiliation(s)
- Jia-Yu Zou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu-Ying Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fei Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
19
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
20
|
Shen HC, Popescu MV, Wang ZS, de Lescure L, Noble A, Paton RS, Aggarwal VK. Iridium-Catalyzed Asymmetric Difunctionalization of C-C σ-Bonds Enabled by Ring-Strained Boronate Complexes. J Am Chem Soc 2023. [PMID: 37471704 PMCID: PMC10401714 DOI: 10.1021/jacs.3c03248] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Ze-Shu Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Louis de Lescure
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
21
|
Roy P, Mukherjee S. Iridium-Catalyzed Enantioselective Formal α-Allylic Alkylation of Acrylonitrile. Org Lett 2023. [PMID: 37311003 DOI: 10.1021/acs.orglett.3c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A highly enantioselective formal α-allylic alkylation of acrylonitrile is developed using 4-cyano-3-oxotetrahydrothiophene (c-THT) as a safe and easy-to-handle surrogate of acrylonitrile. This two-step process consists of an Ir(I)/(P,olefin)-catalyzed branched-selective allylic alkylation using easily accessible branched rac-allylic alcohols as the allylic electrophile followed by retro-Dieckmann/retro-Michael fragmentation and is shown to be applicable for the enantioselective synthesis of α-allylic acrylates as well as α-allylic acrolein.
Collapse
Affiliation(s)
- Pankaj Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Wang M, Xu R, Liu Y, Wang J, Xu Q, Dai L, Xu H, Zhu Q, Zeng X. Iridium-Catalyzed Asymmetric Allylic Substitution Reaction of 4-Hydroxypyran-2-one. J Org Chem 2023. [PMID: 37133412 DOI: 10.1021/acs.joc.2c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pyranones have raised great concerns owing to their considerable applications in a variety of sectors. However, the development of direct asymmetric allylation of 4-hydroxypyran-2-ones is still restricted. Herein, we present an effective iridium-catalyzed asymmetric functionalization technique for the synthesis of 4-hydroxypyran-2-one derivatives over direct and efficient catalytic asymmetric Friedel-Crafts-type allylation by using allyl alcohols. The allylation products could be obtained with good to high yields (up to 96%) and excellent enantioselectivities (>99% ee). Therefore, the disclosed technique provides a new asymmetric synthetic strategy to explore pyranone derivatives in depth, thus providing an interesting approach for global application and further utilization in organic synthesis and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Meifang Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Ruigang Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Jiaqi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Qing Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Linlong Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Haonan Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
23
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
24
|
Sun Y, Dhbaibi K, Lauwick H, Lalli C, Taupier G, Molard Y, Gramage-Doria R, Dérien S, Crassous J, Achard M. Asymmetric Ruthenium Catalysis Enables Fluorophores with Point Chirality Displaying CPL Properties. Chemistry 2023; 29:e202203243. [PMID: 36367394 DOI: 10.1002/chem.202203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
A novel enantiopure π-allylruthenium(IV) precatalyst allowed the enantioselective and stereospecific allylations of indoles and gave access to indolin-3-ones, containing vicinal stereogenic centers. Facile separation of diastereoisomers exhibiting opposite circularly polarized luminescence (CPL) activities in diverse solvents, including water, demonstrated the potential of these sustainable transformations and of the newly prepared molecules.
Collapse
Affiliation(s)
- Yang Sun
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Kais Dhbaibi
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Hortense Lauwick
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Claudia Lalli
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Gregory Taupier
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Yann Molard
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | | | - Sylvie Dérien
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Jeanne Crassous
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| | - Mathieu Achard
- Univ Rennes, ISCR UMR 6226 ScanMAT-UAR2025, F-35000, Rennes, France
| |
Collapse
|
25
|
Zhou L, Zanda N, Chaudhari M, Da Silva MF, Pericàs MA. Development of Immobilized Carreira (Phosphoramidite, Olefin) Ligands and Application in Iridium-Catalyzed Asymmetric Allylic Amination. J Org Chem 2023; 88:2166-2173. [PMID: 36700541 PMCID: PMC9942233 DOI: 10.1021/acs.joc.2c02589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A family of polystyrene-supported (phosphoramidite, olefin) ligands L1-L4, based on the original design by Defieber and Carreira, has been developed and applied in iridium-catalyzed asymmetric allylic amination of unmasked allylic alcohols (27 examples, up to 99% ee). Among them, functional resins L1 and L4 exhibit important advantages such as easy preparation, ligand recyclability, and easy handling for sequential use. As a distinctive advantage, the catalytic use of the iridium complexes of L1 and L4 allows the straightforward reuse of a high percentage of the expensive iridium metal involved in the complexes, which is not achievable under homogeneous conditions with the corresponding monomeric complexes.
Collapse
Affiliation(s)
- Leijie Zhou
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain
| | - Nicola Zanda
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain
| | - Moreshwar Chaudhari
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain
| | - Mariane Felicio Da Silva
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), E-43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain,
| |
Collapse
|
26
|
Yan H, Shao X, Xu X, Li Z, Yang WL. Ir-Catalyzed Asymmetric Cascade Allylation/Spiroketalization Reaction for Stereoselective Synthesis of Oxazoline-Spiroketals. Org Lett 2023; 25:325-330. [PMID: 36607168 DOI: 10.1021/acs.orglett.2c03885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An asymmetric cascade allylation/spiroketalization reaction between 2-(1-hydroxyallyl)phenols and 5-methyleneoxazolines is accomplished by using a chiral Ir(I) catalyst derived from commercially available iridium precursor and the Carreira ligand. This protocol furnishes a class of structurally novel and unique oxazoline-spiroketals in up to 86% yield, >99% ee and >20:1 dr. Moreover, control experiments reveal that 4,4-disubstitution on 5-methyleneoxazolines is necessary to avoid the aromatization and for the spiroketalization to occur. On the basis of this, a plausible reaction mechanism is illustrated.
Collapse
Affiliation(s)
- Hui Yan
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
27
|
Mitra S, Sarkar R, Chakrabarty A, Mukherjee S. Hydroxy-directed iridium-catalyzed enantioselective formal β-C(sp 2)-H allylic alkylation of α,β-unsaturated carbonyls. Chem Sci 2022; 13:12491-12497. [PMID: 36382287 PMCID: PMC9629034 DOI: 10.1039/d2sc03966d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/12/2022] [Indexed: 02/12/2024] Open
Abstract
Hydroxy-directed iridium-catalyzed enantioselective formal β-C(sp2)-H allylic alkylation of kojic acid and structurally related α,β-unsaturated carbonyl compounds is developed. This reaction, catalyzed by an Ir(i)/(P,olefin) complex, utilizes the nucleophilic character of α-hydroxy α,β-unsaturated carbonyls, to introduce an allyl group at its β-position in a branched-selective manner in good to excellent yield with uniformly high enantioselectivity (up to >99.9 : 0.1 er). To the best of our knowledge, this report represents the first example of the use of kojic acid in a transition metal catalyzed highly enantioselective transformation.
Collapse
Affiliation(s)
- Sankash Mitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Aditya Chakrabarty
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| |
Collapse
|
28
|
Pandit S, Adhikari AS, Majumdar N. Iridium-Catalyzed Enantioselective Ring Opening of Alkenyl Oxiranes by Unactivated Carboxylic Acids. Org Lett 2022; 24:7388-7393. [PMID: 36197282 DOI: 10.1021/acs.orglett.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed enantioselective ring-opening of alkenyl oxiranes by unactivated carboxylic acids has been developed. The reaction undergoes at ambient conditions between an in-situ-generated chiral iridium-π-allyl complex and carboxylic acids to provide rapid access to valuable alkenyl diols in high yields. The synthetic utility of this method is demonstrated by the elaboration of the products into various medium and large ring-sized compounds that are part of biologically relevant molecules.
Collapse
Affiliation(s)
- Soumen Pandit
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh India
| | - Amit Singh Adhikari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh India
| | - Nilanjana Majumdar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|