1
|
Thakur S, Chahal S, Jadhav MS, Mohanty P, Gaikwad AB, Sindhu J, Jadhav HR. Design and development of chromene-3-carboxylate derivatives as antidiabetic agents: Exploring the antidiabetic potential via dual inhibition of angiotensin II type 1 receptor and neprilysin enzyme. Eur J Med Chem 2025; 293:117705. [PMID: 40354719 DOI: 10.1016/j.ejmech.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Diabetes mellitus, particularly type II diabetes mellitus, is a metabolic condition that has a substantial impact on the health of individuals. The implication of diabetes with increased risk of cardiovascular diseases (CVD) and, consequently, myocardial infarction is well established. However, developing new antidiabetic drugs with an established efficacy on cardiovascular health is an underdeveloped area of research. To address this, in the present study, a new series of chromene-3-carboxylate derivatives (1B1-1B22) as dual inhibitors of Angiotensin II Type 1 Receptor (AT1R) and Neprilysin (NEP), which are recognized targets in diabetes with CVD, is reported. The compounds were rationally designed and synthesized, considering the pharmacophoric features of these two targets. The evaluation was performed via glucose uptake, α-amylase, AT1R, and NEP inhibition assay. The derivatives were found to increase glucose uptake and inhibit all three targets, of which compound 1B15 was the most active. The most active compound, 1B15, reduced the oxidative stress and restored the mitochondrial membrane potential. The biological findings were further corroborated by in silico studies, which included molecular modelling and dynamics. It was deduced that 1B15 remains unionized in acidic to weak basic pH and may be passively absorbed. Further, the molecule was found to undergo hydroxylation as a means of Phase I metabolism and glucuronic conjugation in Phase II. The wet lab experiments on 1B15 further validated the in-silico absorption and metabolism prediction. The compounds, particularly 1B15, could be explored further as a lead for its utility as an antidiabetic with profound implications on cardiovascular health.
Collapse
Affiliation(s)
- Shikha Thakur
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Sandhya Chahal
- Department of Chemistry, Chaudhary Ranbir Singh University, Jind, 126102, India
| | - Madhav S Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Priyanka Mohanty
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, RJ, India.
| |
Collapse
|
2
|
Meriç N, Kar E, Kar F. Pro-apoptotic and mitochondria-disrupting effects of 4-methylthiazole in K562 leukemia cells: A mechanistic investigation. Tissue Cell 2025; 95:102937. [PMID: 40311321 DOI: 10.1016/j.tice.2025.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Thiazole derivatives have garnered attention for their anticancer potential. This study investigates the antileukemic effects of 4-methylthiazole on K562 chronic myeloid leukemia (CML) cells, focusing on apoptosis induction and mitochondrial dysfunction. Cell viability was assessed using MTS assays; apoptosis and necrosis were analyzed via Annexin V/PI staining and flow cytometry; mitochondrial membrane potential changes were evaluated with JC-1 dye; gene expression levels were measured by qRT-PCR; and levels of apoptosis- and cytokine-related proteins were quantified using ELISA. Treatment with 4-methylthiazole led to selective cytotoxicity in K562 cells while sparing healthy peripheral blood mononuclear cells (PBMNCs). Apoptotic induction was evidenced by Caspase-3 (CASP-3) activation, Cytochrome-C (CYT-C), release, and mitochondrial depolarization. Gene expression analysis showed upregulation of pro-apoptotic markers such as TP53 (tumor suppressor protein 53), BAX and BAK (pro-apoptotic Bcl-2 family proteins), while upregulation of CASP3 (caspase-3) expression was not statistically significant. Conversely, levels of GPX4 (glutathione peroxidase 4, involved in oxidative stress protection) remained unchanged, indicating an apoptosis mechanism independent of oxidative stress. Additionally, SEMA3A (Semaphorin 3 A, involved in tumor progression and cell signaling) was significantly downregulated. Cytokine profiling revealed a dose-dependent modulation of IL-6, while TNF-α and IL-10 levels remained unaffected. These findings suggest that 4-methylthiazole induces apoptosis through mitochondrial pathways, affects cytokine signaling, and selectively targets leukemia cells, supporting its potential as a therapeutic candidate for CML treatment.
Collapse
Affiliation(s)
- Neslihan Meriç
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kutahya Health Sciences University, Kütahya, Turkey.
| | - Ezgi Kar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Kutahya Health Sciences University, Kütahya, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
3
|
Rani P, Chahal S, Ranolia A, Kiran, Kumar D, Kataria R, Kumar P, Singh D, Duhan A, Jha V, Wahajuddin M, Joshi G, Sindhu J. Design and development of sulfenylated 5-aminopyrazoles as inhibitors of acetylcholinesterase and butyrylcholinesterase: exploring the implication for Aβ 1-42 aggregation inhibition in Alzheimer's disease. RSC Med Chem 2025:d5md00069f. [PMID: 40256309 PMCID: PMC12005478 DOI: 10.1039/d5md00069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/16/2025] [Indexed: 04/22/2025] Open
Abstract
Current therapeutic regimens approved to treat Alzheimer's disease (AD) provide symptomatic relief by replenishing the acetylcholine levels in the brain by inhibiting AChE. However, these drugs don't halt or slow down the progression of Alzheimer's disease, which remains a major challenge. Evidence suggests a significant increase in BuChE activity with a decrease in AChE activity as the AD progresses along with the Aβ1-42 aggregation. To address this unmet need, we rationally developed sulfenylated 5-aminopyrazoles (3a-3o) via electro-organic synthesis in good to excellent yields (68-89%) and duly characterized them using spectrophotometric techniques. The compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, with 3b (4-NO2) showing the highest potency. It exhibited IC50 values of 1.634 ± 0.066 μM against AChE and 0.0285 ± 0.019 μM against BuChE, outperforming donepezil and tacrine. Admittedly, 3b effectively inhibited Aβ1-42 aggregation and enhanced working memory, as indicated by the Y-maze test, besides portraying no cytotoxicity. The outcome was further corroborated using in silico techniques, leading to the elucidation of plausible inhibition and metabolism mechanisms.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Sandhya Chahal
- Department of Chemistry, Chaudhary Ranbir Singh University Jind 126102 India
| | - Anju Ranolia
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Kiran
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Devendra Kumar
- School of Pharmacy, Narsee Monjee Institute of Management Studies (NMIMS) Dist. Dhule Maharashtra-42400 India
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) Varanasi 221005 India
| | - Ramesh Kataria
- Department of Chemistry at Panjab University Chandigarh-160014 India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119 India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University Rohtak-124001 India
| | - Anil Duhan
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| | - Vibhu Jha
- Institute of Cancer Therapeutics School of Pharmacy and Medical Sciences, University of Bradford UK
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics School of Pharmacy and Medical Sciences, University of Bradford UK
| | - Gaurav Joshi
- Institute of Cancer Therapeutics School of Pharmacy and Medical Sciences, University of Bradford UK
- Department of Pharmaceutical Sciences, Chauras Campus, HNB Garhwal University (A Central University) Srinagar Uttarakhand 246174 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University Hisar 125004 India
| |
Collapse
|
4
|
Nesaragi AR, Kamat V, Chapi S, Guddappa H, T M S, Chandu A, Al-Zaqri N, Palem RR, Murugesan S, Kumbar VM. WELPSA: A Green Catalyst Mediated Microwave Assisted Efficient Synthesis of Novel 5-Aminopyrazole-4-Carbonitrile Derivatives as Anticancer Agents (MCF-7, A-549) and In Silico Studies. Arch Pharm (Weinheim) 2025; 358:e202500055. [PMID: 40200570 DOI: 10.1002/ardp.202500055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Malononitrile, modified hydrazine, and quinoline aldehyde were combined in a one-pot reaction under microwave irradiation to create the medicinally significant family of heterocyclic scaffolds, quinoline, coumarin, thiazole, and pyrazole 4-carbonitrile derivatives with the help of green solvent as water. WELPSA (water extract of lemon peel-soaked ash) is used to speed up the reaction in a solvent-free environment, according to more environmentally friendly reaction protocols. This methodology offers several advantages like short reaction duration, green solvent synthesis, high yield, no need for chromatographic techniques, catalyst recyclability of up to five cycles, and so on. Synthesized derivatives were evaluated for anticancer potential against lung (A549) and breast cancer cell lines. Among the tested compounds, 4i and 4j exhibited remarkable anticancer activities. Further investigations using Annexin V staining and flow cytometry revealed that both compounds effectively induced apoptosis in A549 cancer cells. Compound 4i was subjected to molecular docking and dynamic studies to understand the molecular basis of their activity, which demonstrated a strong interaction with the target protein 1m17, providing insights into its mechanism of action. These findings highlight the potential of compounds 4i and 4j as promising candidates for anticancer drug development.
Collapse
Affiliation(s)
- Aravind R Nesaragi
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Vinuta Kamat
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Sharanappa Chapi
- Department of Physics, B.M.S. College of Engineering, Bengaluru, Karnataka, India
| | - Halligudra Guddappa
- Department of Chemistry, ATME College of Engineering, Mysuru, Karnataka, India
| | - Sharanakumar T M
- Department of Chemistry, Ballari Institute of Technology and Management, Ballari, Karnataka, India
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education, Nehru Nagar, Belagavi, India
| |
Collapse
|
5
|
Shweta, Chahal S, Kumar Dhaka R, Rana A, Joshi G, Singh R, Singh S, Singh D, Kumar P, Sindhu J. Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27762-27774. [PMID: 39630023 DOI: 10.1021/acs.jafc.4c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a-4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer-Emmett-Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid-base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4-64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.
Collapse
Affiliation(s)
- Shweta
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rahul Kumar Dhaka
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Anuj Rana
- Department of Microbiology, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, Dist. Garhwal (Uttarakhand 246174, India
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| |
Collapse
|
6
|
Meriç N, Kar E, Kar F. 4-Methylthiazole triggers apoptosis and mitochondrial disruption in HL-60 cells. Mol Biol Rep 2024; 51:997. [PMID: 39297923 DOI: 10.1007/s11033-024-09939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Thiazole derivatives are gaining prominence in cancer research due to their potent anti-cancer effects and multifaceted biological activities. In leukemia research, these compounds are particularly studied for their ability to induce apoptosis, disrupt mitochondrial membrane potential (MMP), and modulate cell signaling pathways. METHODS AND RESULTS This study investigates the efficacy of 4-Methylthiazole in inducing apoptosis in HL-60 leukemia cells. Apoptosis was quantified via flow cytometry using FITC Annexin V and propidium iodide staining. Mitochondrial disruption was evaluated through alterations in mitochondrial membrane potential (MMP) as measured by the JC-1 assay. The compound significantly disrupted MMP, activated Caspase-3, and induced the release of Cytochrome C, all of which are critical markers of apoptosis (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). Additionally, treatment with 4-Methylthiazole markedly reduced CD45 and CD123 surface markers, indicating significant phenotypic alterations in leukemia cells (****p < 0.0001). High-dose treatment with 4-Methylthiazole significantly increased ROS levels, suggesting elevated oxidative stress and the presence of intracellular free radicals, contributing to its cytotoxic effects (*p < 0.05). A significant rise in TNF-α levels was observed post-treatment, indicating a pro-inflammatory response that may further inhibit leukemia cell viability. While IL-6 levels remained unchanged, a dose-dependent decrease in IL-10 levels was noted, suggesting a reduction in immunosuppressive conditions within the tumor microenvironment (*p < 0.05). CONCLUSIONS Overall, 4-Methylthiazole targets leukemia cells through multiple apoptotic mechanisms and modifies the immune landscape of the tumor microenvironment, enhancing its therapeutic potential. This study highlights the need for further clinical investigation to fully exploit the potential of thiazole derivatives in leukemia treatment.
Collapse
Affiliation(s)
- Neslihan Meriç
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Kütahya, Turkey.
| | - Ezgi Kar
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Kar
- Faculty of Medicine, Department of Biochemistry, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
7
|
Chahal S, Rani P, Shweta, Goel KK, Joshi G, Singh R, Kumar P, Singh D, Sindhu J. Pyrano[2,3-c]pyrazole fused spirooxindole-linked 1,2,3-triazoles as antioxidant agents: Exploring their utility in the development of antidiabetic drugs via inhibition of α-amylase and DPP4 activity. Bioorg Chem 2024; 147:107363. [PMID: 38657527 DOI: 10.1016/j.bioorg.2024.107363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Shweta
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar 249404, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar-246174, Dist. Garhwal, Uttarakhand, India
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
8
|
Mitra S, Chatterjee S, Bose S, Panda P, Basak S, Ghosh N, Mandal SC, Singhmura S, Halder AK. Finding structural requirements of structurally diverse α-glucosidase and α-amylase inhibitors through validated and predictive 2D-QSAR and 3D-QSAR analyses. J Mol Graph Model 2024; 126:108640. [PMID: 37801809 DOI: 10.1016/j.jmgm.2023.108640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemic state. The α-glucosidase and α-amylase are considered two major targets for the management of Type 2 DM due to their ability of metabolizing carbohydrates into simpler sugars. In the current study, cheminformatics analyses were performed to develop validated and predictive models with a dataset of 187 α-glucosidase and α-amylase dual inhibitors. Separate linear, interpretable and statistically robust 2D-QSAR models were constructed with datasets containing the activities of α-glucosidase and α-amylase inhibitors with an aim to explain the crucial structural and physicochemical attributes responsible for higher activity towards these targets. Consequently, some descriptors of the models pointed out the importance of specific structural moieties responsible for the higher activities for these targets and on the other hand, properties such as ionization potential and mass of the compounds as well as number of hydrogen bond donors in molecules were found to be crucial in determining the binding potentials of the dataset compounds. Statistically significant 3D-QSAR models were developed with both α-glucosidase and α-amylase inhibition datapoints to estimate the importance of 3D electrostatic and steric fields for improved potentials towards these two targets. Molecular docking performed with selected compounds with homology model of α-glucosidase and X-ray crystal structure of α-amylase largely supported the interpretations obtained from the cheminformatic analyses. The current investigation should serve as important guidelines for the design of future α-glucosidase and α-amylase inhibitors. Besides, the current investigation is entirely performed by using non-commercial open-access tools to ensure easy accessibility and reproducibility of the investigation which may help researchers throughout the world to work more on drug design and discovery.
Collapse
Affiliation(s)
- Soumya Mitra
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Subhadas Chatterjee
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Shobhan Bose
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Parthasarathi Panda
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Souvik Basak
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saroj Singhmura
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India.
| |
Collapse
|