Sompalli NK, Li Y, Li J, Kuppusamy S. An innovative triple interface reinforced photocatalytic system based on BiOCl/BaTiO
3@Co-BDC-MOF composite for the simultaneous detoxification of Cr(VI) and sulfamethoxazole.
ENVIRONMENTAL RESEARCH 2024;
259:119532. [PMID:
38960360 DOI:
10.1016/j.envres.2024.119532]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The development of effective photocatalysts for the reduction of Cr(VI) and the degradation of antibiotics remains a challenge. The present work reports the development of a novel heterojunction composite material, BiOCl/BaTiO3@Co-BDC-MOF (BOC/BTO@Co-MOF), based on solvothermal techniques. To characterize the surface and bulk features of the material, techniques such as FE-SEM, HR-TEM, BET/BJH, XPS, FT-IR, p-XRD, and UV-Vis-DRS were used. Based on the results, the BiOCl/BaTiO3 nanocomposites are uniformly dispersed on the rod-shaped Co-BDC MOF, resulting in a layered texture on the surface. A further advantage of the composite structure is the strong interfacial enhancement facilitating the separation of photoexcited electron-hole pairs. Also, compared to its pristine counterparts, the heterostructure material exhibited excellent surface area and pore properties. The photocatalytic efficiency towards reduction and degradation of Cr(VI)/SMX pollutants were evaluated by optimizing various analytical parameters, such as pH, catalytic loading concentrations, analyte concentration, and scavenger role. The specially designed BOC/BTO@Co-MOF composite achieved a 96.5% Cr(VI) reduction and 98.2% SMX degradation under 60.0-90.0 min of visible light illumination at pH 3.0. This material is highly reusable and has a six-time recycling potential. The findings of this study contribute to a better understanding of the efficient decontamination of inorganic and organic pollutants in water purification systems.
Collapse