1
|
Akram B, Musawar SS, Mumtaz S, Nazir F, Umer P, Liu Q. Homogeneous Integration of Polyoxometalates and Titania into Crumpled Layers. SMALL METHODS 2025; 9:e2401377. [PMID: 39422133 DOI: 10.1002/smtd.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The crumpling and buckling in nanosheets are anticipated to provide new characteristics that could not be observed in ideal flat layers. However, the rigid lattice structure of inorganic metal oxides limits their assembly into well-defined crumpled layers. Here, this study demonstrates that at the sub-nm scale, polyoxometalates (POMs) clusters having well-defined structures can intercede during the nucleation process of titania and co-assemble with nuclei to form uniform, large-sized crumpled binary 2D layers with a thickness of 2 nm. The obtained crumpled layers are then used as a support material to immobilize Pd nanoclusters with an average size of 2 nm. Pd-immobilized crumpled layers are employed as heterogeneous catalysts for the partial hydrogenation of acetylene. This structurally and compositionally unique heterogeneous catalyst manifests exceptional selectivity to cis-alkene with almost 100% yield as compared to commercially available titania which only exhibits 10% diphenylacetylene conversion and 42% selectivity in the given period of time.
Collapse
Affiliation(s)
- Bilal Akram
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Syeda Sundas Musawar
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Sanam Mumtaz
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Fozia Nazir
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Palwisha Umer
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, AJK 12500, Pakistan
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Munsaf A, Ahmed MN, Haq IU, Akram B, Ibrahim MAA. Cefixime-Infused Green ZnO Nanoplatelets With Enhanced Biological Potential. Microsc Res Tech 2025; 88:895-904. [PMID: 39614763 DOI: 10.1002/jemt.24719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 02/22/2025]
Abstract
The escalating resistance to traditional antibiotics causes a significant hazard to public health, demanding innovative antimicrobial strategies. This study introduces cefixime-infused green-synthesized zinc oxide nanoplatelets (ZnO NPts) highlighting their enhanced biological potential. The successful formation of ZnO NPts and their subsequent infusion with cefixime were confirmed using various characterization techniques: UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and dynamic light scattering. Comparing cefixime-functionalized ZnO NPts with pure ZnO and cefixime alone, biological assessments revealed that the former exhibited stronger antifungal activity against the tested strains. Moreover, these NPts demonstrated the highest cytotoxicity in tests with Artemia salina larvae and pronounced antioxidant activity in TAC, TRP, and DPPH assays. These findings emphasize the significant potential of cefixime-infused ZnO NPts for various biomedical applications, offering enhanced antifungal, cytotoxic, and antioxidant properties.
Collapse
Affiliation(s)
- Amna Munsaf
- Department of Chemistry, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bilal Akram
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Azad Jammu and Kashmir, Pakistan
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Akram B, Ali M, Liu Q. Polyoxometalate Induced Assembly Into Surface Functionalized Multidimensional Heterostructures with Enhanced Catalytic Activity. SMALL METHODS 2024; 8:e2301432. [PMID: 38213012 DOI: 10.1002/smtd.202301432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The self-assembly of inorganic nanocrystals offers an efficient way for the fabrication of functional materials. However, it is still challenging for the construction of multidimensional nanostructures with controllable shapes, compositions and functions. Here, a series of heterostructures in different dimensions by surface modification of polyoxometalate (POM) clusters is developed. Three kinds of POM clusters (phosphomolybdic acid (PMA), phosphotungstic acid (PTA) and silicotungstic acid (STA) and five kinds of metal oxides (TiO2, VOx, La2O3, In2O3 and Gd2O3) can be used as building blocks, and a class of 1D, 2D and 3D heterostructures can be achieved by the control of surface ligand coverage. Compared with individual building blocks and other cluster-based superstructures, TiO2-PMA superstructures exhibit enhanced catalytic activity toward thioether oxidations, which is attributed to the electron transfer between TiO2 and POM clusters.
Collapse
Affiliation(s)
- Bilal Akram
- Department of Chemistry, Women University of Azad Jammu and Kashmir, AJ&K, Bagh, 12500, Pakistan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mudussar Ali
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Akram B, Ahmad K, Khan AA, Khan BA, Akhtar J. Silver-infused TiO 2 nanowires and unveiling their potential for superior wastewater dye remediations. Microsc Res Tech 2024; 87:1654-1662. [PMID: 38468512 DOI: 10.1002/jemt.24546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Silver infused ultrathin TiO2 nanowires (NWs) were synthesized via a single step solvothermal approach. The crystallinity, structure, and morphology were determined to understand the physicochemical nature of the nanocomposites. The catalytic efficiency of the newly synthesized nanocatalysts was tested for the textile waste treatment taking methylene blue (MB) as model pollutant under solar light irradiations. Nearly 96% photodegradation efficiency for MB was achieved within 20 min. Furthermore, the recyclability of the photocatalyst was also studied, and the material remained stable and effective up to four consecutive runs. RESEARCH HIGHLIGHTS: Precise size-controlled synthesis of Ag-incorporated titania nanowires (ATNWs) Controlled aspect ratios, with tunable lengths and diameters (100-3 nm) via precursor and surfactant optimization Demonstrated ATNWs' efficiency in degrading toxic dye, methylene blue (MB) 96% photodegradation efficiency for MB achieved within 20 min using 3 nm thick annealed TiO2 NWs Recyclability efficiency of photocatalyst, which remained stable and effective for up to four consecutive runs.
Collapse
Affiliation(s)
- Bilal Akram
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Khalil Ahmad
- Functional Nanomaterials Lab, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Ashfaq Ahmad Khan
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Bilal Ahmad Khan
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Javeed Akhtar
- Functional Nanomaterials Lab, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| |
Collapse
|
5
|
Mughal M, Akram B, Khan BA, Mughal TA, Sulaiman S, Abd-Elkader OH, Sayed SRM, Ibrahim MAA, Sidky AM. Synthesis and Characterization of Naproxen Intercalated Zinc Oxide Stacked Nanosheets for Enhanced Hepatoprotective Potential. ACS OMEGA 2024; 9:22979-22989. [PMID: 38826557 PMCID: PMC11137690 DOI: 10.1021/acsomega.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Liver diseases pose a significant global health burden, with limited therapeutic options for chronic cases. Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for hepatoprotection due to their antioxidant, anti-inflammatory, and regenerative properties. However, their potential remains hampered by insufficient drug loading and controlled release. The current study explores the intercalation of Naproxen (Nx), a potent anti-inflammatory and analgesic drug, within ZnO stacked nanosheets (SNSs) to address these limitations. Herein, an easy and solution-based synthesis of novel Nx intercalated ZnO SNSs was established. The obtained Nx intercalated ZnO SNSs were encapsulated with poly(vinyl acetate) (PVA) to make them biocompatible. The synthesized biocomposite was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), which confirm the successful synthesis and intercalation of Nx within the ZnO SNSs. The obtained outcomes showed that the configuration of ZnO nanosheets was altered when Nx was introduced, resulting in a more organized stacking pattern. An in vivo investigation of mice liver cells unveiled that the Nx intercalated ZnO SNss had increased hepatoprotective properties. The study's results provide valuable insights into using Nx intercalated ZnO SNss for targeted drug delivery and improved treatment effectiveness, particularly for liver-related illnesses.
Collapse
Affiliation(s)
- Muhammad
Saleem Mughal
- Department
of Chemistry, The University of Azad Jammu
& Kashmir, Muzaffarabad 13100 Pakistan
| | - Bilal Akram
- Department
of Chemistry, Women University of Azad Jammu
& Kashmir, Bagh 12500, Pakistan
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bilal Ahmad Khan
- Department
of Chemistry, The University of Azad Jammu
& Kashmir, Muzaffarabad 13100 Pakistan
| | - Tafail Akbar Mughal
- Department
of Zoology, Women University of Azad Jammu
& Kashmir, Bagh 12500, Pakistan
| | - Sulaiman Sulaiman
- Department
of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | - Omar H. Abd-Elkader
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaban R. M. Sayed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Ahmed M. Sidky
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- Department
of Neurology, The University of Chicago, Chicago, Illinois 60637-1476, United
States
| |
Collapse
|