1
|
Chen ZJ, Guo JL, Li Z, Zeng Y, Guo YT, Shen Q, Wang ZY. Rational design of dual-state emission fluorophores for sensing nitro explosives by using sulfone unit as an electron acceptor in D-A system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126105. [PMID: 40147394 DOI: 10.1016/j.saa.2025.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Dual-state emission (DSE) fluorescent molecules have become the preferred type in designing sensing fluorescent molecules due to the virtue of their bright emission in both solid and liquid states. In this study, five D-A molecules were successfully designed and synthesized according to the design concept that structural modification of D-A molecules can lead to DSE molecules. Among them, the balance between the electron donor with a strong electron donation capacity and the twisted conformation in the whole molecule makes the compounds 3c-3e DSE molecules with excellent optical performances, showing significant solvatochromic effects and large Stoke shifts. In addition, the feasibility of the sulfone unit as an electron acceptor in the D-A structure is also verified, extending the application of sulfone group in the field of fluorescence. Interestingly, the fluorescence of 3c can exhibit sensitive and selective quenching of nitro aromatic compounds (NACs) under the synergistic mechanism of fluorescence resonance energy transfer (FRET) and photoinduced electron transfer (PET), with LOD as low as 10-8 M and KSV as high as 104 M-1. Furthermore, the selective, efficient, and sensitive detection of NACs by DSE fluorescent molecule 3c in real aqueous samples and loaded on test strips has demonstrated the potential of its practical applications.
Collapse
Affiliation(s)
- Zu-Jia Chen
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Ji-Lin Guo
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zong Li
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yong Zeng
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yu-Ting Guo
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Qing Shen
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
2
|
Hojo R, Noguchi H, Toigo J, Wolf MO, Hudson ZM. Oxidation-State-Dependent Photochemistry of Sulfur-Bridged Aza-Anthracenes. J Org Chem 2025; 90:5788-5794. [PMID: 40238946 DOI: 10.1021/acs.joc.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Aromatic systems with bridged sulfur units in varying oxidation states have enabled photoresponsive materials for anticounterfeiting and supramolecular assembly. However, only a few sulfoxide-bridged chromophores exhibit photoinduced sulfur extrusion, leading to drastic photophysical changes that make them useful as stimuli-responsive materials. Here, we present nitrogen-substituted anthracene (aza-anthracene) with a sulfur bridge in different oxidation states. Overall, aza-anthracene produces red-shifted green-to-red chromophores with similar sulfoxide photoconversion behavior compared to the anthracene analog.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hikaru Noguchi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jessica Toigo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O Wolf
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Mousavi-Ebadia M, Safaei-Ghomi J, Nejad MJ. Synthesis of thiopyran derivatives via [4 + 2] cycloaddition reactions. RSC Adv 2025; 15:11160-11188. [PMID: 40206353 PMCID: PMC11979589 DOI: 10.1039/d5ra01222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
In this review, we provide a comprehensive overview of the synthesis of thiopyran family compounds via cycloaddition reactions, with examples spanning from the year 2000 to the present. We have categorized the [4 + 2] cycloaddition processes using several criteria, particularly distinguishing between intermolecular and intramolecular types based on the Diels-Alder partners. Additionally, from a mechanism standpoint, we differentiate between concerted and stepwise [4 + 2] processes, offering an analysis of these mechanisms based on the current literature.
Collapse
Affiliation(s)
- Maryam Mousavi-Ebadia
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 51167 I. R. Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 51167 I. R. Iran
| | | |
Collapse
|
4
|
Liu Q, Huang Y, Zhou X, Fernández I, Xiong Y. Visible Light-Mediated [4+2] Annulation of Silylimines with Olefins to 1-Aminotetralins Enabled by Diradical Hydrogen Atom Transfer of C-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202421464. [PMID: 39601644 DOI: 10.1002/anie.202421464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
A facile photochemical, one-pot synthesis of highly functionalized 1-aminotetralins derivatives (>70 examples) from readily accessible o-alkyl and o-formyl aryl silylimines with olefins is described. A diradical-mediated hydrogen atom transfer (DHAT) of primary, secondary, and tertiary C(sp3)-H bonds of o-alkyl arylsilylimines and C(sp2)-H bonds of o-formyl arylsilylimines enabled a [4+2] annulation with olefins in excellent diastereoselectivity. This was accomplished upon irradiation at λ = 420 nm in the presence of thioxanthen-9-one (10 mol %) as the sensitizer via energy transfer. Moreover, sulfur-substituted o-alkyl silylimines can undergo such photochemical process in the absence of an external photosensitizer. This effective protocol is compatible with a variety of functional groups and can be applied to the modification of bioactive molecules. Based on mechanistic evidences and computational studies, it is suggested that the silyl substituent enables an efficient energy transfer leading to the formation of a key C,N-diradical and subsequent [4+2]-cyclization was supported by a better molecular orbital matching between the HSOMO of the 1,4-diradical intermediate and the LUMO of the olefins. Thus, upon irradiation, the excited silylimine unlocks a carbon-to-nitrogen DHAT and subsequent [4+2] cyclization that allows the divergent functionalization of benzylic C(sp3)-H bonds and C(sp2)-H bonds.
Collapse
Affiliation(s)
- Qian Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovacion en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yang Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
Gong J, Wang X, Zhang W, Wu Y, Li K, Sha R, Liu L, Li C, Feng L, Jiang G, Wang J, Tang BZ. Sulfur oxidation states manipulate excited state electronic configurations for constructing highly efficient organic type I photosensitizers. Chem Sci 2024; 15:13001-13010. [PMID: 39148804 PMCID: PMC11322962 DOI: 10.1039/d4sc03039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs. Combined with the experimental results and theoretical calculations, we have successfully revealed the decisive role of high sulfur oxidation states in promoting ROS production capacity. Impressively, a higher sulfur oxidation state can reduce the singlet-triplet energy gap (ΔE ST), increase the matching degree of transition configurations, promote the changes of the excited state electronic configurations, and boost the effective ISC proportion by enhancing intramolecular interactions. Therefore, DBTS2O with the highest sulfur oxidation state exhibits the strongest type I ROS generation ability. Additionally, guided by our strategy, a water-soluble PS (2OA) is designed and synthesized, showing selective imaging capacity and photokilling ability against Gram-positive bacteria. This study broadens the horizons for both molecular design and mechanism study of high-performance organic type I PSs.
Collapse
Affiliation(s)
- Jianye Gong
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Xiaopeng Wang
- Xi'an Modern Chemistry Research Institute Xi'an 710069 P. R. China
| | - Weijing Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Yifan Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Kai Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Renmanduhu Sha
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lingxiu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Chunbin Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lina Feng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Guoyu Jiang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianguo Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
6
|
Chen Z, Hao S, Li H, Dong X, Chen X, Yuan J, Sidorenko A, Huang J, Gu Y. Dipolar Microenvironment Engineering Enabled by Electron Beam Irradiation for Boosting Catalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401562. [PMID: 38860673 PMCID: PMC11321705 DOI: 10.1002/advs.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Indexed: 06/12/2024]
Abstract
Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites. By varying the composition of the microenvironment scaffold structure, the contact and interaction behavior with the reaction participants can be tuned, thereby affecting the catalytic activity and selectivity. As a result, the framework catalysts produced in this way exhibit excellent catalytic performance in the synthesis of glycinate esters and indole derivatives. This manipulation is reminiscent of enzymatic catalysis, which adjusts the internal polarity environment and controls the output of products by altering the scaffold structure.
Collapse
Affiliation(s)
- Zhiyan Chen
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Hao
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Haozhe Li
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaohan Dong
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Xihao Chen
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jushigang Yuan
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of BelarusMinsk220084Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yanlong Gu
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
7
|
Liu D, Robin S, Gloaguen E, Brenner V, Mons M, Aitken DJ. Effects of sulfoxide and sulfone sidechain-backbone hydrogen bonding on local conformations in peptide models. Chem Commun (Camb) 2024; 60:2074-2077. [PMID: 38293794 DOI: 10.1039/d3cc05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We examine peptide model systems designed to probe short-range N-H⋯OS sidechain-backbone hydrogen bonding involving amino acid residues with sidechain sulfoxide or sulfone functional groups and its effects on local conformations. A strong 7-membered ring hydrogen bond of this type accompanies an intra-residue N-H⋯OC interaction and stabilizes an extended backbone conformation in preference to classical folded structures.
Collapse
Affiliation(s)
- Dayi Liu
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
| | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
- Université Paris Cité, Faculté de Pharmacie, Paris 75006, France
| | - Eric Gloaguen
- Université Paris-Saclay, CNRS, ISMO, Orsay 91400, France
| | - Valérie Brenner
- Université Paris-Saclay, CEA, DRF, Gif-sur-Yvette 91191, France
| | - Michel Mons
- Université Paris-Saclay, CEA, LIDYL, Gif-sur-Yvette 91191, France.
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, Orsay 91400, France.
| |
Collapse
|
8
|
Okba A, Simón Marqués P, Matsuo K, Aratani N, Yamada H, Rapenne G, Kammerer C. Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments. Beilstein J Org Chem 2024; 20:287-305. [PMID: 38379731 PMCID: PMC10877077 DOI: 10.3762/bjoc.20.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The "precursor approach" has proved particularly valuable for the preparation of insoluble and unstable π-conjugated polycyclic compounds (π-CPCs), which cannot be synthesized via in-solution organic chemistry, for their improved processing, as well as for their electronic investigation both at the material and single-molecule scales. This method relies on the synthesis and processing of soluble and stable direct precursors of the target π-CPCs, followed by their final conversion in situ, triggered by thermal activation, photoirradiation or redox control. Beside well-established reactions involving the elimination of carbon-based small molecules, i.e., retro-Diels-Alder and decarbonylation processes, the late-stage extrusion of chalcogen fragments has emerged as a highly promising synthetic tool to access a wider variety of π-conjugated polycyclic structures and thus to expand the potentialities of the "precursor approach" for further improvements of molecular materials' performances. This review gives an overview of synthetic strategies towards π-CPCs involving the ultimate elimination of chalcogen fragments upon thermal activation, photoirradiation and electron exchange.
Collapse
Affiliation(s)
- Aissam Okba
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Pablo Simón Marqués
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
| | - Kyohei Matsuo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
| |
Collapse
|
9
|
Bonato Wille AP, Pereira da Motta K, Pinto Brites N, Luchese C, Frederico Schumacher R, Antunes Wilhelm E. Synthesis and investigation of new indole-containing vinyl sulfide derivatives: In silico and in vitro studies for potential therapeutic applications. Chem Biodivers 2024; 21:e202301460. [PMID: 38117615 DOI: 10.1002/cbdv.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/22/2023]
Abstract
Indoles featuring organosulfur compounds serve as privileged structural scaffolds in various biologically active compounds. This study investigates the biological properties of five synthetic sulphenyl vinyl indoles (3 a-e) using both in silico and in vitro methods. Computational analyses employing Swiss ADME and Molinspiration software reveal the remarkable inhibitory activity of compound 3 d against proteases and kinases (scores of 0.18 and 0.06, respectively). Furthermore, it demonstrates the ability to modulate ionic and G protein-coupled receptors (scores: -0.06 and 0.31, respectively) and serves as a ligand for nuclear receptors (score 0.15). In vitro investigations highlight the compounds' efficacy in countering ABTS+ radical attacks and reducing lipid peroxidation levels. Particularly noteworthy is the superior efficacy of compounds 3 a, 3 b, and 3 e in DPPH (EC50 3 a: 268.5 μM) and TEAC assays (EC50 3 a: 49.9 μM; EC50 3 b: 133.4 μM, and EC50 3 e: 84.9 μM), as well as TBARS levels. Compound 3 c significantly reduces acetylcholinesterase activity, positioning itself as a noteworthy enzyme inhibitor. This study emphasizes the versatile biological potential of synthetic indole derivatives, suggesting their applicability for therapeutic purposes.
Collapse
Affiliation(s)
- Ana Paula Bonato Wille
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | - Ketlyn Pereira da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | - Nathan Pinto Brites
- Department of Chemistry, Federal University of Santa Maria, Santa Maria Brazil, CEP, 97105-900, RS, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | | | - Ethel Antunes Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| |
Collapse
|
10
|
Mahaan R, John Bosco A. Sulfur Oxidation State and Substituents Influenced Multifunctional Organic Luminophores in BTP Core for OLEDs: A Computational Study on RTP, TADF Emitter and Sensitizer. J Phys Chem A 2023; 127:10570-10582. [PMID: 38063023 DOI: 10.1021/acs.jpca.3c05259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The exploration of triplet excitons in thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) molecules has become a subject of significant attention and interest in recent studies. This study employed density functional theory (DFT) and time-dependent DFT theoretical methods to delve into the intricate relationship between the molecular structure and properties of molecules designed with the oxidation of sulfur atoms (S, SO, and SO2) in benzothiazinophenothiazine (BTP) core units. The calculations revealed that as the oxidation state of the sulfur atom increased, the BTP derivatives exhibited elevated ionization potentials (IPs), electron affinities (EAs), and triplet energies (ET), accompanied by reduced reorganization energies (λ), singlet energies (ES), and a S1-T1 energy gap (ΔEST). Additionally, the decrease in the exchange energy prompts a shift in the excited-state properties of molecules, transitioning them from hybridized local and charge transfer (HLCT) to charge transfer (CT) in the S1 state while maintaining their HLCT character in the T1 state. The sulfur oxidation process systematically decreases spin-orbit coupling magnitudes in the S1-T1 and T1-S0 pathways while increasing the KRISC rate, signifying a reduced propensity for phosphorescence radiative decay in oxidized molecules. Thorough investigations have explored the screening effect and orbital mixing of lone pair electrons in sulfur atoms, satisfying the desired criteria for a multifunctional RTP, TADF emitter and sensitizer.
Collapse
Affiliation(s)
- Ramalingam Mahaan
- Advanced Materials Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Aruljothy John Bosco
- Advanced Materials Chemistry Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
11
|
Kothavale S, Iqbal SA, Hanover EL, Gupta AK, Zysman-Colman E, Ingleson MJ. Borylation-Reduction-Borylation for the Formation of 1,4-Azaborines. Org Lett 2023; 25:8912-8916. [PMID: 38055858 PMCID: PMC10729022 DOI: 10.1021/acs.orglett.3c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Given the current interest in materials containing 1,4-azaborine units, the development of new routes to these structures is important. Carbonyl directed electrophilic borylation using BBr3 is a facile method for the ortho-borylation of N,N-diaryl-amide derivatives. Subsequent addition of Et3SiH results in carbonyl reduction and then formation of 1,4-azaborines that can be protected in situ using a Grignard reagent. Overall, borylation-reduction-borylation is a one-pot methodology to access 1,4-azaborines from simple precursors.
Collapse
Affiliation(s)
- Shantaram
S. Kothavale
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Saqib A. Iqbal
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Emily L. Hanover
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
- Organic
Semiconductor Centre and EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Abhishek K. Gupta
- Organic
Semiconductor Centre and EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre and EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Michael J. Ingleson
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
12
|
Harrington K, Hogan DT, Sutherland TC, Stamplecoskie K. Photophysical investigation into room-temperature emission from xanthene derivatives. Phys Chem Chem Phys 2023; 25:24829-24837. [PMID: 37671931 DOI: 10.1039/d3cp02802j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The photophysical consequences of replacing the nitrogen heteroatom in phenothiazine with methylene are investigated for both solutions and crystalline solids. We analysed the excited state dynamics of four xanthene derivatives and observed an anomalous fluorescence from an energy level higher than the S1 state with lifetimes between 2.8 ns and 5.8 ns in solution and as solids. Additionally, the solid-state xanthene derivatives exhibited long-lived emission consistent with a triplet excited state, displaying millisecond lifetimes that ranged from 0.1 ms to 3.4 ms at ambient temperature in air. Our findings were supported by optical studies, crystallographic structural analyses, and DFT computations, which corroborated the photophysical measurements. It was concluded that the presence of the nitrogen atom in phenothiazine is crucial for achieving ultra-long emission lifetimes and that these results contribute to a deeper understanding of excited state dynamics which have potential implications for applications, such as display technologies, anticounterfeiting technologies, and sensors.
Collapse
Affiliation(s)
| | - David T Hogan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T3G 1M1, Canada.
| | - Todd C Sutherland
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T3G 1M1, Canada.
| | | |
Collapse
|
13
|
Hojo R, Bergmann K, Elgadi SA, Mayder DM, Emmanuel MA, Oderinde MS, Hudson ZM. Imidazophenothiazine-Based Thermally Activated Delayed Fluorescence Materials with Ultra-Long-Lived Excited States for Energy Transfer Photocatalysis. J Am Chem Soc 2023; 145:18366-18381. [PMID: 37556344 DOI: 10.1021/jacs.3c04132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seja A Elgadi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
14
|
Matuszewska O, Battisti T, Ferreira RR, Biot N, Demitri N, Mézière C, Allain M, Sallé M, Mañas-Valero S, Coronado E, Fresta E, Costa RD, Bonifazi D. Tweaking the Optoelectronic Properties of S-Doped Polycyclic Aromatic Hydrocarbons by Chemical Oxidation. Chemistry 2023; 29:e202203115. [PMID: 36333273 DOI: 10.1002/chem.202203115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2 S cm-1 and 10-2 -10-3 S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.
Collapse
Affiliation(s)
- Oliwia Matuszewska
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Ruben R Ferreira
- Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Nicolas Biot
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Cécile Mézière
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Magali Allain
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Marc Sallé
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
15
|
Liu Z, Han W, Lan J, Sun L, Tang J, Zhang C, You J. Molecular Engineering of Chalcogen-Embedded Anthanthrenes via peri-Selective C-H Activation: Fine-Tuning of Crystal Packing for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202211412. [PMID: 36347830 DOI: 10.1002/anie.202211412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Disclosed herein is a RhCl3 -catalyzed peri-selective C-H/C-H oxidative homo-coupling of 1-substituted naphthalenes, which provides a highly efficient and streamlined approach to chalcogen-embedded anthanthrenes from readily available starting materials. Introducing O, S, and Se into the anthanthrene skeleton leads to gradually increased π-π stacking distances but significantly enhanced π-π overlaps with the growth of the hetero-atom radius. Moderate π-π distance, overlap area, and intermolecular S-S interactions endow S-embedded anthanthrene (PTT) with excellent 2D charge-transport properties. Moreover, the transformation of p-type to n-type S-embedded anthanthrenes is realized for the first time via the S-atom oxidation from PTT to PTT-O4. In organic field-effect transistor devices, PTT derivatives exhibit hole transport with mobilities up to 1.1 cm2 V-1 s-1 , while PTT-O4 shows electron transport with a mobility of 0.022 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lingyan Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Junbin Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
16
|
Guo T, Bi L, Zhang M, Zhu CJ, Yuan LB, Zhao YH. Access to Sulfur-Containing Bisheterocycles through Base-Promoted Consecutive Tandem Cyclization/Sulfenylation with Elemental Sulfur. J Org Chem 2022; 87:16907-16912. [PMID: 36417664 DOI: 10.1021/acs.joc.2c02248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A convenient and efficient tandem cyclization/sulfenylation of o-alkynyl-phenols/-anilines/enaminones for the synthesis of diverse sulfur-containing bisheterocycles has been developed using stable, odorless, and easy-to-handle elemental S8 as a building block under green chemistry conditions. Notably, a one-step simple base-mediated organic transformation affords a benzofuran (indole or chromone) ring and two C-S bonds. Attractive features of this methodology include the absence of a metal catalyst, mild conditions, good functional group tolerance, and valuable product structures.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Lei Bi
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Miao Zhang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Cong-Jun Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Li-Bo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| |
Collapse
|
17
|
Sacristán-Martín A, Miguel D, Diez-Varga A, Barbero H, Álvarez CM. From Induced-Fit Assemblies to Ternary Inclusion Complexes with Fullerenes in Corannulene-Based Molecular Tweezers. J Org Chem 2022; 87:16691-16706. [DOI: 10.1021/acs.joc.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Adriana Sacristán-Martín
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Alberto Diez-Varga
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| | - Celedonio M. Álvarez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain
| |
Collapse
|
18
|
Yuan J, Jiang L, Nishimura T, Sauvé ER, Hean D, Maeda K, Wolf MO. Effect of Oxidation on the Chiroptical Properties of Sulfur-Bridged Binaphthyl Dimers. J Org Chem 2022; 87:12315-12322. [PMID: 36066048 DOI: 10.1021/acs.joc.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of axially chiral sulfur-bridged dimers were prepared from 1,1'-binaphthyl-2,2'-diol and subsequently oxidized to the respective sulfones. The chiroptical properties of the chiral chromophores were studied as a function of the oxidation state. Upon oxidation, an increase in quantum yields was observed for directly linked sulfur bridged binaphthyls (0.04 to 0.32), and a modest increase in dissymmetry factor was observed for diphenylsulfide-bridged binaphthyls (-8.9 × 10-4 to -1.4 × 10-3). Computational calculations were used to elucidate the changes in photophysical properties.
Collapse
Affiliation(s)
- Jennifer Yuan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lanting Jiang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ethan R Sauvé
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|