1
|
Luo WQ, Cao MT, Sun CX, Wang JJ, Gao MX, He XR, Dang LN, Geng YY, Li BY, Li J, Shi ZC, Yan XR. Size-dependent internalization of polystyrene microplastics as a key factor in macrophages and systemic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137701. [PMID: 40020305 DOI: 10.1016/j.jhazmat.2025.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Microplastics are emerging pollutants with a wide range of ecological and biological effects, including the ability to accumulate in organisms and induce toxicity. Although numerous studies have investigated the distribution and toxicity of microplastics in murine models and cell lines, the conclusions are inconsistent owing to variations in experimental designs, particle sizes, exposure methods, and dose quantifications. To address these gaps, we systematically evaluated the size-dependent internalization and toxicity of polystyrene microplastics (PS-MPs) using in vitro and in vivo models. Fluorescently labeled PS-MPs were used to confirm the negligible toxicity of fluorophores on macrophages, demonstrating their suitability for tracking particle accumulation. In vitro experiments using RAW 264.7 cell lines and primary peritoneal macrophages revealed size-dependent phagocytosis and cytotoxicity, with smaller particles (0.5 µm) demonstrating higher internalization and causing greater mitochondrial depolarization, reactive oxygen species generation, and apoptosis compared to that with larger particles (5 µm). Acute in vivo experiments comparing oral administration and tail-vein injection revealed that the absorbed dose and toxicity were significantly influenced by particle size, with smaller PS-MPs showing higher organ retention and alterations in hematological and metabolic parameters. Additionally, a 28-day subacute oral exposure study highlighted systemic toxicity, including weight loss, disrupted food intake, elevated oxidative stress markers, and reduced antioxidant enzyme activity. By integrating multiple exposure routes, macrophage models, and fluorescence toxicity evaluations, this study provided a comprehensive and realistic assessment of microplastic toxicity, offering valuable insights for advancing toxicological evaluations and regulatory frameworks. However, this study did not address the influence of other plastic types, shapes, or environmental factors on toxicity. Future studies are thus needed to explore these variables and the long-term implications of real-world microplastic exposure.
Collapse
Affiliation(s)
- Wei-Qiang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Meng-Ting Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Chen-Xuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Jun-Jian Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Meng-Xi Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Xue-Rui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Le-Ning Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Yang-Yang Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Bing-Yao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Cheng Shi
- Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Xing-Rong Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025; 16:7106-7129. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
3
|
Eberhard E, Burger L, Pastrana CL, Seyed-Allaei H, Giunta G, Gerland U. Force Generation by Enhanced Diffusion in Enzyme-Loaded Vesicles. NANO LETTERS 2025; 25:5754-5761. [PMID: 40138661 PMCID: PMC11987064 DOI: 10.1021/acs.nanolett.5c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The diffusion coefficient of some metabolic enzymes increases with the concentration of their cognate substrate, a phenomenon known as enhanced diffusion. In the presence of substrate gradients, enhanced diffusion induces enzymatic drift, resulting in a nonhomogeneous enzyme distribution. Here, we study the effects of enhanced diffusion on enzyme-loaded vesicles placed in external substrate gradients using a combination of computer simulations and analytical modeling. We observe that the spatially inhomogeneous enzyme profiles generated by enhanced diffusion result in a pressure gradient across the vesicle, which leads to macroscopically observable effects, namely deformation and self-propulsion of the vesicle. Our analytical model allows us to characterize the dependence of the velocity of propulsion on experimentally tunable parameters. The effects predicted by our work provide an avenue for further validation of enhanced diffusion, and might be leveraged for the design of novel synthetic cargo transporters, such as targeted drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Hamid Seyed-Allaei
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Giovanni Giunta
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
4
|
Kuze M, Kawai N, Matsuo M, Lagzi I, Suematsu NJ, Nakata S. Oscillatory motion of a self-propelled object determined by the mass transport path. Phys Chem Chem Phys 2025; 27:6640-6645. [PMID: 40084529 DOI: 10.1039/d4cp04832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Oscillatory self-propulsion can be achieved under nonequilibrium conditions. In the case of a camphor boat, the periods of oscillatory motion were determined by the lateral (two-dimensional) transport length of camphor molecules at the solid plastic/water interface. However, the control of self-propulsion by different mass transport paths has not yet been explored. We observed new fluidic behaviors in the oscillatory motion of self-propelled objects. The period of oscillatory motion was determined by the mass transport path of the energy source molecules depending on the room temperature, Tr, and the temperature gradient, ΔT (= Tb - Tr, where Tb denotes the temperature at the bottom of the water chamber). We found that the oscillation period was determined by three types of mass transport paths for camphor molecules: lateral, downward, and complex. This study suggests that the three-dimensional transport path of energy source molecules can control the periods of oscillatory motion.
Collapse
Affiliation(s)
- Masakazu Kuze
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8526, Japan.
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Nozomi Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8526, Japan.
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8526, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Istvan Lagzi
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest H-1111, Hungary
- HUN-REN-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest H-1111, Hungary
| | - Nobuhiko J Suematsu
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima-shi, Hiroshima 739-8526, Japan.
| |
Collapse
|
5
|
Equy E, Ibarboure E, Grelet E, Lecommandoux S. Janus Polymeric Giant Vesicles on Demand: A Predictive Phase Separation Approach for Efficient Formation. J Am Chem Soc 2025; 147:9727-9738. [PMID: 40066799 DOI: 10.1021/jacs.4c18003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Janus particles, with their intrinsic asymmetry, are attracting major interest in various applications, including emulsion stabilization, micro/nanomotors, imaging, and drug delivery. In this context, Janus polymersomes are particularly attractive for synthetic cell development and drug delivery systems. While they can be achieved by inducing a phase separation within their membrane, their fabrication method remains largely empirical. Here, we propose a rational approach, using Flory-Huggins theory, to predict the self-assembly of amphiphilic block copolymers into asymmetric Janus polymersomes. Our predictions are experimentally validated by forming highly stable Janus giant unilamellar vesicles (JGUVs) with a remarkable yield exceeding 90% obtained from electroformation of various biocompatible block copolymers. We also present a general phase diagram correlating mixing energy with polymersome morphology, offering a valuable tool for JGUV design. These polymersomes can be extruded to achieve quasi-monodisperse vesicles while maintaining their Janus-like morphology, paving the way for their asymmetric functionalization and use as active carriers.
Collapse
Affiliation(s)
- Eloise Equy
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP LCPO, UMR 5629, Pessac F-33600, France
| | - Eric Grelet
- Univ. Bordeaux, CNRS, CRPP UMR 5031, , Pessac F-33600, France
| | | |
Collapse
|
6
|
Zhu K, Huang Y, Yang L, Xuan M, Zhou T, He Q. Motion control of chemically powered colloidal motors. Adv Colloid Interface Sci 2025; 341:103475. [PMID: 40117956 DOI: 10.1016/j.cis.2025.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Chemically powered colloidal motors can convert chemical energy into directional mechanical movement, making them promising for applications such as targeted drug delivery, environmental decontamination, and precision disease treatment. However, their self-propulsion is constantly disrupted by random Brownian motion, making precise control under low Reynolds number conditions highly challenging. This review provides a brief overview of the three main propulsion mechanisms of chemically powered colloidal motors. It also summarizes recent advances in motion control, including speed regulation and trajectory navigation. Finally, we discuss future directions for achieving more precise motion control. We hope this review will inspire further research on developing more effective and practical control strategies for colloidal motors.
Collapse
Affiliation(s)
- Kangning Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, PR China
| | - Yang Huang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, PR China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, PR China
| | - Mingjun Xuan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, PR China.
| | - Tingting Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, PR China.
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
7
|
Jancik-Prochazkova A, Ariga K. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. RESEARCH (WASHINGTON, D.C.) 2025; 8:0624. [PMID: 39995898 PMCID: PMC11848434 DOI: 10.34133/research.0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Nano-/microrobots have been demonstrated as an efficient solution for environmental remediation. Their strength lies in their propulsion abilities that allow active "on-the-fly" operation, such as pollutant detection, capture, transport, degradation, and disruption. Another advantage is their versatility, which allows the engineering of highly functional solutions for a specific application. However, the latter advantage can bring complexity to applications; versatility in dimensionality, morphology, materials, surface decorations, and other modifications has a crucial effect on the resulting propulsion abilities, compatibility with the environment, and overall functionality. Synergy between morphology, materials, and surface decorations and its projection to the overall functionality is the object of nanoarchitectonics. Here, we scrutinize the engineering of nano-/microrobots with the eyes of nanoarchitectonics: we list general concepts that help to assess the synergy and limitations of individual procedures in the fabrication processes and their projection to the operation at the macroscale. The nanoarchitectonics of nano-/microrobots is approached from microscopic level, focusing on the dimensionality and morphology, through the nanoscopic level, evaluating the influence of the decoration with nanoparticles and quantum dots, and moving to the decorations on molecular and single-atomic level to allow very fine tuning of the resulting functionality. The presented review aims to lay general concepts and provide an overview of the engineering of functional advanced nano-/microrobot for environmental remediation procedures and beyond.
Collapse
Affiliation(s)
- Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics,
National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
8
|
Er H, Bai Y, Matsuo M, Nakata S. Oscillatory Motion of a Camphor Disk on a Water Phase with an Ionic Liquid Sensitive to Transition Metal Ions. J Phys Chem B 2025; 129:592-597. [PMID: 39725557 PMCID: PMC11726673 DOI: 10.1021/acs.jpcb.4c07310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+. Based on density functional theory, metal-ion species-dependent frequency response is discussed with regard to surface tension as the force of self-propulsion and complex formation between HHexen-TFA and metal ions. These results suggest that complex formation between the transition metal ions (Cu2+, Ni2+) and the ethylenediamine group in the IL increases the surface tension around the camphor disk, resulting in an increase in the frequency of oscillatory motion with increasing concentrations of Cu2+ or Ni2+. The present study suggests that the nature of self-propulsion can be created by complexation, which changes the force of self-propulsion.
Collapse
Affiliation(s)
- Hua Er
- School
of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar
Chemical Conversion Technology, Key Laboratory for Chemical Engineering
and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Yukang Bai
- School
of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar
Chemical Conversion Technology, Key Laboratory for Chemical Engineering
and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Muneyuki Matsuo
- Graduate
School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Graduate
School of Arts and Sciences, The University
of Tokyo, 3-8-1 Komaba,
Meguro, Tokyo 153-8902, Japan
| | - Satoshi Nakata
- Graduate
School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| |
Collapse
|
9
|
Li Y, He Z, Li Y, Cao D, Cheng X, Shi Z, Duan H, Feng A, Wang S, Xie J, Yan X. Polymer colloidal motors with photodynamic-regulated propulsion. J Colloid Interface Sci 2024; 675:64-73. [PMID: 38964125 DOI: 10.1016/j.jcis.2024.06.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Artificial colloidal motors capable of converting various external energy into mechanical motion, have emerged as attractive photosensitizer (PS) nanocarriers with good deliverability for photodynamic therapy. However, photoactivated 3O2-to-1O2 transformation as the most crucial energy transfer of the photodynamic process itself is still challenging to convert into autonomous transport. Herein, we report on PS-loaded thiophane-containing semiconducting conjugated polymer (SCP)-based polymer colloidal motors with asymmetric geometry for photodynamic-regulated propulsion in the liquid. The asymmetrical presence of the SCP phases within the colloidal motors would lead to significant differences in the 3O2-to-1O2 transformation and 1O2 release manners between asymmetrical polymer phases, spontaneously creating asymmetrical osmotic pressure gradients across the nanoparticles for powering the self-propelled motion under photodynamic regulation. This photoactivated energy-converting behavior can be also combined with the photothermal conversion of the SCP phases to create two energy gradients exerting diffusiophoretic/thermophoretic force on the colloidal motors for achieving multimode synergistic propulsion. This unique motile feature endows the light-driven PS nanocarriers with good permeability against various physiological barriers in the tumor microenvironment for enhancing antitumor efficacy, showing great potential in phototherapy.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaoxia He
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yun Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongsheng Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xie Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiqing Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiyan Duan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ao Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Choi H, Jeong SH, Simó C, Bakenecker A, Liop J, Lee HS, Kim TY, Kwak C, Koh GY, Sánchez S, Hahn SK. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat Commun 2024; 15:9934. [PMID: 39548120 PMCID: PMC11568179 DOI: 10.1038/s41467-024-54293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Most non-muscle invasive bladder cancers have been treated by transurethral resection and following intravesical injection of immunotherapeutic agents. However, the delivery efficiency of therapeutic agents into bladder wall is low due to frequent urination, which leads to the failure of treatment with side effects. Here, we report a urease-powered nanomotor containing the agonist of stimulator of interferon genes (STING) for the efficient activation of immune cells in the bladder wall. After characterization, we perform in vitro motion analysis and assess in vivo swarming behaviors of nanomotors. The intravesical instillation results in the effective penetration and retention of nanomotors in the bladder. In addition, we confirm the anti-tumor effect of nanomotor containing the STING agonist (94.2% of inhibition), with recruitment of CD8+ T cells (11.2-fold compared with PBS) and enhanced anti-tumor immune responses in bladder cancer model in female mice. Furthermore, we demonstrate the better anti-tumor effect of nanomotor containing the STING agonist than those of the gold standard Bacille Calmette-Guerin therapy and the anti-PD-1 inhibitor pembrolizumab in bladder cancer model. Taken together, the urease-powered nanomotor would provide a paradigm as a next-generation platform for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- PHI BIOMED Co., Seocho-gu, Seoul, Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Guipúzcoa, Spain
| | - Anna Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Liop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Guipúzcoa, Spain
| | - Hye Sun Lee
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
- Department of Urology, Seoul National University Hospital, Jongno-gu, Seoul, Korea.
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, Korea.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| | - Sei Kwang Hahn
- PHI BIOMED Co., Seocho-gu, Seoul, Korea.
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea.
| |
Collapse
|
11
|
Zhang L, Liu Y, Liu S, Wang T, Ouyang F, Pei Z, Ren Y, Shuai Q. NIR-intervened thermally accelerated urease-propelled MOF nanosubmarine for antibiotic-free antibacterial inhibition via single-wavelength synergistic PDT/PTT. Int J Biol Macromol 2024; 282:137367. [PMID: 39515705 DOI: 10.1016/j.ijbiomac.2024.137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The increasing resistance of bacteria to antibiotics poses a serious threat to global human health. Herein, we have developed a thermal-accelerated biomacromolecular urease-driven MOF-based nanomotor (ZIF-8@PDA@ICG@Ur) mediated via NIR-intervened antimicrobial therapy. In this system, we have attempted for the first time to introduce an easy-to-operate light combination therapy strategy (only one light source is required) into an enzyme-driven MOF motor system to achieve antibiotic-free antibacterial therapy. The purpose of this research is to utilize the increased thermal energy from the photothermal effect to enhance the activity of urease, boost the driving force, which further increases the contact efficiency of the nanocarrier with the bacteria to enhance the bacterial killing power. In 50 mM urea solution, the rate of nanomotor movement was increased by about 1.24 times under NIR light irradiation compared to that without light. In addition, the synergistic effect of enhanced autonomous movement, NIR-controlled on-demand phototherapy and zinc ions release achieved 99.99 % antibacterial activity without antibiotics. The developed NIR-intervened design in this manuscript endows urease-based nanomotors with attractive propulsion feature and contributes to a novel strategy for against diseases caused by bacterial infections.
Collapse
Affiliation(s)
- Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shupeng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tao Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Feng Ouyang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yixia Ren
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
12
|
Fraire JC, Prado-Morales C, Aldaz Sagredo A, Caelles AG, Lezcano F, Peetroons X, Bakenecker AC, Di Carlo V, Sánchez S. Swarms of Enzymatic Nanobots for Efficient Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47192-47205. [PMID: 39262054 PMCID: PMC11403613 DOI: 10.1021/acsami.4c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.
Collapse
Affiliation(s)
- Juan C Fraire
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Carles Prado-Morales
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Aldaz Sagredo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Ainhoa G Caelles
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Florencia Lezcano
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Xander Peetroons
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Anna C Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Valerio Di Carlo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Priyanka, Maiti S. Probing Phoretic Transport of Oxidative Enzyme-Bound Zn(II)-Metallomicelle in Adenosine Triphosphate Gradient via a Spatially Relocated Biocatalytic Zone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18906-18916. [PMID: 39189920 DOI: 10.1021/acs.langmuir.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Although cellular transport machinery is mostly ATP-driven and ATPase-dependent, there has been a recent surge in understanding colloidal transport processes relying on a nonspecific physical interaction with biologically significant small molecules. Herein, we probe the phoretic behavior of a biocolloid [composed of a Zn(II)-coordinated metallomicelle and enzymes horseradish peroxidase (HRP) and glucose oxidase (GOx)] when exposed to a concentration gradient of ATP under microfluidic conditions. Simultaneously, we demonstrate that an ATP-independent oxidative biocatalytic product formation zone can be modulated in the presence of a (glucose + ATP) gradient. We report that both directionality and extent of transport can be tuned by changing the concentration of the ATP gradient. This diffusiophoretic mobility of a submicrometer biocolloidal object for the spatial transposition of a biocatalytic zone signifies the ATP-mediated functional transportation without the involvement of ATPase. Additionally, the ability to analyze colloidal transport in microfluidic channels using an enzymatic fluorescent product-forming reaction could be a new nanobiotechnological tool for understanding transport and spatial catalytic patterning processes. We believe that this result will inspire further studies for the realization of elusive biological transport processes and target-specific delivery vehicles, considering the omnipresence of the ATP-gradient across the cell.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
14
|
Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-Powered Nanobots for Overcoming the Mucus Barrier. ACS NANO 2024; 18:16701-16714. [PMID: 38885185 PMCID: PMC11223492 DOI: 10.1021/acsnano.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Biological barriers present a significant obstacle to treatment, especially when drugs are administered locally to increase their concentrations at the target site while minimizing unintended off-target effects. Among these barriers, mucus presents a challenge, as it serves as a protective layer in the respiratory, urogenital, and gastrointestinal tracts. Its role is to shield the underlying epithelial cells from pathogens and toxic compounds but also impedes the efficient delivery of drugs. Despite the exploration of mucolytic agents to improve drug delivery, overcoming this protective barrier remains a significant hurdle. In our study, we investigate an alternative approach involving the use of catalase-powered nanobots. We use an in vitro model that simulates intestinal mucus secretion to demonstrate the dual functionality of our nanobots. This includes their ability to disrupt mucus, which we confirmed through in vitro and ex vivo validation, as well as their self-propulsion to overcome the mucus barrier, resulting in a 60-fold increase compared with passive nanoparticles. Therefore, our findings highlight the potential utility of catalase-powered nanobots as carriers for therapeutic agents since they could enhance drug delivery efficiency by penetrating the mucus barrier.
Collapse
Affiliation(s)
- Meritxell Serra-Casablancas
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Universitat
de Barcelona, Facultat de Farmàcia i Ciències de l’Alimentació, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Valerio Di Carlo
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Carles Prado-Morales
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Universitat
de Barcelona, Facultat de Farmàcia i Ciències de l’Alimentació, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Anna C. Bakenecker
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Ramos Docampo MA. Magnetic motors in interphases: Motion control and integration in soft robots. Biointerphases 2024; 19:048502. [PMID: 38994898 DOI: 10.1116/6.0003637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Magnetic motors are a class of out-of-equilibrium particles that exhibit controlled and fast motion overcoming Brownian fluctuations by harnessing external magnetic fields. The advances in this field resulted in motors that have been used for different applications, such as biomedicine or environmental remediation. In this Perspective, an overview of the recent advancements of magnetic motors is provided, with a special focus on controlled motion. This aspect extends from trapping, steering, and guidance to organized motor grouping and degrouping, which is known as swarm control. Further, the integration of magnetic motors in soft robots to actuate their motion is also discussed. Finally, some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
16
|
Dindo M, Bevilacqua A, Soligo G, Calabrese V, Monti A, Shen AQ, Rosti ME, Laurino P. Chemotactic Interactions Drive Migration of Membraneless Active Droplets. J Am Chem Soc 2024; 146:15965-15976. [PMID: 38620052 DOI: 10.1021/jacs.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In nature, chemotactic interactions are ubiquitous and play a critical role in driving the collective behavior of living organisms. Reproducing these interactions in vitro is still a paramount challenge due to the complexity of mimicking and controlling cellular features, such as tangled metabolic networks, cytosolic macromolecular crowding, and cellular migration, on a microorganism size scale. Here, we generate enzymatically active cell-sized droplets able to move freely, and by following a chemical gradient, able to interact with the surrounding droplets in a collective manner. The enzyme within the droplets generates a pH gradient that extends outside the edge of the droplets. We discovered that the external pH gradient triggers droplet migration and controls its directionality, which is selectively toward the neighboring droplets. Hence, by changing the enzyme activity inside the droplet, we tuned the droplet migration speed. Furthermore, we showed that these cellular-like features can facilitate the reconstitution of a simple and linear protometabolic pathway and increase the final reaction product generation. Our work suggests that simple and stable membraneless droplets can reproduce complex biological phenomena, opening new perspectives as bioinspired materials and synthetic biology tools.
Collapse
Affiliation(s)
- Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Bevilacqua
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Giovanni Soligo
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Monti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Marco Edoardo Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
17
|
Patiño Padial T, Del Grosso E, Gentile S, Baranda Pellejero L, Mestre R, Paffen LJMM, Sánchez S, Ricci F. Synthetic DNA-based Swimmers Driven by Enzyme Catalysis. J Am Chem Soc 2024; 146:12664-12671. [PMID: 38587543 DOI: 10.1021/jacs.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular "brakes" on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids.
Collapse
Affiliation(s)
- Tania Patiño Padial
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lorena Baranda Pellejero
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rafael Mestre
- School of Electronics and Computer Science (ECS), University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Lars J M M Paffen
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
18
|
Liu X, Wang Y, Wang L, Chen W, Ma X. Enzymatic Nanomotors Surviving Harsh Conditions Enabled by Metal Organic Frameworks Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305800. [PMID: 37991255 DOI: 10.1002/smll.202305800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enzyme-driven micro/nanomotors (MNMs) have demonstrated potentials in the biomedical field because of their excellent biocompatibility, versatility, and fuel bioavailability. However, the fragility of enzymes limits their practical application, because of their susceptibility to denaturation and degradation in realistic scenarios. Herein, a simple yet versatile and effective approach is reported to preserve the enzymatic activity and propulsion capability of enzymatic MNMs under various harsh conditions using metal organic frameworks (MOFs) as a protective shell. Urease can be encapsulated within the exoskeleton of zeolitic imidazolate framework-8 (ZIF-8) via biomimetic mineralization to form ZIF-8@urease (ZU-I) nanomotors that exhibit self-propulsion in the presence of urea. When exposed to harsh conditions, including high temperature, presence of proteases, and organic solvents, the ZU-I nanomotors still maintained their activity and mobility, whereas ZIF-8 with externally modified urease (ZU-O) nanomotors with externally modified urease as a control rapidly lost their motion capabilities owing to the inactivation of urease. Furthermore, ZU-I nanomotors exhibit effectively enhanced diffusion within the small intestine fluid, achieving a fourfold higher mucus penetration than the ZU-O nanomotors. The results highlight the effectiveness of using MOFs as protective shells for enzyme nano-engines, which can greatly advance the practical applications of enzymatic MNMs under realistic conditions, especially for biomedical purpose.
Collapse
Affiliation(s)
- Xiaoxia Liu
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liying Wang
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Wenjun Chen
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
19
|
Simó C, Serra-Casablancas M, Hortelao AC, Di Carlo V, Guallar-Garrido S, Plaza-García S, Rabanal RM, Ramos-Cabrer P, Yagüe B, Aguado L, Bardia L, Tosi S, Gómez-Vallejo V, Martín A, Patiño T, Julián E, Colombelli J, Llop J, Sánchez S. Urease-powered nanobots for radionuclide bladder cancer therapy. NATURE NANOTECHNOLOGY 2024; 19:554-564. [PMID: 38225356 PMCID: PMC11026160 DOI: 10.1038/s41565-023-01577-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.
Collapse
Affiliation(s)
- Cristina Simó
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Meritxell Serra-Casablancas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ana C Hortelao
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valerio Di Carlo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Balbino Yagüe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Laura Aguado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Laboratory of Neuroimaging and Biomarkers of Inflammation, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Sciences, Faculty Of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa Gómez-Vallejo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Abraham Martín
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Laboratory of Neuroimaging and Biomarkers of Inflammation, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jordi Llop
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
20
|
Ruiz-González N, Esporrín-Ubieto D, Hortelao AC, Fraire JC, Bakenecker AC, Guri-Canals M, Cugat R, Carrillo JM, Garcia-Batlletbó M, Laiz P, Patiño T, Sánchez S. Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309387. [PMID: 38200672 DOI: 10.1002/smll.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/12/2024]
Abstract
Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods.
Collapse
Affiliation(s)
- Noelia Ruiz-González
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - David Esporrín-Ubieto
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Ana C Hortelao
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Juan C Fraire
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Anna C Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Marta Guri-Canals
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Ramón Cugat
- Mutualidad de Futbolistas - Delegación Catalana, Federación Española de Fútbol, Barcelona, 08010, Spain
- Instituto Cugat, Hospital Quironsalud Barcelona, Spain, Fundación García Cugat, Barcelona, 08023, Spain
| | - José María Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain. García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, 46115, Spain
| | | | - Patricia Laiz
- Instituto Cugat, Hospital Quironsalud Barcelona, Spain, Fundación García Cugat, Barcelona, 08023, Spain
| | - Tania Patiño
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudies Avancats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
21
|
Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PMG, Angstmann CN, Eichhorn R, Linke H, Forde NR. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. Nat Commun 2024; 15:1511. [PMID: 38396042 PMCID: PMC10891099 DOI: 10.1038/s41467-024-45570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| | - Ivan N Unksov
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Pradheebha Surendiran
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Roman Lyttleton
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, 106 91, Stockholm, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
22
|
Jin J, Li Y, Wang S, Xie J, Yan X. Organic nanomotors: emerging versatile nanobots. NANOSCALE 2024; 16:2789-2804. [PMID: 38231523 DOI: 10.1039/d3nr05995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Artificial nanomotors are self-propelled nanometer-scaled machines that are capable of converting external energy into mechanical motion. A significant progress on artificial nanomotors over the last decades has unlocked the potential of carrying out manipulatable transport and cargo delivery missions with enhanced efficiencies owing to their stimulus-responsive autonomous movement in various complex environments, allowing for future advances in a large range of applications. Emergent kinetic systems with programmable energy-converting mechanisms that are capable of powering the nanomotors are attracting increasing attention. This review highlights the most-recent representative examples of synthetic organic nanomotors having self-propelled motion exclusively powered by organic molecule- or their aggregate-based kinetic systems. The stimulus-responsive propulsion mechanism, motion behaviors, and performance in antitumor therapy of organic nanomotors developed so far are illustrated. A future perspective on the development of organic nanomotors is also proposed. With continuous innovation, it is believed that the scope and possible achievements in practical applications of organic nanomotors with diversified organic kinetic systems will expand.
Collapse
Affiliation(s)
- Jingjun Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
23
|
Ramos Docampo MA, Hovorka O, Städler B. Magnetic micromotors crossing lipid membranes. NANOSCALE 2024; 16:2432-2443. [PMID: 38226699 DOI: 10.1039/d3nr05462d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nano/micromotors are self-propelled particles that show enhanced motion upon being triggered by a stimulus. Their use in nanomedicine has been widely explored, with special focus on imaging or drug delivery. However, a thorough understanding of the requirements for more efficient locomotion is still lacking. In this paper, we assembled magnetically propelled motors of different sizes (i.e., 0.5, 1 and 4 μm) and surface chemistries (positive charge or PEGylated) and assessed their motion in the presence of giant unilamellar lipid vesicles (GUVs) of varying compositions (zwitterionic, negatively charged and saturated lipids). Unexpectedly, the size does not seem to be the dominating characteristics that governs the ability of the motors to cross lipid membranes. Specifically, the 0.5 μm PEGylated motors have very limited ability to cross the lipid membrane of GUVs due to their non-interacting nature compared to their equally sized positively charged counterparts. Furthermore, membranes made of saturated lipids and, in particular, in combination with a weak magnetic field facilitate motors' crossing, regardless of their size. The results were validated by in-house data-driven statistical analysis that employs experimental data to allow for the identification of individual motor motion in the ensemble when meeting the lipid membranes. Altogether, we provide insight into motor locomotion when they interact with a biological barrier considering both the entire ensemble and the individual motors, which has the potential to support considerations of future motor designs.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Ondrej Hovorka
- Faculty of Engineering and Physical Sciences, University of Southampton, SO16 7QF, Southampton, UK
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|
24
|
Amiri Z, Hasani A, Abedini F, Malek M, Madaah Hosseini HR. Urease-Powered Black TiO 2 Micromotors for Photothermal Therapy of Bladder Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3019-3030. [PMID: 38217858 DOI: 10.1021/acsami.3c11772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Urease-powered nano/micromotors can move at physiological urea concentrations, making them useful for biomedical applications, such as treating bladder cancer. However, their movement in biological environments is still challenging. Herein, Janus micromotors based on black TiO2 with urease asymmetric catalytic coating were designed to take benefit of the optical properties of black TiO2 under near-infrared light and the movement capability in simulated bladder environments (urea). The black TiO2 microspheres were half-coated with a thin layer of Au, and l-Cysteine was utilized to attach the urease enzyme to the Au surface using its thiol group. Biocatalytic hydrolysis of urea through urease at biologically relevant concentrations provided the driving force for micromotors. A variety of parameters, such as urea fuel concentration, viscosity, and ionic character of the environment, were used to investigate how micromotors moved in different concentrations of urea in water, PBS, NaCl, and urine. The results indicate that micromotors are propelled through ionic self-diffusiophoresis caused by urea enzymatic catalysis. Due to their low toxicity and in vitro anticancer effect, micromotors are effective agents for photothermal therapy, which can help kill bladder cancer cells. These promising results suggest that biocompatible micromotors hold great potential for improving cancer treatment and facilitating diagnosis.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| | - Atefeh Hasani
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| | - Fatemeh Abedini
- Department of Mechanical Engineering, Faculty of Engineering, University of Hormozgan, P. C. 7916193145 Bandar Abbas, Iran
| | - Mahrooz Malek
- Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Imam Khomeini Hospital, P. C. 1416634793 Tehran, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, P. C. 1458889694 Tehran, Iran
- Institute for Convergence Science and Technology (ICST), Sharif University of Technology, P. C. 1458889694 Tehran, Iran
| |
Collapse
|
25
|
Liu X, Wang Y, Peng Y, Shi J, Chen W, Wang W, Ma X. Urease-Powered Micromotors with Spatially Selective Distribution of Enzymes for Capturing and Sensing Exosomes. ACS NANO 2023; 17:24343-24354. [PMID: 38038995 DOI: 10.1021/acsnano.3c10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Enzyme-catalyzed micro/nanomotors (MNMs) exhibit tremendous potential for biological isolation and sensing, because of their biocompatibility, versatility, and ready access to biofuel. However, flow field generated by enzyme-catalyzed reactions might significantly hinder performance of surface-linked functional moieties, e.g., the binding interaction between MNMs and target cargos. Herein, we develop enzymatic micromotors with spatially selective distribution of urease to enable the independent operation of various modules and facilitate the capture and sensing of exosomes. When urease is modified into the motors' cavity, the flow field from enzyme catalysis has little effect on the exterior surface of the motors. The active motion and encapsulating urease internally result in enhancement of ∼35% and 18% in binding efficiency of target cargos, e.g., exosomes as an example here, compared to their static counterparts and moving micromotors with urease modified externally, respectively. Once exosomes are trapped, they can be transferred to a clean environment by the motors for Raman signal detection and/or identification using the surface Raman enhancement scattering (SERS) effect of coated gold nanoshell. The biocatalytic micromotors, achieving spatial separation between driving module and function module, offer considerable promise for future design of multifunctional MNMs in biomedicine and diagnostics.
Collapse
Affiliation(s)
- Xiaoxia Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| |
Collapse
|
26
|
Ryabov A, Tasinkevych M. Mechanochemical active ratchet. Sci Rep 2023; 13:20572. [PMID: 37996603 PMCID: PMC10667355 DOI: 10.1038/s41598-023-47465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Self-propelled nanoparticles moving through liquids offer the possibility of creating advanced applications where such nanoswimmers can operate as artificial molecular-sized motors. Achieving control over the motion of nanoswimmers is a crucial aspect for their reliable functioning. While the directionality of micron-sized swimmers can be controlled with great precision, steering nano-sized active particles poses a real challenge. One of the reasons is the existence of large fluctuations of active velocity at the nanoscale. Here, we describe a mechanism that, in the presence of a ratchet potential, transforms these fluctuations into a net current of active nanoparticles. We demonstrate the effect using a generic model of self-propulsion powered by chemical reactions. The net motion along the easy direction of the ratchet potential arises from the coupling of chemical and mechanical processes and is triggered by a constant, transverse to the ratchet, force. The current magnitude sensitively depends on the amplitude and the periodicity of the ratchet potential and the strength of the transverse force. Our results highlight the importance of thermodynamically consistent modeling of chemical reactions in active matter at the nanoscale and suggest new ways of controlling dynamics in such systems.
Collapse
Affiliation(s)
- Artem Ryabov
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 , Praha 8, Czech Republic
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mykola Tasinkevych
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- SOFT Group, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, 739-8511, Japan.
| |
Collapse
|
27
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Mansurova M, Kazakova R, Bogdanov A, Chabrière E, Jacquet P, Daudé D, Akhunzianov AA, Miftakhova RR, Masson P. Tuning the Envelope Structure of Enzyme Nanoreactors for In Vivo Detoxification of Organophosphates. Int J Mol Sci 2023; 24:15756. [PMID: 37958742 PMCID: PMC10649860 DOI: 10.3390/ijms242115756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 μM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Zukhra Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Milana Mansurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Renata Kazakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Eric Chabrière
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - David Daudé
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| |
Collapse
|
28
|
O'Callaghan JA, Lee D, Hammer DA. Asymmetry-Enhanced Motion of Urease-Powered Micromotors from Double Emulsion-Templated Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37902731 DOI: 10.1021/acsami.3c10222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Autonomous motion of enzyme-powered motors has important implications for drug delivery, cell-cell communication, and protocell engineering. Although many of these systems are inspired by the motion of biological cells, most of them lack key structural features, like micrometer-sized boundaries and aqueous compartments, and rely on bubble propulsion to generation motion. In this study, we use droplet microfluidics to generate large populations of cell-sized microcapsules with poly(lactic-co-glycolic acid) shells and functionalize their surfaces with the enzyme urease to drive their motion. We adjust the number of surface functional groups for urease conjugation by preparing microcapsules with two different surfactants, poly(vinyl alcohol) (PVA) and poly(ethylene-alt-maleic anhydride) (PEMA). We also tune the surface roughness of the microcapsules by varying the concentration of silica nanoparticles in the droplet middle phase. We find that PEMA plays a crucial role in increasing the grafting density of urease on the surface of smooth microcapsules, leading to active motion in the presence of urea. In addition, rough microcapsules prepared with PEMA and loaded with comparable amounts of urease move up to three times faster than their smooth counterparts, which we believe is due to an asymmetric distribution of urease on the surface, giving rise to a preferred direction of motion. Taken together, these results provide new insights into the role that various stabilizing agents play in the induction of motion by enzymatic motors prepared from microfluidics, which is a potentially powerful tool for future preparation of motile protocells in biomedicine.
Collapse
Affiliation(s)
- Jessica Ann O'Callaghan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Arnaboldi S, Salinas G, Bichon S, Gounel S, Mano N, Kuhn A. Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers. Nat Commun 2023; 14:6390. [PMID: 37828004 PMCID: PMC10570360 DOI: 10.1038/s41467-023-42153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Artificial actuators have been extensively studied due to their wide range of applications from soft robotics to biomedicine. Herein we introduce an autonomous bi-enzymatic system where reversible motion is triggered by the spontaneous oxidation and reduction of glucose and oxygen, respectively. This chemo-mechanical actuation is completely autonomous and does not require any external trigger to induce self-sustained motion. The device takes advantage of the asymmetric uptake and release of ions on the anisotropic surface of a conducting polymer strip, occurring during the operation of the enzymes glucose oxidase and bilirubin oxidase immobilized on its surface. Both enzymes are connected via a redox polymer at each extremity of the strip, but at the opposite faces of the polymer film. The time-asymmetric consumption of both fuels by the enzymatic reactions produces a double break of symmetry of the film, leading to autonomous actuation. An additional break of symmetry, introduced by the irreversible overoxidation of one extremity of the polymer film, leads to a crawling-type motion of the free-standing polymer film. These reactions occur in a virtually unlimited continuous loop, causing long-term autonomous actuation of the device.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France
| | - Sabrina Bichon
- Centre de Recherche Paul Pascal, University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Sebastien Gounel
- Centre de Recherche Paul Pascal, University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Alexander Kuhn
- University Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France.
| |
Collapse
|
30
|
Rheem HB, Choi H, Yang S, Han S, Rhee SY, Jeong H, Lee KB, Lee Y, Kim IS, Lee H, Choi IS. Fugetaxis of Cell-in-Catalytic-Coat Nanobiohybrids in Glucose Gradients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301431. [PMID: 37282761 DOI: 10.1002/smll.202301431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Manipulation and control of cell chemotaxis remain an underexplored territory despite vast potential in various fields, such as cytotherapeutics, sensors, and even cell robots. Herein is achieved the chemical control over chemotactic movement and direction of Jurkat T cells, as a representative model, by the construction of cell-in-catalytic-coat structures in single-cell nanoencapsulation. Armed with the catalytic power of glucose oxidase (GOx) in the artificial coat, the nanobiohybrid cytostructures, denoted as Jurkat[Lipo_GOx] , exhibit controllable, redirected chemotactic movement in response to d-glucose gradients, in the opposite direction to the positive-chemotaxis direction of naïve, uncoated Jurkat cells in the same gradients. The chemically endowed, reaction-based fugetaxis of Jurkat[Lipo_GOx] operates orthogonally and complementarily to the endogenous, binding/recognition-based chemotaxis that remains intact after the formation of a GOx coat. For instance, the chemotactic velocity of Jurkat[Lipo_GOx] can be adjusted by varying the combination of d-glucose and natural chemokines (CXCL12 and CCL19) in the gradient. This work offers an innovative chemical tool for bioaugmenting living cells at the single-cell level through the use of catalytic cell-in-coat structures.
Collapse
Affiliation(s)
- Hyeong Bin Rheem
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyunwoo Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Su Yeon Rhee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Hyeongseop Jeong
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Kyung-Bok Lee
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Yeji Lee
- Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - In-San Kim
- Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hojae Lee
- Department of Chemistry, Hallym University, Chuncheon, 24252, South Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
31
|
Niu J, Liu C, Yang X, Liang W, Wang Y. Construction of micro-nano robots: living cells and functionalized biological cell membranes. Front Bioeng Biotechnol 2023; 11:1277964. [PMID: 37781535 PMCID: PMC10539914 DOI: 10.3389/fbioe.2023.1277964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Micro-nano robots have emerged as a promising research field with vast potential applications in biomedicine. The motor is the key component of micro-nano robot research, and the design of the motor is crucial. Among the most commonly used motors are those derived from living cells such as bacteria with flagella, sperm, and algal cells. Additionally, scientists have developed numerous self-adaptive biomimetic motors with biological functions, primarily cell membrane functionalized micromotors. This novel type of motor exhibits remarkable performance in complex media. This paper provides a comprehensive review of the structure and performance of micro-nano robots that utilize living cells and functionalized biological cell membranes. We also discuss potential practical applications of these mirco-nano robots as well as potential challenges that may arise in future development.
Collapse
Affiliation(s)
- Jiawen Niu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenlu Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaopeng Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlong Liang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufu Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Fraire JC, Guix M, Hortelao AC, Ruiz-González N, Bakenecker AC, Ramezani P, Hinnekens C, Sauvage F, De Smedt SC, Braeckmans K, Sánchez S. Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery. ACS NANO 2023; 17:7180-7193. [PMID: 37058432 PMCID: PMC10134497 DOI: 10.1021/acsnano.2c09380] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.
Collapse
Affiliation(s)
- Juan C. Fraire
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
- Laboratory
for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Maria Guix
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
- Departament
de Ciéncia dels Materials i Química Física,
Institut de Química Teòrica i Computacional Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana C. Hortelao
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Noelia Ruiz-González
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Anna C. Bakenecker
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Pouria Ramezani
- Laboratory
for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Hinnekens
- Laboratory
for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Félix Sauvage
- Laboratory
for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C. De Smedt
- Laboratory
for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory
for General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical
Sciences, Ghent University, 9000 Ghent, Belgium
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
- Catalan
Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
33
|
Ramos Docampo MA. On Nanomachines and Their Future Perspectives in Biomedicine. Adv Biol (Weinh) 2023; 7:e2200308. [PMID: 36690500 DOI: 10.1002/adbi.202200308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Nano/micromotors are a class of active matter that can self-propel converting different types of input energy into kinetic energy. The huge efforts that are made in this field over the last years result in remarkable advances. Specifically, a high number of publications have dealt with biomedical applications that these motors may offer. From the first attempts in 2D cell cultures, the research has evolved to tissue and in vivo experimentation, where motors show promising results. In this Perspective, an overview over the evolution of motors with focus on bio-relevant environments is provided. Then, a discussion on the advances and challenges is presented, and eventually some remarks and perspectives of the field are outlined.
Collapse
Affiliation(s)
- Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
34
|
Egan M, Kuscu M, Barros MT, Booth M, Llopis-Lorente A, Magarini M, Martins DP, Schäfer M, Stano P. Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science. Life (Basel) 2023; 13:208. [PMID: 36676156 PMCID: PMC9861838 DOI: 10.3390/life13010208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Within many chemical and biological systems, both synthetic and natural, communication via chemical messengers is widely viewed as a key feature. Often known as molecular communication, such communication has been a concern in the fields of synthetic biologists, nanotechnologists, communications engineers, and philosophers of science. However, interactions between these fields are currently limited. Nevertheless, the fact that the same basic phenomenon is studied by all of these fields raises the question of whether there are unexploited interdisciplinary synergies. In this paper, we summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies, and present future perspectives for interdisciplinary efforts in this area.
Collapse
Affiliation(s)
- Malcolm Egan
- Univ Lyon, INSA Lyon, INRIA, CITI, 69621 Villeurbanne, France
| | - Murat Kuscu
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Michael Taynnan Barros
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Michael Booth
- Department of Chemistry, University College London (UCL), London WC1H 0AJ, UK
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Politècnica de València, Camino de Vera, 46022 València, Spain
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Daniel P. Martins
- Walton Institute for Information and Communication Systems Science, South East Technological University (SETU), X91 P20H Waterford, Ireland
| | - Maximilian Schäfer
- Institute for Digital Communications, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
35
|
Pashirova TN, Shaihutdinova ZM, Mironov VF, Masson P. Biomedical Nanosystems for In Vivo Detoxification: From Passive Delivery Systems to Functional Nanodevices and Nanorobots. Acta Naturae 2023; 15:4-12. [PMID: 37153510 PMCID: PMC10154777 DOI: 10.32607/actanaturae.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
The problem of low efficiency of nanotherapeutic drugs challenges the creation of new alternative biomedical nanosystems known as robotic nanodevices. In addition to encapsulating properties, nanodevices can perform different biomedical functions, such as precision surgery, in vivo detection and imaging, biosensing, targeted delivery, and, more recently, detoxification of endogenous and xenobiotic compounds. Nanodevices for detoxification are aimed at removing toxic molecules from biological tissues, using a chemical- and/or enzyme-containing nanocarrier for the toxicant to diffuse inside the nanobody. This strategy is opposite to drug delivery systems that focus on encapsulating drugs and releasing them under the influence of external factors. The review describes various kinds of nanodevices intended for detoxification that differ by the type of poisoning treatment they provide, as well as the type of materials and toxicants. The final part of the review is devoted to enzyme nanosystems, an emerging area of research that provides fast and effective neutralization of toxins in vivo.
Collapse
Affiliation(s)
- T. N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - Z. M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| | - V. F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - P. Masson
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| |
Collapse
|
36
|
Palankar R. Microrobots mop-up nanoplastics. NATURE NANOTECHNOLOGY 2022; 17:821. [PMID: 35948776 DOI: 10.1038/s41565-022-01199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|