1
|
Cui Y, Lin J, Liu K, Shao Y, Zhao D, Guo Z, Zhao J, Xia Z, Liu Q. Tuning covalent bonding in zinc-based hybrid halides towards tunable room-temperature phosphorescence. Chem Sci 2025; 16:8291-8301. [PMID: 40236592 PMCID: PMC11995163 DOI: 10.1039/d5sc00931f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Organic-inorganic metal halides with tunable and state room-temperature phosphorescence (RTP) properties in advanced luminescent materials have received broad interest. Herein, 2-(methylamino)pyridine (MAP), 2-[(methylamino)methyl]pyridine (MAMP), and 2-(2-methylaminoethyl)pyridine (MAEP) were designed and hybridized with Zn2+ and Cl-/Br-, yielding 11 hybrid materials. MAP-based compounds, with a narrow bandgap (3.57 eV), exhibit limited RTP due to inefficient intersystem crossing (ISC) and unstable triplet excitons. In contrast, MAMP (4.49 eV)- and MAEP (4.50 eV)-based compounds achieve enhanced RTP through bandgap alignment with Zn halides, enabling efficient energy transfer, ISC, and triplet exciton stabilization via strong hydrogen bonding and π-conjugation effects. Covalent bonding in MAMP and MAEP compounds provides greater rigidity and exciton stability than hydrogen-bonded systems, resulting in prolonged afterglow durations, while Br-bonding enhances ISC and spin-orbit coupling (SOC), and the weak interactions increase non-radiative decay, further reducing afterglow duration. Density functional theory calculations confirm the enhanced SOC in MAMP and MAEP compounds, further improving RTP efficiency. This work demonstrates the precise control of RTP properties, highlighting the potential in advanced anti-counterfeiting and emerging photonics applications.
Collapse
Affiliation(s)
- Yibo Cui
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jiawei Lin
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuhe Shao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Dong Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhongnan Guo
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhiguo Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research, Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology Guangzhou 510641 China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
2
|
Dai M, Zhou B, Yan D. Rare Earth Single-Atomic Hybrid Glasses for Near-Infrared II Optical Waveguides. Angew Chem Int Ed Engl 2025:e202505322. [PMID: 40263969 DOI: 10.1002/anie.202505322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
The increasing demands for modern information communication and storage necessitate the development of near-infrared (NIR) active optical waveguides. However, achieving efficient NIR emission with minimal optical loss remains a critical challenge. Herein, we present a new class of rare earth single-atomic hybrid glasses, synthesized via bottom-up self-assembly, as a solution to these limitations. By harnessing the ultralong phosphorescence of Nd3+-doped complex glasses, these materials achieve NIR-II emission extending to 1.32 µm with a photoluminescence quantum yield (PLQY) of ∼5.7%, setting a new record among state-of-the-art rare-earth-based complexes in the NIR-II region. This exceptional performance stems from the efficient sensitization of Nd3+ ions in hybrid glass, with a phosphorescence energy transfer efficiency of 93.55%. Furthermore, these transparent and flexible hybrid glasses trigger optical waveguiding in Eu3+- and Nd3+-doped microstructures, enabling ultralow-loss coefficients of 0.978 dB mm-1 at 819 nm and 5.1 dB mm-1 at 1048 nm, respectively. Therefore, this work not only demonstrates that metal-organic complex glasses with ultralong phosphorescence can effectively serve as sensitizer matrices for boosting NIR-II emission, but also supports the fabrication of 1D and 2D glassy microstructures with ultralow-loss optical waveguiding for advanced NIR-II photonic applications.
Collapse
Affiliation(s)
- Meiqi Dai
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Bo Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Dongpeng Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| |
Collapse
|
3
|
Zhang K, Qi Z, Zhang N, Zhao X, Fan Y, Sun L, Zhou G, Li SL, Zhang XM. Efficient energy transfer from organic triplet states to Mn 2+ dopants for dynamic tunable multicolor afterglow in 1D hybrid cadmium chloride. Chem Sci 2025; 16:6104-6113. [PMID: 40078606 PMCID: PMC11894465 DOI: 10.1039/d4sc08718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Metal ion-doped organic-inorganic hybrid metal halides have emerged as promising room-temperature phosphorescence (RTP) materials owing to their tunable afterglow properties and significant potential in information security applications. However, optimizing RTP performance and achieving dynamic control over afterglow colors remain challenging in 1D hybrid systems, primarily because of the inefficient energy transfer from RTP-active organic components to external emissive sites. Herein, we report a novel 1D hybrid metal halide benchmark material, [(NBP)Cd2Cl5H2O] (NBP-Cd, NBP = N-benzylpiperidone), and a series of Mn2+-doped derivatives, NBP-Cd:xMn2+ (where x represents doping levels from 1% to 50%). The undoped compound exhibits blue-white fluorescence and exceptional long-lasting yellow-green organic RTP with a duration of up to 2 s. Upon Mn2+ doping, the afterglow color transitions progressively from yellow-green (1-5%) to yellow (10%), orange (20%), and finally red (50%), accompanied by a reduction in afterglow duration. This dynamic multicolor afterglow behavior is attributed to efficient energy transfer from the stable triplet states within the organic component to the 4T1 level of the Mn2+ dopants. Remarkably, the NBP-Cd:10% Mn2+ crystal demonstrates exceptional excitation-dependent dual-mode photoluminescence properties. These distinctive features underscore the significant potential of this model system for advanced applications in anti-counterfeiting technologies and high-level information encryption systems.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Zhikai Qi
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xingxing Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yanli Fan
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Long Sun
- Department of Chemistry, Changzhi Universtiy Changzhi 046011 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry and Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan 030024 P. R. China
| |
Collapse
|
4
|
Liu YH, Yan TY, Dong MH, Yu FJ, Cao H, Xiao L, Han YF, Kong XW, Lei XW. Hybrid metal halide family with color-time-dual-resolved phosphorescence for multiplexed information security applications. J Colloid Interface Sci 2025; 678:141-151. [PMID: 39182388 DOI: 10.1016/j.jcis.2024.08.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Luminescent materials with engineered optical properties play an important role in anti-counterfeiting and information security technology. However, conventional luminescent coding is limited by fluorescence color or intensity, and high-level multi-dimensional luminescent encryption technology remains a critically challenging goal in different scenarios. To improve the encoding capacity, we present an optical multiplexing concept by synchronously manipulating the emission color and decay lifetimes of room-temperature phosphorescence materials at molecular level. Herein, we devise a family of zero-dimensional (0D) hybrid metal halides by combining organic phosphonium cations and metal halide tetrahedral anions as independent luminescent centers, which display blue phosphorescence and green persistent afterglow with the highest quantum yields of 39.9 % and 57.3 %, respectively. Significantly, the luminescence lifetime can be fine-tuned in the range of 0.0968-0.5046 μs and 33.46-125.61 ms as temporary time coding through precisely controlling the heavy atomic effect and inter-molecular interactions. As a consequence, synchronous blue phosphorescence and green afterglow are integrated into one 0D halide platform with adjustable emission lifetime acting as color- and time-resolved dual RTP materials, which realize the multiple applications in high-level anti-counterfeiting and information storage. The color-lifetime-dual-resolved encoding ability greatly broadens the scope of luminescent halide materials for optical multiplexing applications.
Collapse
Affiliation(s)
- Yu-Hang Liu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Tian-Yu Yan
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China
| | - Meng-Han Dong
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China
| | - Fang-Jing Yu
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China
| | - Hong Cao
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China
| | - Li Xiao
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China
| | - Yong-Fang Han
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Xiang-Wen Kong
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China.
| | - Xiao-Wu Lei
- Research Institute of Optoelectronic Functional Materials, School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, PR China.
| |
Collapse
|
5
|
Wang B, Li N, Ju Z, Liu W. Single-Component Coordination Polymers with Excitation Wavelength- and Temperature-Dependent Long Persistent Luminescence toward Multilevel Information Security. Inorg Chem 2024; 63:24896-24904. [PMID: 39689040 DOI: 10.1021/acs.inorgchem.4c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic hybrid materials with long persistent luminescence (LPL) properties have attracted a lot of attention due to their enormous potential for applications in information encryption, anticounterfeiting, and other correlation fields. However, achieving multimodal luminescence in a single component remains a significant challenge. Herein, we report two two-dimensional LPL coordination polymers: {[Zn2(BA)2(BIMB)2]·2H2O}n (1) and {[Cd(BA)(BIMB)]·3H2O}n (2) (BIMB = 1,3-bis(imidazol-1-yl)benzene; BA = butanedioic acid). Their LPL colors can be adjusted by the excitation wavelength or temperature variation in a single-component coordination polymer, achieving multimode color adjustment from green to orange or blue to yellow. X-ray single-crystal diffraction analysis and theoretical calculations demonstrate that abundant intermolecular interactions, ligand-to-ligand charge transfer (LLCT) transitions, and heavy atom effects of the central metal can realize multicolor afterglow. This work provides a convenient strategy for new pattern multicolor LPL materials and may also inspire new ideas for advanced information encryption technologies.
Collapse
Affiliation(s)
- Binbin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ningyan Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenghua Ju
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Zhou J, Lin J, Guo Z, Xie P, Chen C, Mao L. Tunable Blue-Light-Emitting Organic-Inorganic Zinc Halides with Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63744-63751. [PMID: 39529309 DOI: 10.1021/acsami.4c13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hybrid metal halides have received great interests in the field of solid-state lighting technologies due to their diverse structures and excellent emission properties. In this work, we report the synthesis and characterization of four blue-emitting zero-dimensional hybrid metal halides, namely, (2HP)2ZnCl2, (2HP)2ZnBr2, (2TP)2ZnCl2, and (2TP)2ZnBr2 (2HP = 2-hydroxypyridine, 2TP = pyridine-2-thiol). By changing the ligands and halides, a remarkable increase in the photoluminescence quantum yield of (2HP)2ZnCl2 (44.7%) compared to (2TP)2ZnBr2 (1.8%) is realized. The 2HP series features excitation-dependent emission characteristics, whereas the 2TP series does not due to the effect of a different organic ligand. Utilizing time-resolved and temperature-dependent photoluminescence spectroscopies, all four compounds exhibit both thermally activated delayed fluorescence and room-temperature phosphorescence properties. These materials have excellent ambient and thermal stabilities and are solution-processable. Our work shows the importance of carefully incorporating organic ligands with the appropriate inorganic metal center to achieve tunable emission properties.
Collapse
Affiliation(s)
- Jiaqian Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jiawei Lin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhu Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiran Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Congcong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
7
|
Chen T, Ma YJ, Xiao G, Fang X, Liu Y, Li K, Yan D. The trade-off anionic modulation in metal-organic glasses showing color-tunable persistent luminescence. MATERIALS HORIZONS 2024; 11:4951-4960. [PMID: 39045671 DOI: 10.1039/d4mh00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Ultralong room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) materials provide exciting opportunities for the rational design of persistent luminescence owing to their long-lived excitons. However, conventional rare-earth-based all-inorganic emitters involve high cost and harsh synthesis conditions, and purely organic systems may require complicated synthesis routes and tedious purification. Therefore, it is highly desirable to develop a cost-effective and easily manufacturable method for achieving color-tunable RTP-TADF with a long afterglow. Herein, we demonstrate a rational strategy to introduce different anions (Cl-, Br- and OAc- ions) into a Zn-based metal-organic scaffold, which can improve the crystal rigidity and achieve a well-balanced RTP-TADF. Both theoretical and experimental studies have demonstrated that the adjustment of different anions can effectively modulate the spin-orbit coupling (SOC) and the energy gap of singlet-triplet states (ΔEST) and then tailor the afterglow lifetime. Moreover, we prepared dye-doped metal-organic hybrid glasses with remarkable potential for the color-tunable afterglow. Therefore, this work not only provides a new horizon for modulating crystal and glass states with color/lifetime-tunable persistent luminescence, but also contributes to optical information storage and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kangjing Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
8
|
Ma YJ, Xu F, Ren XY, Chen FY, Pan J, Li JH, Han SD, Wang GM. A photoinduced electron-transfer strategy for switchable fluorescence and phosphorescence in lanthanide-based coordination polymers. Chem Sci 2024:d4sc04632c. [PMID: 39391378 PMCID: PMC11462477 DOI: 10.1039/d4sc04632c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Smart optical materials with tunable fluorescence and room temperature phosphorescence (RTP) exhibit promising application prospects in the field of intelligent switches, information security, etc. Herein, a tetraimidazole derivative was grafted to one-dimensional lanthanum-diphosphonate through H-bonds, generating a coordination polymer (CP), (H4-TIBP)·[La2Li(H2-HEDP)4(H-HEDP)]·3H2O (termed La; TIBP = 3,3,5,5-tetra(imidazole-1-yl)-1,1-biphenyl; H4-HEDP = 1-hydroxyethylidene-1,1-diphosphonic acid) with a three-dimensional supramolecular structure. La shows dynamic fluorescence from blue to red and switchable monotonous yellowish-green RTP, which can be manipulated by reversible photochromism. It is worth noting that Eu3+/Tb3+-doped CPs exhibit time-resolved (red to yellow) and monotonous green afterglow, respectively, which can be attributed to multiple emissions with different decay rates. The dynamic and multicolor luminescence endows these CPs with potential for application in the domains of optical communications, multi-step encryption, and anti-counterfeiting. This work not only integrates color-adjustable fluorescence, switchable RTP, and photochromism in one material, but also realizes the manipulation of the resultant optical performances via photochromism, paving the pathway for the design and synthesis of smart optical materials.
Collapse
Affiliation(s)
- Yu-Juan Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Fei Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Xin-Ye Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Fan-Yao Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| |
Collapse
|
9
|
Sun C, Li D, Dan W, Yin J, Fei H. Mixed-Layered Lead Halide Frameworks with High Stability and Efficient Room-Temperature Phosphorescence. J Phys Chem Lett 2024; 15:8451-8458. [PMID: 39121497 DOI: 10.1021/acs.jpclett.4c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Room-temperature phosphorescent (RTP) materials play a crucial role in optical anticounterfeiting science and information security technologies. Ionically bonded organic metal halides have emerged as promising RTP material systems due to their excellent self-assembly and unique photophysical property, but their intrinsic instability largely hinders their advanced practical applications. Herein, we employ a coordination-driven synthetic strategy utilizing organocarboxylates for the synthesis of two isostructural layered lead halide frameworks. The frameworks adopt a new mixed-layered topology, consisting of alternating [Pb10X9]11+ (X = Cl-/Br-) layers and [Pb6XO3]11+ (X = Cl-/Br-) layers that are coordinatively sandwiched by organocarboxylate layers. The frameworks exhibit long-lived green afterglow emission with the long lifetime of up to 45.89 ms and the photoluminescence quantum yield (PLQY) of up to 43.13%. The Pb2+-carboxylate coordination accelerates the metal-to-ligand charge transfer from the light-harvesting lead halide layers to the phosphorescent organic component, promoting efficient spin-orbit coupling and intersystem crossing. Moreover, the coordination networks exhibit good structural robustness under ambient conditions for at least 12 months, as well as stability in boiling water, acidic and basic aqueous environments. The highly efficient afterglow and high structural integrity enable multiple anticounterfeiting applications across diverse chemical environments.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Dongyang Li
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Wenyan Dan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Jinlin Yin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
10
|
Kobayashi F, Takatsu Y, Saito D, Yoshida M, Kato M, Tadokoro M. Dual Emission with Efficient Phosphorescence Promoted by Intermolecular Halogen Interactions in Luminescent Tetranuclear Zinc(II) Clusters. Inorg Chem 2024; 63:15323-15330. [PMID: 39119626 PMCID: PMC11337158 DOI: 10.1021/acs.inorgchem.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
The development of Zn-based phosphorescent materials, associated with a ligand-centered (LC) transition, is extremely limited. Herein, we demonstrated dual emissions including fluorescence and phosphorescence in luminescent tetranuclear Zn(II) clusters [Zn4LI4(μ3-OMe)2X2] (HLI = methyl-5-iode-3-methoxysalicylate; X = I, Br, Cl), incorporating iodine-substituted ligands. Single-crystal X-ray structural analyses and variable-temperature emission spectra studies revealed the presence of iodine substitutions, and intermolecular halogen interactions produced the internal/external heavy-atom effects and yielded strong green phosphorescence with a long emission lifetime (λmax = 510-522 nm, Φem = 0.28-0.47, τav = 0.78-0.95 ms, at 77 K). This work provided a new example that the introduction of halogen interactions is an advantageous approach for inducing phosphorescence in fluorescent metal complexes.
Collapse
Affiliation(s)
- Fumiya Kobayashi
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuta Takatsu
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Daisuke Saito
- Department
of Applied Chemistry for Environment, School of Biological and Environmental
Sciences, Kwansei Gakuin University, 1, Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Masaki Yoshida
- Department
of Applied Chemistry for Environment, School of Biological and Environmental
Sciences, Kwansei Gakuin University, 1, Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Masako Kato
- Department
of Applied Chemistry for Environment, School of Biological and Environmental
Sciences, Kwansei Gakuin University, 1, Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Makoto Tadokoro
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
11
|
Atoini Y, Cavinato LM, Schmitt JL, Van Opdenbosch D, Costa RD. Stable and efficient rare-earth free phosphors based on an Mg(II) metal-organic framework for hybrid light-emitting diodes. Dalton Trans 2024; 53:12455-12459. [PMID: 39016147 DOI: 10.1039/d4dt01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Stable and efficient green hybrid light-emitting diodes (HLEDs) were fabricated from a highly emissive Mg(II)-tetraphenyl ethylene derivative metal-organic framework embedded in a polystyrene matrix (Mg-TBC MOF@PS). The photoluminescence quantum yield (ϕ) of the material, >80%, remains constant upon polymer embedment. The resulting HLEDs featured high luminous efficiencies of >50 lm W-1 and long lifetimes of >380 h, making them among the most stable MOF-based HLEDs. The significance of this work relies on the combination of many features, such as the abundance of the metal ion, the straightforward scalability of the synthetic protocol, the great ϕ reached upon phosphor fabrication, and the state-of-the-art HLED performances.
Collapse
Affiliation(s)
- Youssef Atoini
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse, 22, Straubing 94315, Germany.
| | - Luca M Cavinato
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse, 22, Straubing 94315, Germany.
| | - Jean-Louis Schmitt
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, 8, allée Gaspard Monge, 67000 Strasbourg, France
| | - Daniel Van Opdenbosch
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair for Biogenic Polymers, Schulgasse, 22, Straubing 94315, Germany
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, Schulgasse, 22, Straubing 94315, Germany.
| |
Collapse
|
12
|
Sun C, Li Y, Yin J, Li D, Wu C, Zhang C, Fei H. Highly Stable MOF-Type Lead Halide Luminescent Ferroelectrics. Angew Chem Int Ed Engl 2024; 63:e202407102. [PMID: 38744673 DOI: 10.1002/anie.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Lead halide molecular ferroelectrics represent an important class of luminescent ferroelectrics, distinguished by their high chemical and structural tunability, excellent processability and distinctive luminescent characteristics. However, their inherent instability, prone to decomposition upon exposure to moisture and light, hinders their broader ferroelectric applications. Herein, for the first time, we present a series of isoreticular metal-organic framework (MOF)-type lead halide luminescent ferroelectrics, demonstrating exceptional robustness under ambient conditions for at least 15 months and even when subjected to aqueous boiling conditions. Unlike conventional metal-oxo secondary building units (SBUs) in MOFs adopting highly centrosymmetric structure with limited structural distortion, our lead halide-based MOFs occupy structurally deformable [Pb2X]+ (X=Cl-/Br-/I-) SBUs that facilitate a c-axis-biased displacement of Pb2+ centers and substantially contribute to thermoinducible structural transformation. Importantly, this class of MOF-type lead halide ferroelectrics undergo ferroelectric-to-paraelectric phase transitions with remarkably high Curie temperature of up to 505 K, superior to most of molecular ferroelectrics. Moreover, the covalent bonding between phosphorescent organic component and the light-harvesting inorganic component achieves efficient spin-orbit coupling and intersystem crossing, resulting in long-lived afterglow emission. The compelling combination of high stability, ferroelectricity and afterglow emission exhibited by lead halide MOFs opens up many potential opportunities in energy-conversion applications.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yukong Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Jinlin Yin
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Dongyang Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chao Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chi Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
13
|
Liao JF, Zhang Z, Zhou L, Tang Z, Xing G. Achieving Near-Unity Red Light Photoluminescence in Antimony Halide Crystals via Polyhedron Regulation. Angew Chem Int Ed Engl 2024; 63:e202404100. [PMID: 38616169 DOI: 10.1002/anie.202404100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Exploration of efficient red emitting antimony hybrid halide with large Stokes shift and zero self-absorption is highly desirable due to its enormous potential for applications in solid light emitting, and active optical waveguides. However, it is still challenging and rarely reported. Herein, a series of (TMS)2SbCl5 (TMS=triphenylsulfonium cation) crystals have been prepared with diverse [SbCl5]2- configurations and distinctive emission color. Among them, cubic-phase (TMS)2SbCl5 shows bright red emission with a large Stokes shift of 312 nm. In contrast, monoclinic and orthorhombic (TMS)2SbCl5 crystals deliver efficient yellow and orange emission, respectively. Comprehensive structural investigations reveal that larger Stokes shift and longer-wavelength emission of cubic (TMS)2SbCl5 can be attributed to the larger lattice volume and longer Sb⋅⋅⋅Sb distance, which favor sufficient structural aberration freedom at excited states. Together with robust stability, (TMS)2SbCl5 crystal family has been applied as optical waveguide with ultralow loss coefficient of 3.67 ⋅ 10-4 dB μm-1, and shows superior performance in white-light emission and anti-counterfeiting. In short, our study provides a novel and fundamental perspective to structure-property-application relationship of antimony hybrid halides, which will contribute to future rational design of high-performance emissive metal halides.
Collapse
Affiliation(s)
- Jin-Feng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| |
Collapse
|
14
|
Xing C, Qi Z, Zhou B, Yan D, Fang WH. Solid-State Photochemical Cascade Process Boosting Smart Ultralong Room-Temperature Phosphorescence in Bismuth Halides. Angew Chem Int Ed Engl 2024; 63:e202402634. [PMID: 38466630 DOI: 10.1002/anie.202402634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Molecular ultralong room-temperature phosphorescence (RTP), exhibiting multiple stimuli-responsive characteristics, has garnered considerable attention due to its potential applications in light-emitting devices, sensors, and information safety. This work proposes the utilization of photochemical cascade processes (PCCPs) in molecular crystals to design a stepwise smart RTP switch. By harnessing the sequential dynamics of photo-burst movement (induced by [2+2] photocycloaddition) and photochromism (induced by photogenerated radicals) in a bismuth (Bi)-based metal-organic halide (MOH), a continuous and photo-responsive ultralong RTP can be achieved. Furthermore, utilizing the same Bi-based MOH, diverse application demonstrations, such as multi-mode anti-counterfeiting and information encryption, can be easily implemented. This work thus not only serves as a proof-of-concept for the development of solid-state PCCPs that integrate photosalient effect and photochromism with light-chemical-mechanical energy conversion, but also lays the groundwork for designing new Bi-based MOHs with dynamically responsive ultralong RTP.
Collapse
Affiliation(s)
- Chang Xing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Bo Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
15
|
Miao Q, Wang Z. Tunable Ultralong Room Temperature Phosphorescence Based on Zn(II)-Niacin Metal-Organic Complex: Accessible and Low-Cost. Inorg Chem 2024; 63:6683-6691. [PMID: 38554088 DOI: 10.1021/acs.inorgchem.3c04618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Long persistent luminescence (LPL) materials open up a new avenue for information security, anticounterfeiting technology, and bioimaging thanks to their unique luminescence characteristics like ultralong exciton migration distances and multiple-colored light emission. As materials that have value for commercial applications, they attract much attention. In this paper, inexpensive, accessible, and eco-friendly niacin is used as a ligand to combine with the universally used metal ion Zn(II) to form a crystallized metal-organic complex dubbed Zn-NA. The named material possesses an ultralong room-temperature phosphorescence (RTP) with a lifetime of up to 265 ms under the atmosphere and up to 446 ms at 77 K. Notably, it exhibits a bright and multimode (excitation- and temperature-dependent) color-tunable LPL that changes from blue to cyan and then to yellow-green upon removal of the irradiation sources. Depending on its photoluminescence and theoretical calculations, the observed long-lived RTP of Zn-NA can be attributed to the coexistence of a single-molecule state induced by the heavy atom effect and an aggregated state within a dense crystalline structure.
Collapse
Affiliation(s)
- Qing Miao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Li X, Wang Y, Zhang Z, Cai S, An Z, Huang W. Recent Advances in Room-Temperature Phosphorescence Metal-Organic Hybrids: Structures, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308290. [PMID: 37884272 DOI: 10.1002/adma.202308290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic hybrid (MOH) materials with room-temperature phosphorescence (RTP) have drawn attention in recent years due to their superior RTP properties of high phosphorescence efficiency and ultralong emission lifetime. Great achievement has been realized in developing MOH materials with high-performance RTP, but a systematic study on MOH materials with RTP feature is lacking. This review highlights recent advances in metal-organic hybrid RTP materials. The molecular packing, the photophysical properties, and their applications of metal-organic hybrid RTP materials are discussed in detail. Metal-organic hybrid RTP materials can be divided into six parts: coordination polymers, metal-organic frameworks (MOFs), metal-halide hybrids, organic ionic crystals, organic ionic polymers, and organic-inorganic hybrid perovskites. These RTP materials have been successfully applied in time-resolved data encryption, fingerprint recognition, information logic gates, X-ray imaging, and photomemory. This review not only provides the basic principles of designing RTP metal-organic hybrids, but also propounds the future research prospects of RTP metal-organic hybrids. This review offers many effective strategies for developing metal-organic hybrids with excellent RTP properties, thus satisfying practical applications.
Collapse
Affiliation(s)
- Xian Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Yuefei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suzhi Cai
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
17
|
Xiao G, Ma YJ, Qi Z, Fang X, Chen T, Yan D. A flexible ligand and halogen engineering enable one phosphor-based full-color persistent luminescence in hybrid perovskitoids. Chem Sci 2024; 15:3625-3632. [PMID: 38455006 PMCID: PMC10915845 DOI: 10.1039/d3sc06845e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Color-tunable room temperature phosphorescent (RTP) materials have raised wide interest due to their potential application in the fields of encryption and anti-counterfeiting. Herein, a series of CdX2-organic hybrid perovskitoids, (H-apim)CdX3 and (apim)CdX2 (denoted as CdX-apim1 and CdX-apim2, apim = 1-(3-aminopropyl)imidazole, X = Cl, Br), were synthesized using apim with both rigid and flexible groups as ligands, which exhibit naked-eye detectable RTP with different durations and colors (from cyan to red) by virtue of different halogen atoms, coordination modes and the coplanar configuration of flexible groups. Interestingly, CdCl-apim1 and CdX-apim2 both exhibit excitation wavelength-dependent RTP properties, which can be attributed to the multiple excitation of imidazole/apim, the diverse interactions with halogen atoms, and aggregated state of imidazoles. Structural analysis and theoretical calculations confirm that the aminopropyl groups in CdCl-apim1 do not participate in luminescence, while those in CdCl-apim2 are involved in luminescence including both metal/halogen to ligand charge transfer and twisted intramolecular charge transfer. Furthermore, we demonstrate that these perovskitoids can be applied in multi-step anti-counterfeiting, information encryption and smart ink fields. This work not only develops a new type of perovskitoid with full-color persistent luminescence, but also provides new insight into the effect of flexible ligands and halogen engineering on the wide-range modulation of RTP properties.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
18
|
Han X, Cheng P, Han S, Wang Z, Guan J, Han W, Shi R, Chen S, Zheng Y, Xu J, Bu XH. Multi-stimuli-responsive luminescence enabled by crown ether anchored chiral antimony halide phosphors. Chem Sci 2024; 15:3530-3538. [PMID: 38455020 PMCID: PMC10915841 DOI: 10.1039/d3sc06362c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.
Collapse
Affiliation(s)
- Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Shanshan Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Zhihua Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University Longyan 364012 Fujian P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| |
Collapse
|
19
|
Li DY, Kang HY, Liu YH, Zhang J, Yue CY, Yan D, Lei XW. A 0D hybrid lead-free halide with near-unity photoluminescence quantum yield toward multifunctional optoelectronic applications. Chem Sci 2024; 15:953-963. [PMID: 38239673 PMCID: PMC10793591 DOI: 10.1039/d3sc05245a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Zero-dimensional (0D) hybrid metal halides have emerged as highly efficient luminescent materials, but integrated multifunction in a structural platform remains a significant challenge. Herein, a new hybrid 0D indium halide of (Im-BDMPA)InCl6·H2O was designed as a highly efficient luminescent emitter and X-ray scintillator toward multiple optoelectronic applications. Specifically, it displays strong broadband yellow light emission with near-unity photoluminescence quantum yield (PLQY) through Sb3+ doping, acting as a down-conversion phosphor to fabricate high-performance white light emitting diodes (WLEDs). Benefiting from the high PLQY and negligible self-absorption characteristics, this halide exhibits extraordinary X-ray scintillation performance with a high light yield of 55 320 photons per MeV, which represents a new scintillator in 0D hybrid indium halides. Further combined merits of a low detection limit (0.0853 μGyair s-1), ultra-high spatial resolution of 17.25 lp per mm and negligible afterglow time (0.48 ms) demonstrate its excellent application prospects in X-ray imaging. In addition, this 0D halide also exhibits reversible luminescence off-on switching toward tribromomethane (TBM) but fails in any other organic solvents with an ultra-low detection limit of 0.1 ppm, acting as a perfect real-time fluorescent probe to detect TBM with ultrahigh sensitivity, selectivity and repeatability. Therefore, this work highlights the multiple optoelectronic applications of 0D hybrid lead-free halides in white LEDs, X-ray scintillation, fluorescence sensors, etc.
Collapse
Affiliation(s)
- Dong-Yang Li
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Huai-Yuan Kang
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| | - Yu-Hang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineer and Materials, Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
20
|
Lin Y, Liu S, Yan D. Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0259. [PMID: 37915767 PMCID: PMC10616971 DOI: 10.34133/research.0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Molecular luminescent materials with optical waveguide have wide application prospects in light-emitting diodes, sensors, and logic gates. However, the majority of traditional optical waveguide systems are based on brittle molecular crystals, which limited the fabrication, transportation, storage, and adaptation of flexible devices under diverse application situations. To date, the design and synthesis of photofunctional materials with high flexibility, novel optical waveguide, and multi-port color-tunable emission in the same solid-state system remain an open challenge. Here, we have constructed new types of zero-dimensional organic metal halides (Au-4-dimethylaminopyridine [DMAP] and In-DMAP) with a rarely high elasticity and rather low loss coefficients for optical waveguide. Theoretical calculations on the intermolecular interactions showed that the high elasticity of 2 molecular crystalline materials was original from their herringbone structure and slip plane. Based on one-dimensional flexible microrods of 2 crystals and the 2-dimensional microplate of the Mn-DMAP, heterojunctions with multi-color and space-resolved optical waveguides have been fabricated. The formation mechanism of heterojunctions is based on the surface selective growth on account of the low lattice mismatch ratio between contacting crystal planes. Therefore, this work describes the first attempt to the design of metal-halide-based crystal heterojunctions with high flexibility and optical waveguide, expanding the prospects of traditional luminescent materials for smart optical devices, such as logic gates and multiplexers.
Collapse
Affiliation(s)
| | | | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Zhou B, Qi Z, Dai M, Xing C, Yan D. Ultralow-loss Optical Waveguides through Balancing Deep-Blue TADF and Orange Room Temperature Phosphorescence in Hybrid Antimony Halide Microstructures. Angew Chem Int Ed Engl 2023; 62:e202309913. [PMID: 37574452 DOI: 10.1002/anie.202309913] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Harnessing the potential of thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) is crucial for developing light-emitting diodes (LEDs), lasers, sensors, and many others. However, effective strategies in this domain are still relatively scarce. This study presents a new approach to achieving highly efficient deep-blue TADF (with a PLQY of 25 %) and low-energy orange RTP (with a PLQY of 90 %) through the fabrication of lead-free hybrid halides. This new class of monomeric and dimeric 0D antimony halides can be facilely synthesized using a bottom-up solution process, requiring only a few seconds to minutes, which offer exceptional stability and nontoxicity. By leveraging the highly adaptable molecular arrangement and crystal packing modes, the hybrid antimony halides demonstrate the ability to self-assemble into regular 1D microrod and 2D microplate morphologies. This self-assembly is facilitated by multiple non-covalent interactions between the inorganic cores and organic shells. Notably, these microstructures exhibit outstanding polarized luminescence and function as low-dimensional optical waveguides with remarkably low optical-loss coefficients. Therefore, this work not only presents a pioneering demonstration of deep-blue TADF in hybrid antimony halides, but also introduces 1D and 2D micro/nanostructures that hold promising potential for applications in white LEDs and low-dimensional photonic systems.
Collapse
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meiqi Dai
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Chang Xing
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
22
|
Yu Y, He K, Xu H, Xiao Z, Chen L, Xu S, Bai G. Flexible multi-color electroluminescent devices with a high transmission conducting hydrogel and an organic dielectric. NANOSCALE 2023; 15:9196-9202. [PMID: 37157894 DOI: 10.1039/d3nr01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flexible electroluminescent devices have sparked widespread interest due to their tremendous applications in bioinspired electronics, smart wearables, and human-machine interfaces. In these applications, it is important to reduce the operating electrical frequency and realize color modulation. Herein, flexible electroluminescent devices have been fabricated with phosphor layers by a solution method. Using polyvinylidene difluoride as a dielectric layer and ionic hydrogels as electrodes, the devices can be effectively driven even when the operating frequency is 0.1 kHz. More importantly, the devices can exhibit multi-color emission, including blue, green, red and white. The results show that the developed devices are promising for flexible optoelectronics.
Collapse
Affiliation(s)
- Yongjie Yu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Kun He
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Haibo Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Zhen Xiao
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Liang Chen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
23
|
Nie F, Wang KZ, Yan D. Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal-organic complexes. Nat Commun 2023; 14:1654. [PMID: 36964159 PMCID: PMC10039082 DOI: 10.1038/s41467-023-37331-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
The fabrication of chiral molecules into macroscopic systems has many valuable applications, especially in the fields of optical displays, data encryption, information storage, and so on. Here, we design and prepare a serious of supramolecular glasses (SGs) based on Zn-L-Histidine complexes, via an evaporation-induced self-assembly (EISA) strategy. Metal-ligand interactions between the zinc(II) ion and chiral L-Histidine endow the SGs with interesting circularly polarized afterglow (CPA). Multicolored CPA emissions from blue to red with dissymmetry factor as high as 9.5 × 10-3 and excited-state lifetime up to 356.7 ms are achieved under ambient conditions. Therefore, this work not only communicates the bulk SGs with wide-tunable afterglow and large circular polarization, but also provides an EISA method for the macroscopic self-assembly of chiral metal-organic hybrids toward photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
24
|
A universal strategy for achieving dual cross-linked networks to obtain ultralong polymeric room temperature phosphorescence. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
25
|
Ma YJ, Xiao G, Fang X, Chen T, Yan D. Leveraging Crystalline and Amorphous States of a Metal-Organic Complex for Transformation of the Photosalient Effect and Positive-Negative Photochromism. Angew Chem Int Ed Engl 2023; 62:e202217054. [PMID: 36571433 DOI: 10.1002/anie.202217054] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Uncovering differences between crystalline and amorphous states in molecular solids would both promote the understanding of their structure-property relationships, as well as inform development of multi-functional materials based on the same compound. Herein, for the first time, we report an approach to leverage crystalline and amorphous states of a zero-dimensional metal-organic complex, which exhibited negative and positive photochromism, due to the competitive chemical routes between photocycloaddition and photogenerated radicals. Furthermore, different polymorphs lead to the on/off toggling of photo-burst movement (photosalient effect), indicating the controllable light-mechanical conversion. Three demos were further constructed to support their application in information encryption and anti-counterfeiting. This work provides the proof-of-concept of a state- and polymorph-dependent photochemical route, paving an effective way for the design of new dynamically responsive systems.
Collapse
Affiliation(s)
- Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
26
|
Jiang D, Lu T, Du C, Liu F, Yan Z, Hu D, Shang A, Gao L, Lu P, Ma Y. Utilizing morpholine for purely organic room temperature phosphors. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
27
|
Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Shi Z, Zhao W, Zhang Y, Yang D, Gan L, Huang J. Triply Hiding Optical Information via Excitation-Dependent Allochroic Photoluminescence Based on Cellulose Derivates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205697. [PMID: 36408922 DOI: 10.1002/smll.202205697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Optical encryption technologies are widely used in information security, whereas the technology with one single optical secret key can be easily cracked. Here, a triple encryption is reported, which hides patterned information in excitation-dependent allochroic materials with long afterglow, enhancing the security level. The allochroic materials are based on a uniaxial co-assembly structure of cellulose nanocrystals (CNCs) and silica. The assembled CNCs present blue emission with quantum yield of 19.8% under 367 nm UV radiation. The blue emission is maintained in the inverse structure when CNCs are calcinated and converted to carbon dots (CDs). The inverse uniaxial-assembly structure improves the CD emission by 6.7 times. The assembly structure can even improve the phosphorescence of CDs, leading to excellent excitation-dependent allochroic properties. Specifically, the materials maintain a cyan long afterglow luminescence at 480 nm after removing 365 nm UV light, whose lifetime is 0.492 s. Changing the excitation wavelength to 254 nm, a UV emission at 343 nm can be obtained, alongside a blue long afterglow luminescence of 420 nm, whose lifetime is 1.574 s. Combining with blue afterglow materials, optical encryption labels are prepared, which hide different patterned information in three scenarios: natural light, UV light, and afterglow luminescence.
Collapse
Affiliation(s)
- Zhenxu Shi
- State Key Laboratory of Silkworm Genome Biology, and Chongqing, Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- School of Chemistry and Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi, 832003, China
| | - Weiwei Zhao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yue Zhang
- State Key Laboratory of Silkworm Genome Biology, and Chongqing, Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- School of Chemistry and Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi, 832003, China
| | - Dimei Yang
- State Key Laboratory of Silkworm Genome Biology, and Chongqing, Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- School of Chemistry and Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi, 832003, China
| | - Lin Gan
- State Key Laboratory of Silkworm Genome Biology, and Chongqing, Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- School of Chemistry and Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi, 832003, China
| | - Jin Huang
- State Key Laboratory of Silkworm Genome Biology, and Chongqing, Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- School of Chemistry and Chemical Engineering, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
29
|
Electrochemiluminescence resonance energy transfer system based on ox-MWCNTs-IGQDs and PdAg nanosheets for the detection of 5-fluorouracil in serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Xue ZY, Yu JL, Xia QQ, Zhu YQ, Wu MX, Liu X, Wang XH. Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53359-53369. [PMID: 36383092 DOI: 10.1021/acsami.2c17600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of color-tunable luminescent polymeric materials with enhanced emission intensity and room-temperature phosphorescence (RTP) performance regulated by a single chromophore component is highly desirable in the scope of photoluminescent materials. Herein, a set of binary copolymers were facilely synthesized using free radical polymerization by selecting different types of polymer matrix and N-substituted naphthalimides (NPA) as chromophores. Surprisingly, the fluorescence emission of copolymers could be remarkably enhanced, because of the intramolecular aggregation of NPA manipulated by a single polymer chain in both solution and solid state. Moreover, RTP signals of binary copolymers were all clearly observed in the air without any processing procedure, because of the embedding of phosphors into hydrogen bonding networks after copolymerization with vinyl-based acrylamide monomers. Taking advantages of the synergistic effect of copolymerization-induced aggregation and copolymerization-induced rigidification to promote optical performance, UV stimulus-responsive luminescent polymer films with processability, flexibility, and adjustable emission wavelength were simply prepared using a drop-casting method in large scale, the setting of which is the basis for application in the fields of organic optoelectronics, information security, and bioimaging/sensing.
Collapse
Affiliation(s)
- Zhi-Yuan Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jia-Lin Yu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Qing-Qing Xia
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yu-Qi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xing-Huo Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
31
|
Cui W, Li J, Han SD, Mu Y, Li JH, Pan J, Wang GM. Coordinate Anchoring of Mixed Luminophores in Two Isostructural Hybrid Layers to Achieve Tunable Room-Temperature Phosphorescence. Inorg Chem 2022; 61:17178-17184. [PMID: 36263997 DOI: 10.1021/acs.inorgchem.2c02699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Room-temperature phosphorescence (RTP) materials have widespread applications in biological imaging, anticounterfeiting, and optoelectronic devices. Because of the predesignability of metal-organic complexes (MOCs), the RTP materials based on MOC systems have received huge attention from researchers. The coordinate anchoring of luminophores to enhance the rigidity of organic molecules and restrict the nonradiative transition offers opportunities for generating MOC materials with captivating RTP performance. Hitherto, most of the MOC-based RTP materials feature a single luminophore ligand. The development of new MOC systems with RTP functionality is still challenging. Herein, we use the mixed-ligand synthetic strategy to produce isostructural MOCs, [Zn(TIMB)(X2-TPA)]·H2O (1, X = Cl; 2, X = Br; TIMB = 1,3,5-tris(2-methyl-1H-imidazol-1-yl)benzene; H2-X2-TPA = 2,5-dichloroterephthalic and 2,5-dibromoterephthalic acid), and modulate the RTP properties of resultant products via the synergy of coordinate anchoring and substitution synthesis. 1 and 2 feature similar coordination layers composed of neutral TIMB and anionic X2-TPA2- ligands, which provide a good structural model to tune the RTP performances of final products via substitution synthesis. Different from the reported RTP materials based on MOC systems, our study provides a general way to build and modulate MOC-based RTP materials with the assistance of coordinate anchoring and substitution synthesis strategies.
Collapse
Affiliation(s)
- Wei Cui
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ying Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
32
|
Ma YJ, Qi Z, Xiao G, Fang X, Yan D. Metal-Halide Coordination Polymers with Excitation Wavelength- and Time-Dependent Ultralong Room-Temperature Phosphorescence. Inorg Chem 2022; 61:16477-16483. [PMID: 36190957 DOI: 10.1021/acs.inorgchem.2c02750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic hybrids with ultralong room-temperature phosphorescence (RTP) have potential applications in many fields, including optical communications, anticounterfeiting, encryption, bioimaging, and so on. Herein, we report two isostructural one-dimensional zinc-organic halides as coordination polymers ZnX2(bpp) (X = Cl, 1; Br, 2; bpp = 1,3-di(4-pyridyl)propane) with excitation wavelength- and time-dependent ultralong RTP properties. The dynamic multicolor afterglow can be assigned to the emission of the pristine ligand bpp and its interactions with halogen atoms. Experiments and theoretical calculations both suggest that ZnX2 is crucial for ultralong RTP: (a) the metal coordination and X...π bonds in coordination polymers fix the bpp molecules and suppress the nonradiative transitions; (b) the spin-orbital coupling of coordination polymers is largely enhanced relative to the bpp because of the heavy atom effect; and (c) the charge transfer exists between halogens and bpp ligand. Therefore, this work not only presents metal-halide coordination polymers with excitation wavelength- and time-dependent RTP properties, but also provides a facile method for the new types of dynamic multicolor afterglow materials.
Collapse
Affiliation(s)
- Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Zhou B, Qi Z, Yan D. Highly Efficient and Direct Ultralong All-Phosphorescence from Metal-Organic Framework Photonic Glasses. Angew Chem Int Ed Engl 2022; 61:e202208735. [PMID: 35819048 DOI: 10.1002/anie.202208735] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 12/29/2022]
Abstract
Realizing efficient and ultralong room-temperature phosphorescence (RTP) is highly desirable but remains a challenge due to the inherent competition between excited state lifetime and photoluminescence quantum yield (PLQY). Herein, we report the bottom-up self-assembly of transparent metal-organic framework (MOF) bulk glasses exhibiting direct ultralong all-phosphorescence (lifetime: 630.15 ms) with a PLQY of up to 75 % at ambient conditions. These macroscopic MOF glasses have high Young's modulus and hardness, which provide a rigid environment to reduce non-radiative transitions and boost triplet excitons. Spectral technologies and theoretical calculations demonstrate the photoluminescence of MOF glasses is directly derived from the different triplet excited states, indicating the great capability for color-tunable afterglow emission. We further developed information storage and light-emitting devices based on the efficient and pure RTP of the fabricated MOF photonic glasses.
Collapse
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
34
|
Xiong Z, Li Y, Liang J, Xiang S, Lv Y, Zhang Z. Coordination-Guided Conformational Locking of 1D Metal-Organic Frameworks for a Tunable Stimuli-Responsive Luminescence Region. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38098-38104. [PMID: 35957563 DOI: 10.1021/acsami.2c11761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One-dimensional (1D) metal-organic frameworks (MOFs) have shown great potential for designing more sensitive and smart stimuli-responsive photoluminescence metal-organic frameworks (PL-MOFs). Herein, we propose a strategy for constructing the 1D MOFs with tunable stimuli-responsive luminescence regions based on coordination-guided conformational locking. Two flexible 1D MOF microcrystals with trans- and cis-coordination modes, respectively, were synthesized by controlling the spatial constraint of solvents. The two 1D frameworks possess different conformation lockings of gain ligands, which have a great influence on the rotating restrictions and corresponding excited-state behaviors, generating the remarkably distinct color-tunable ranges (cyan-blue to green and cyan-blue to yellow, respectively). On this basis, the two 1D MOF materials, benefiting from the varied stimuli-responsive ranges, have displayed great potential in fulfilling the anticounterfeiting and information encryption applications. These results provide valuable guidance for the development of smart MOF-based stimuli-responsive materials in information identification and data encryption.
Collapse
Affiliation(s)
- Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
35
|
Li Y, Chen X, Ok KM. KF·B(OH) 3: a KBBF-type material with large birefringence and remarkable deep-ultraviolet transparency. Chem Commun (Camb) 2022; 58:8770-8773. [PMID: 35876108 DOI: 10.1039/d2cc03495f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A designed material with large birefringence and remarkable deep-ultraviolet transparency, KF·B(OH)3, has been discovered. The well-aligned [F·B(OH)3]- layers endow a very large bandgap (7.63 eV), comparably large birefringence (0.114 @1064 nm), and the reinforced interlayer bonding of ca. 2.16 × KBe2BO3F2.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea.
| | - Xinglong Chen
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
36
|
Zhou B, Qi Z, Yan D. Highly Efficient and Direct Ultralong All‐Phosphorescence from Metal−Organic Framework Photonic Glasses. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Zhou
- Beijing Normal University College of Chemistry 100875 CHINA
| | - Zhenhong Qi
- Beijing Normal University College of Chemistry 100875 CHINA
| | - Dongpeng Yan
- Beijing Normal University College of Chemistry Xinjiekouwai street, No. 19, Haidian District 100875 BEIJING CHINA
| |
Collapse
|
37
|
Elattar A, Tsutsumi K, Suzuki H, Nishikawa T, Kyaw AKK, Hayashi Y. Mixed-halide copper-based perovskite R 2Cu(Cl/Br) 4 with different organic cations for reversible thermochromism. NEW J CHEM 2022. [DOI: 10.1039/d2nj04693h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanically exfoliated flakes of mixed-halide Cu-based perovskite crystals, R2Cu(Cl/Br)4, with three alkyl chains exhibit reversible thermochromic behavior with differences in crystal lattice behavior depending on the organic spacer used.
Collapse
Affiliation(s)
- Amr Elattar
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Kosei Tsutsumi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroo Suzuki
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Takeshi Nishikawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Aung Ko Ko Kyaw
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|