1
|
Adil O, Shamsi MH. Transformative biomedical devices to overcome biomatrix effects. Biosens Bioelectron 2025; 279:117373. [PMID: 40120290 PMCID: PMC11975494 DOI: 10.1016/j.bios.2025.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The emergence of high-performance biomedical devices and sensing technologies highlights the technological advancements in the field. Recently during COVID-19 pandemic, biosensors played an important role in medical diagnostics and disease monitoring. In the past few decades, biosensors have made impressive advances in terms of sensing capability, methodology, and applications, and modern biosensors show higher performance and functionality compared to traditional biosensing platforms. Currently, various biomedical devices are already in the market or on the verge of commercialization, such as disposable paper-based devices, lab-on-a-chip devices, wearable sensors, and artificial intelligence-assisted systems, all contributing to the evolution of digital health. Despite the promising features of detection methods for developing practical biosensors, there are substantial barriers to the commercialization of biomedical devices. An important challenge is the matrix effect in the detection of clinical samples. Although achieving low limit of detection values under controlled laboratory conditions is feasible, maintaining performance in real clinical samples is difficult. Matrix molecules present in these samples can interact with analytes, potentially affecting sensitivity, specificity, and sensor response. Approaches to reduce nonspecific adsorption and cross-reactivity are imperative for improving sensor performance. The detection of diagnostic biomarkers in complex biological matrices often requires laborious sample preparation, which may affect accuracy and precision. In this review, we highlight the recent efforts to detect analytes in real samples, both invasively and noninvasively, and underline technological advancements that mitigate the biomatrix effects. We also discuss commercially available biosensors and technologies promising commercial success, highlighting their potential effect on healthcare and diagnostics.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA; Department of Mechanical Engineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, 62901, USA.
| |
Collapse
|
2
|
Juciute S, Maciulis V, Luciunaite A, Liesyte J, Plikusiene I. Comparison of the ACE2 receptor and monoclonal antibodies immobilisation strategies for the sensitive detection of SARS-CoV-2 variants of concern. Anal Chim Acta 2025; 1357:344075. [PMID: 40316389 DOI: 10.1016/j.aca.2025.344075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
Investigation of antibody or receptor immobilisation and binding to the target analyte is essential for the development of effective immunoassays. In our research, we applied the combination of two surface-sensitive methods: spectroscopic ellipsometry and quartz crystal microbalance with dissipation. It enabled quantitative investigation of optical and mechanical properties of formed biomolecule layers consisting of monoclonal antibodies (mAb) or angiotensin-converting enzyme 2 (ACE2) receptors coupled with the Fc fragment, in complex with severe acute respiratory syndrome coronavirus 2 spike Omicron variant (SCoV2-oS). Random and site-directed immobilisation of ACE2 receptor gave 1.8 and 2.4 times higher dry surface mass density compared to random and site-direct mAbs immobilisation, respectively. Therefore, ACE2 had better potential for more sensitive detection of the target analyte SCoV2-oS. However, the binding of SCoV2-oS to site-directed ACE2 resulted in a low 80 ng/cm2 surface mass compared to other samples. Moreover, ΔD/ΔF data revealed two-step binding of SCoV2-oS to ACE2 and mAbs. Furthermore, calculated affinity constants (KD) showed that both ACE2 and mAb have high affinity to SCoV2-oS (in the range of 10-10 to 10-11 M), and their orientation on the surface had only a minor impact on KD values. Our findings in this investigation indicated that ACE2 coupled with the Fc fragment is as effective in the recognition of SARS-CoV-2 as mAbs and it can be successfully applied for the development of immunoassays. Considering SARS-CoV-2 mutates for a better S protein binding to the ACE2 receptor, using ACE2 as a biorecognition element is useful.
Collapse
Affiliation(s)
- Silvija Juciute
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania
| | - Vincentas Maciulis
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, Lithuania
| | - Asta Luciunaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, Vilnius, Lithuania
| | - Justina Liesyte
- NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
3
|
Go GE, Kim D. Advancing biosensing through super-resolution fluorescence microscopy. Biosens Bioelectron 2025; 278:117374. [PMID: 40112521 DOI: 10.1016/j.bios.2025.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Advancement of super-resolution fluorescence microscopy (SRM) has recently allowed applications to the biosensing by offering significant advantages over conventional methods. Its nanoscale spatial resolution and single-molecule sensitivity allow visualization and quantification of biomolecular targets without the need of signal amplification steps typically required in traditional biosensing methods. Moreover, recent innovations in probe design and imaging protocols have expanded SRM capabilities to enable dynamic biosensing in living cells, revealing molecular processes in their native cellular contexts. In this review, we discuss these applications of various SRM techniques to biosensing by highlighting their unique capabilities in providing spatial distribution information and high molecular sensitivity. We address several challenges that must be overcome for the broader application of SRM-based biosensing. Finally, we discuss perspectives on future directions for advancing this field towards practical applications.
Collapse
Affiliation(s)
- Ga-Eun Go
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Institute of Nano Science and Technology, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Zhou H, Li D, Lv Q, Lee C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem Soc Rev 2025. [PMID: 40354162 DOI: 10.1039/d4cs00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface plasmons, a unique optical phenomenon arising at the interface between metals and dielectrics, have garnered significant interest across fields such as biochemistry, materials science, energy, optics, and nanotechnology. Recently, plasmonics is evolving from a focus on "classical plasmonics," which emphasizes fundamental effects and applications, to "integrative plasmonics," which explores the integration of plasmonics with multidisciplinary technologies. This review explores this evolution, summarizing key developments in this technological shift and offering a timely discussion on the fusion mechanisms, strategies, and applications. First, we examine the integration mechanisms of plasmons within the realm of optics, detailing how fundamental plasmonic effects give rise to optical multi-effects, such as plasmon-phonon coupling, nonlinear optical effects, electromagnetically induced transparency, chirality, nanocavity resonance, and waveguides. Next, we highlight strategies for integrating plasmons with technologies beyond optics, analyzing the processes and benefits of combining plasmonics with acoustics, electronics, and thermonics, including comprehensive plasmonic-electric-acousto-thermal integration. We then review cutting-edge applications in biochemistry (molecular diagnostics), energy (harvesting and catalysis), and informatics (photonic integrated circuits). These applications involve surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), chirality, nanotweezers, photoacoustic imaging, perovskite solar cells, photocatalysis, photothermal therapy, and triboelectric nanogenerators (TENGs). Finally, we conclude with a forward-looking perspective on the challenges and future of integrative plasmonics, considering advances in mechanisms (quantum effects, spintronics, and topology), materials (Dirac semimetals and hydrogels), technologies (machine learning, edge computing, in-sensor computing, and neuroengineering), and emerging applications (5G, 6G, virtual reality, and point-of-care testing).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Qiaoya Lv
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
5
|
Aphrham S, Verheijden M, Huskens J. Quantifying and Controlling DNA Probe Density on the Surface of Silicon Nitride Optical Waveguides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11205-11214. [PMID: 40263986 PMCID: PMC12060268 DOI: 10.1021/acs.langmuir.5c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Photonic biosensors offer a label-free, sensitive, and cost-effective means of detecting pathogens and biomarkers, such as methylated DNA, in liquid biopsy samples. However, challenges persist in controlling and quantifying the surface density of probes and complementary targets, which is essential to achieve optimal sensitivity. To address these issues in DNA detection, the surfaces of asymmetric Mach-Zehnder interferometer (aMZI) waveguide sensors were functionalized using two approaches to achieve density-controlled probe-DNA surfaces. In one method, varying ratios of BSA and biotinylated BSA were incubated on each sensor surface, followed by neutravidin and biotinylated probe DNA (pDNA), allowing for controlled surface coverage on each aMZI sensor. A second approach involved direct binding of amino-pDNA, mixed with nonprobe DNA, to the carboxylated aMZI surface after EDC-NHS activation. Target-DNA (tDNA) hybridization was then introduced at different concentrations to assess the effect of surface density on binding. A quantification method was developed to account for the molecular mass density, enabling the estimation of real-time signal responses during both protein functionalization and DNA binding steps. Results showed that higher tDNA solution concentrations exhibited a strong dependence on surface coverage, while lower concentrations showed a minimal dependence. Fluorescence spectroscopy, using fluorescently labeled tDNA, confirmed a direct linear correlation between the surface density and fluorescence intensity, offering a simpler yet robust method for quantitative surface characterization. This correlation provides an alternative method for estimating surface density without the need for laborious characterization. This study contributes to the development and understanding of photonic biosensing techniques for biomarker detection in liquid biopsy samples.
Collapse
Affiliation(s)
- Samer Aphrham
- Department
of Molecules and Materials, Faculty of Science & Technology, MESA+
Institute and TechMed Centre, University
of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
- Qurin
Diagnostics B.V, Emmy
Noetherweg 2, Leiden 2333
BK, The Netherlands
| | - Mark Verheijden
- Qurin
Diagnostics B.V, Emmy
Noetherweg 2, Leiden 2333
BK, The Netherlands
| | - Jurriaan Huskens
- Department
of Molecules and Materials, Faculty of Science & Technology, MESA+
Institute and TechMed Centre, University
of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
6
|
Abul Rub F, Moursy N, Alhedeithy N, Mohamed J, Ifthikar Z, Elahi MA, Mir TA, Rehman MU, Tariq S, Alabudahash M, Chinnappan R, Yaqinuddin A. Modern Emerging Biosensing Methodologies for the Early Diagnosis and Screening of Ovarian Cancer. BIOSENSORS 2025; 15:203. [PMID: 40277517 PMCID: PMC12024575 DOI: 10.3390/bios15040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Ovarian cancer (OC) is one of the leading causes of gynecological cancer-related death worldwide. Late diagnosis at advanced stages of OC is the reason for a higher mortality rate. Earlier diagnosis and proper treatment are important for improving the prognosis of OC patients. Biosensors offer accurate, low-cost, rapid, and user-friendly devices that can be employed for the detection of OC-specific biomarkers in the early stage. Therefore, it is important to consider the potential biomarkers in the biological fluids to confirm the OC prognosis. Out of many biomarkers, the most commonly tested clinically is cancer antigen 125 (CA-125). However, CA-125 is considered to be a poor biomarker for OC diagnosis. Several biosensing methods were developed for the sensitive and quantitative detection of each biomarker. In abnormal expression in OC patients, nucleic acids, enzymes, cells, and exosomes are used as target biomarkers for the construction of biosensors. This review focuses on the development for the detection of various biomarkers using multiple biosensing methods. Here, we describe the origin and the significance of OC-associated biomarkers, the working principle of biosensors, and the classification of biosensors based on their recognition elements and signal transducers. The modes of detection and sensitivity of the sensors are discussed. Finally, the challenges in the fabrication, obstacles in the clinical application, and future prospects are discussed.
Collapse
Affiliation(s)
- Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Naseel Moursy
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Nouf Alhedeithy
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Juraij Mohamed
- Faculty of Medicine, University of Colombo, Colombo 00800, Sri Lanka;
| | - Zainab Ifthikar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| | - Tanveer Ahmed Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Mati Ur Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan;
| | - Saima Tariq
- Department of Obstetrics and Gynecology, Al Iman General Hospital, Ministry of Health, Riyadh 12684, Saudi Arabia;
| | - Mubark Alabudahash
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Glasgow G4 0RE, UK;
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (N.M.); (N.A.); (Z.I.); (M.A.E.); (T.A.M.)
| |
Collapse
|
7
|
Sun B, Wu H, Fang T, Wang Z, Xu K, Yan H, Cao J, Wang Y, Wang L. Dual-Mode Colorimetric/SERS Lateral Flow Immunoassay with Machine Learning-Driven Optimization for Ultrasensitive Mycotoxin Detection. Anal Chem 2025; 97:4824-4831. [PMID: 39951511 DOI: 10.1021/acs.analchem.4c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic "hotspots" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm-1, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.
Collapse
Affiliation(s)
- Boyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Tianrui Fang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Zihan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Ke Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Huiqi Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Jinbo Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
8
|
Clabassi E, Balestra G, Siciliano G, Polimeno L, Tarantini I, Primiceri E, Tobaldi DM, Cuscunà M, Quaranta F, Passaseo A, Rainer A, Romano S, Zito G, Gigli G, Tasco V, Esposito M. Hybrid Plasmonic Symmetry-Protected Bound state in the Continuum Entering the Zeptomolar Biodetection Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411827. [PMID: 39865919 PMCID: PMC11899489 DOI: 10.1002/smll.202411827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes. By tailoring the hybridizing plasmonic/photonic fractions, a trade-off is selected at which the quasi-BIC exhibits both high intrinsic Q-factor and strong near-field enhancement because of dimer-gap hotspot activation. Not only radiation loss is damped but in a configuration sustaining a lattice of plasmonic hotspots. This leads to an advantageous small modal volume for enhancing light-matter interaction. The layout of nearly embedded dimers is designed to maximize the spatial overlap between the optical field and the target molecules, enhancing reactive sensing efficiency. The architecture is evaluated for its ability to detect transactive response DNA-binding protein 43. The refractometric sensitivity outperforms current label-free biosensing platforms, reaching the zeptomolar range. The approach highlights the potential of combining plasmonic and dielectric nanomaterials for advanced sensing technologies.
Collapse
Grants
- "CUP Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), "NFFA-DI" Grant , "I-PHOQS" Grant and under the complementary actions to the NRRP, "Fit4MedRob" Grant , "ANTHEM" Grant , funded by NextGenerationEU
- B53C22004310006","CUPB53C22001750006","CUPB53C22006960001","CUPB53C22006710001". Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), "NFFA-DI" Grant , "I-PHOQS" Grant and under the complementary actions to the NRRP, "Fit4MedRob" Grant , "ANTHEM" Grant , funded by NextGenerationEU
- B53C22004310006","CUP Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), "NFFA-DI" Grant , "I-PHOQS" Grant and under the complementary actions to the NRRP, "Fit4MedRob" Grant , "ANTHEM" Grant , funded by NextGenerationEU
- B53C22001750006","CUP Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), "NFFA-DI" Grant , "I-PHOQS" Grant and under the complementary actions to the NRRP, "Fit4MedRob" Grant , "ANTHEM" Grant , funded by NextGenerationEU
- B53C22006960001","CUP Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), "NFFA-DI" Grant , "I-PHOQS" Grant and under the complementary actions to the NRRP, "Fit4MedRob" Grant , "ANTHEM" Grant , funded by NextGenerationEU
- B53C22006710001". Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), "NFFA-DI" Grant , "I-PHOQS" Grant and under the complementary actions to the NRRP, "Fit4MedRob" Grant , "ANTHEM" Grant , funded by NextGenerationEU
- CUP National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union - NextGenerationEU- Project Title Chiral Bound States IN the Continuum by Shallow 3D Plasmonic SPIRal MEtacrystal (INSPIRE) - Grant Assignment Decree No. 1380 adopted on 01/09/2023 by the Italian Ministry of Ministry of University and Research (MUR)
- B53D23024270001. National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union - NextGenerationEU- Project Title Chiral Bound States IN the Continuum by Shallow 3D Plasmonic SPIRal MEtacrystal (INSPIRE) - Grant Assignment Decree No. 1380 adopted on 01/09/2023 by the Italian Ministry of Ministry of University and Research (MUR)
- CUP Tecnopolo per la medicina di precisione" (TecnoMed Puglia) - Regione Puglia: DGR no. 2117 del 21/11/2018
- B84I18000540002. Tecnopolo per la medicina di precisione" (TecnoMed Puglia) - Regione Puglia: DGR no. 2117 del 21/11/2018
- CIR01_00022. National project "Developing National And Regional Infrastructural Nodes Of Dariah In Italy - DARIAH"
Collapse
Affiliation(s)
- Elena Clabassi
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
- Department of experimental medicineUniversity of SalentoLecce73100Italy
| | - Gianluca Balestra
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
- Department of experimental medicineUniversity of SalentoLecce73100Italy
| | - Giulia Siciliano
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
| | - Laura Polimeno
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
| | - Iolena Tarantini
- Department of experimental medicineUniversity of SalentoLecce73100Italy
| | | | | | - Massimo Cuscunà
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
| | - Fabio Quaranta
- CNR IMM Institute for Microelectronics and MicrosystemsVia Monteroni73100LecceItaly
| | - Adriana Passaseo
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
| | - Alberto Rainer
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
- Department of EngineeringUniversity Campus Bio‐Medico di Romavia Álvaro del Portillo 21Rome00128Italy
| | - Silvia Romano
- CNR ISASI Institute of Applied Sciences and Intelligent SystemsNaples80078Italy
| | - Gianluigi Zito
- CNR ISASI Institute of Applied Sciences and Intelligent SystemsNaples80078Italy
| | - Giuseppe Gigli
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
- Department of experimental medicineUniversity of SalentoLecce73100Italy
| | | | - Marco Esposito
- CNR NANOTEC Institute of NanotechnologyVia Monteroni73100LecceItaly
- Department of experimental medicineUniversity of SalentoLecce73100Italy
| |
Collapse
|
9
|
Abood I, El. Soliman S, He W, Ouyang Z. Topological Photonic Crystal Sensors: Fundamental Principles, Recent Advances, and Emerging Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1455. [PMID: 40096346 PMCID: PMC11902838 DOI: 10.3390/s25051455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Topological photonic sensors have emerged as a breakthrough in modern optical sensing by integrating topological protection and light confinement mechanisms such as topological states, quasi-bound states in the continuum (quasi-BICs), and Tamm plasmon polaritons (TPPs). These devices exhibit exceptional sensitivity and high-Q resonances, making them ideal for high-precision environmental monitoring, biomedical diagnostics, and industrial sensing applications. This review explores the foundational physics and diverse sensor architectures, from refractive index sensors and biosensors to gas and thermal sensors, emphasizing their working principles and performance metrics. We further examine the challenges of achieving ultrahigh-Q operation in practical devices, limitations in multiparameter sensing, and design complexity. We propose physics-driven solutions to overcome these barriers, such as integrating Weyl semimetals, graphene-based heterostructures, and non-Hermitian photonic systems. This comparative study highlights the transformative impact of topological photonic sensors in achieving ultra-sensitive detection across multiple fields.
Collapse
Affiliation(s)
- Israa Abood
- THz Technology Laboratory, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, THz Technical Research Center of Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Sayed El. Soliman
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Wenlong He
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Zhengbiao Ouyang
- THz Technology Laboratory, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, THz Technical Research Center of Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
López JG, Muñoz M, Arias V, García V, Calvo PC, Ondo-Méndez AO, Rodríguez-Burbano DC, Fonthal F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. MICROMACHINES 2025; 16:139. [PMID: 40047624 PMCID: PMC11857277 DOI: 10.3390/mi16020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Cancer remains one of the leading causes of mortality worldwide, making early detection a critical factor in improving patient outcomes and survival rates. Developing advanced biosensors is essential for achieving early detection and accurate cancer diagnosis. This review offers a comprehensive overview of the development and application of carbon dots (CDs) and glassy carbon (GC) biosensors for early cancer detection. It covers the synthesis of CDs and GC, electrode fabrication methods, and electrochemical and optical transduction principles. This review explores various biosensors, including enzymatic and non-enzymatic, and discusses key biomarkers relevant to cancer detection. It also examines characterization techniques for electrochemical and optical biosensors, such as electrochemical impedance spectroscopy, cyclic voltammetry, UV-VIS, and confocal microscopy. The findings highlight the advancements in biosensor performance, emphasizing improvements in sensitivity, selectivity, and stability, as well as underscoring the potential of integrating different transduction methods and characterization approaches to enhance early cancer detection.
Collapse
Affiliation(s)
- Juana G. López
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Mariana Muñoz
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina Arias
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina García
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Paulo C. Calvo
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Alejandro O. Ondo-Méndez
- Clinical Investigation Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Diana C. Rodríguez-Burbano
- Givia Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Faruk Fonthal
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| |
Collapse
|
11
|
Song M, Zhang J, Shen K, Hu Y, Shen W, Tang S, Lee HK. Application of smart-responsive hydrogels in nucleic acid and nucleic acid-based target sensing: A review. Biosens Bioelectron 2025; 267:116803. [PMID: 39316868 DOI: 10.1016/j.bios.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In recent years, nucleic acid-related sensing and detection have become essential in clinical diagnostics, treatment and genotyping, especially in connection with the Human Genome Project and the COVID-19 pandemic. Many traditional nucleic acid-related sensing strategies have been employed in analytical chemistry, including fluorescence, colorimetric and chemiluminescence methods. However, their key limitation is the lack of understanding of the interaction during analysis, particularly at the 3D matrix level close to biological tissue. To address this issue, smart-responsive hydrogels are increasingly used in biosensing due to their hydrophilic and biocompatible properties. By combining smart-responsive hydrogels with traditional nucleic acid-related sensing, biological microenvironments can be mimicked, and targets can be easily accessed and diffused, making them ideal for nucleic acid sensing. This review focuses on utilizing smart-responsive hydrogels for nucleic acid-related sensing and detection, including nucleic acid detection, other nucleic acid-based analyte detection and nucleic acid-related sensing platforms applying nucleic acid as sensing tools in hydrogels. Additionally, the analytical mechanisms of smart-responsive hydrogels with the combination of various detection platforms such as optical and electrochemical techniques are described. The limitations of using smart-responsive hydrogels in nucleic acid-related sensing and proposed possible solutions are also discussed. Lastly, the future challenge of smart-responsive hydrogels in nucleic acid-related sensing is explored. Smart-responsive hydrogels can be used as biomimetic materials to simulate the extracellular matrix, achieve biosensing, and exhibit great potential in nucleic acid-related sensing. They serve as a valuable complement to traditional detection and analytical methods.
Collapse
Affiliation(s)
- Meiqi Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Ke Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yaxue Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
12
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
13
|
Pastukhov AI, Savinov MS, Zelepukin IV, Babkova JS, Tikhonowski GV, Popov AA, Klimentov SM, Devi A, Patra A, Zavestovskaya IN, Deyev SM, Kabashin AV. Laser-synthesized plasmonic HfN-based nanoparticles as a novel multifunctional agent for photothermal therapy. NANOSCALE 2024; 16:17893-17907. [PMID: 39253754 DOI: 10.1039/d4nr02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hafnium nitride nanoparticles (HfN NPs) can offer appealing plasmonic properties at the nanoscale, but the fabrication of stable water-dispersible solutions of non-toxic HfN NPs exhibiting plasmonic features in the window of relative biological transparency presents a great challenge. Here, we demonstrate a solution to this problem by employing ultrashort (femtosecond) laser ablation from a HfN target in organic solutions, followed by a coating of the formed NPs with polyethylene glycol (PEG) and subsequent dispersion in water. We show that the fabricated NPs exhibit plasmonic absorption bands with maxima around 590 nm, 620 nm, and 650 nm, depending on the synthesis environment (ethanol, acetone, and acetonitrile, respectively), which are largely red-shifted compared to what is expected from pure HfN NPs. The observed shift is explained by including nitrogen-deficient hafnium nitride and hafnium oxynitride phases inside the core and oxynitride coating of NPs, as follows from a series of structural characterization studies. We then show that the NPs can provide a strong photothermal effect under 808 nm excitation with a photothermal conversion coefficient of about 62%, which is comparable to the best values reported for plasmonic NPs. MTT and clonogenic assays evidenced very low cytotoxicity of PEG-coated HfN NPs to cancer cells from different tissues up to 100 μg mL-1 concentrations. We finally report a strong photothermal therapeutic effect of HfN NPs, as shown by 100% cell death under 808 nm light irradiation at NP concentrations lower than 25 μg mL-1. Combined with additional X-ray theranostic functionalities (CT scan and photon capture therapy) profiting from the high atomic number (Z = 72) of Hf, plasmonic HfN NPs promise the development of synergetically enhanced modalities for cancer treatment.
Collapse
Affiliation(s)
- A I Pastukhov
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
| | - M S Savinov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - I V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- Uppsala University, Department of Medicinal Chemistry, 75310, Uppsala, Sweden
| | - J S Babkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
| | - G V Tikhonowski
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A A Popov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - S M Klimentov
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| | - A Devi
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - A Patra
- Institute of Nano Science and Technology, Mohali, 140306, India
| | - I N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S M Deyev
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997, Moscow, Russia
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A V Kabashin
- Aix-Marseille University, CNRS, LP3, 13288, Marseille, France.
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409, Moscow, Russia
| |
Collapse
|
14
|
Frigoli M, Krupa MP, Hooyberghs G, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5576. [PMID: 39275486 PMCID: PMC11398233 DOI: 10.3390/s24175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mikolaj P Krupa
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Geert Hooyberghs
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
15
|
Tezsezen E, Yigci D, Ahmadpour A, Tasoglu S. AI-Based Metamaterial Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29547-29569. [PMID: 38808674 PMCID: PMC11181287 DOI: 10.1021/acsami.4c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The use of metamaterials in various devices has revolutionized applications in optics, healthcare, acoustics, and power systems. Advancements in these fields demand novel or superior metamaterials that can demonstrate targeted control of electromagnetic, mechanical, and thermal properties of matter. Traditional design systems and methods often require manual manipulations which is time-consuming and resource intensive. The integration of artificial intelligence (AI) in optimizing metamaterial design can be employed to explore variant disciplines and address bottlenecks in design. AI-based metamaterial design can also enable the development of novel metamaterials by optimizing design parameters that cannot be achieved using traditional methods. The application of AI can be leveraged to accelerate the analysis of vast data sets as well as to better utilize limited data sets via generative models. This review covers the transformative impact of AI and AI-based metamaterial design for optics, acoustics, healthcare, and power systems. The current challenges, emerging fields, future directions, and bottlenecks within each domain are discussed.
Collapse
Affiliation(s)
- Ece Tezsezen
- Graduate
School of Science and Engineering, Koç
University, Istanbul 34450, Türkiye
| | - Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Türkiye
| | - Abdollah Ahmadpour
- Department
of Mechanical Engineering, Koç University
Sariyer, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department
of Mechanical Engineering, Koç University
Sariyer, Istanbul 34450, Türkiye
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Bogaziçi
Institute of Biomedical Engineering, Bogaziçi
University, Istanbul 34684, Türkiye
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
16
|
Bahamondes Lorca VA, Ávalos-Ovando O, Sikeler C, Ijäs H, Santiago EY, Skelton E, Wang Y, Yang R, Cimatu KLA, Baturina O, Wang Z, Liu J, Slocik JM, Wu S, Ma D, Pastukhov A, Kabashin AV, Kordesch ME, Govorov AO. Lateral Flow Assay Biotesting by Utilizing Plasmonic Nanoparticles Made of Inexpensive Metals─Replacing Colloidal Gold. NANO LETTERS 2024; 24:6069-6077. [PMID: 38739779 DOI: 10.1021/acs.nanolett.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.
Collapse
Affiliation(s)
- Veronica A Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Oscar Ávalos-Ovando
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Christoph Sikeler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Heini Ijäs
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Eva Yazmin Santiago
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Eli Skelton
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Yong Wang
- Institut National de la Recherche Scientifique, Varennes, Québec J3X 1P7, Canada
| | - Ruiqi Yang
- Institut National de la Recherche Scientifique, Varennes, Québec J3X 1P7, Canada
| | - Katherine Leslee Asetre Cimatu
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Olga Baturina
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Zhewei Wang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Jundong Liu
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, Ohio 45433-7750, United States
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Dongling Ma
- Institut National de la Recherche Scientifique, Varennes, Québec J3X 1P7, Canada
| | - Andrei Pastukhov
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Andrei V Kabashin
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Martin E Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
17
|
Cusworth E, Ho S, Kravets VG, Ong BL, Rusydi A, Novoselov KS, Grigorenko AN. Highly oriented single-crystalline gold quantum-dot metamaterials as prospective materials for photonics. OPTICS EXPRESS 2024; 32:17922-17931. [PMID: 38858960 DOI: 10.1364/oe.522045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 06/12/2024]
Abstract
Miniaturization of optical devices is a modern trend essential for optoelectronics, optical sensing, optical computing and other branches of science and technology. To satisfy this trend, optical materials with a small footprint are required. Here we show that extremely thin, flat, nanostructured gold films made of highly oriented single-crystalline gold quantum-dots can provide elements of topological photonics in visible light and be used as high-index dielectric materials in the infrared part of the spectra. We measure and theoretically confirm the presence of topological darkness and associated phase singularities in studied gold films of thickness of below 10 nm placed on MgO substrates in the red part of the spectrum. At telecom wavelengths, the fabricated gold metasurface behaves as a dielectric with the refractive index of n≈2.75 and the absorption coefficient of k≈0.005.
Collapse
|
18
|
Hussain M, He X, Wang C, Wang Y, Wang J, Chen M, Kang H, Yang N, Ni X, Li J, Zhou X, Liu B. Recent advances in microfluidic-based spectroscopic approaches for pathogen detection. BIOMICROFLUIDICS 2024; 18:031505. [PMID: 38855476 PMCID: PMC11162289 DOI: 10.1063/5.0204987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Rapid identification of pathogens with higher sensitivity and specificity plays a significant role in maintaining public health, environmental monitoring, controlling food quality, and clinical diagnostics. Different methods have been widely used in food testing laboratories, quality control departments in food companies, hospitals, and clinical settings to identify pathogens. Some limitations in current pathogens detection methods are time-consuming, expensive, and laborious sample preparation, making it unsuitable for rapid detection. Microfluidics has emerged as a promising technology for biosensing applications due to its ability to precisely manipulate small volumes of fluids. Microfluidics platforms combined with spectroscopic techniques are capable of developing miniaturized devices that can detect and quantify pathogenic samples. The review focuses on the advancements in microfluidic devices integrated with spectroscopic methods for detecting bacterial microbes over the past five years. The review is based on several spectroscopic techniques, including fluorescence detection, surface-enhanced Raman scattering, and dynamic light scattering methods coupled with microfluidic platforms. The key detection principles of different approaches were discussed and summarized. Finally, the future possible directions and challenges in microfluidic-based spectroscopy for isolating and detecting pathogens using the latest innovations were also discussed.
Collapse
Affiliation(s)
| | - Xu He
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chao Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichuan Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingyue Chen
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | - Xinye Ni
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213161, China
| | | | - Xiuping Zhou
- Department of Laboratory Medicine, The Peoples Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Nantong 226500, China
| | - Bin Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Bahamondes Lorca VA, Ávalos-Ovando O, Sikeler C, Ijäs H, Santiago EY, Skelton E, Wang Y, Yang R, Cimatu KLA, Baturina O, Wang Z, Liu J, Slocik JM, Wu S, Ma D, Pastukhov AI, Kabashin AV, Kordesch ME, Govorov AO. Lateral Flow Assays Biotesting by Utilizing Plasmonic Nanoparticles Made of Inexpensive Metals - Replacing Colloidal Gold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574723. [PMID: 38260353 PMCID: PMC10802436 DOI: 10.1101/2024.01.08.574723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold NPs-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic nanoparticles (NPs) based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. To the best of our knowledge, our study represents the 1st application of laser-ablation-fabricated nanoparticles (TiN) in the LFA and dot-blot biotesting. Since the main cost of the Au NPs in commercial testing kits is in the colloidal synthesis, our development with TiN is very exciting, offering potentially very inexpensive plasmonic nanomaterials for various bio-testing applications. Moreover, our machine learning study showed that the bio-detection with TiN is more accurate than that with Au.
Collapse
Affiliation(s)
- Veronica A. Bahamondes Lorca
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Departamento de Tecnología médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Ávalos-Ovando
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Christoph Sikeler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Heini Ijäs
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig Maximilians University, 80539 Munich, Germany
| | - Eva Yazmin Santiago
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Eli Skelton
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Yong Wang
- Institut National de la Recherche Scientifique,Varennes, Québec J3X 1P7, Canada
| | - Ruiqi Yang
- Institut National de la Recherche Scientifique,Varennes, Québec J3X 1P7, Canada
| | - Katherine Leslee A. Cimatu
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Olga Baturina
- Chemistry Division, United States Naval Research Laboratory, Washington DC 20375, United States
| | - Zhewei Wang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Jundong Liu
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701, United States
| | - Joseph M. Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Dongling Ma
- Institut National de la Recherche Scientifique,Varennes, Québec J3X 1P7, Canada
| | - Andrei I. Pastukhov
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Andrei V. Kabashin
- Laboratory LP3, Campus de Luminy, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Martin E. Kordesch
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| | - Alexander O. Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
20
|
Barth I, Lee H. Phase-driven progress in nanophotonic biosensing. LIGHT, SCIENCE & APPLICATIONS 2024; 13:76. [PMID: 38494520 PMCID: PMC10944832 DOI: 10.1038/s41377-024-01415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge2Sb2Te5 layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10-7 RIU.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Jeong TI, Kim S, Kim S, Shin M, Gliserin A, Kang TY, Kim K, Kim S. Three-dimensional surface lattice plasmon resonance effect from plasmonic inclined nanostructures via one-step stencil lithography. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1169-1180. [PMID: 39634015 PMCID: PMC11501154 DOI: 10.1515/nanoph-2023-0755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 12/07/2024]
Abstract
Plasmonic nanostructures allow the manipulation and confinement of optical fields on the sub-wavelength scale. The local field enhancement and environmentally sensitive resonance characteristics provided by these nanostructures are of high importance for biological and chemical sensing. Recently, surface lattice plasmon resonance (SLR) research has attracted much interest because of its superior quality factor (Q-factor) compared to that of localized surface plasmon resonances (LSPR), which is facilitated by resonant plasmonic mode coupling between individual nanostructures over a large area. This advantage can be further enhanced by utilizing asymmetric 3D structures rather than low-height (typically height < ∼60 nm) structure arrays, which results in stronger coupling due to an increased mode volume. However, fabricating 3D, high-aspect ratio, symmetry-breaking structures is a complex and challenging process even with state-of-the-art fabrication technology. Here, we report a plasmonic metasurface of 3D inclined structures produced via commercial TEM grid-based stencil lithography with a Q-factor of 101.6, a refractive index sensitivity of 291 nm/RIU, and a figure of merit (FOM) of 44.7 in the visible wavelength range at a refractive index of 1.5 by utilizing the 3D SLR enhancement effect, which exceeds the performance of most LSPR systems (Q < ∼10). The symmetry-breaking 3D inclined structures that are fabricated by electron beam evaporation at an angle increase the polarizability of the metasurface and the directionality of the diffractively scattered radiative field responsible for SLR mode coupling. Additionally, we explore the role of spatial coherence in facilitating the SLR effect and thus a high-Q plasmonic response from the nanostructures. Our work demonstrates the feasibility of producing 3D inclined structure arrays with pronounced SLR enhancement for high biological sensitivity by utilizing the previously unexplored inclined stencil lithography, which opens the way to fabricate highly sensitive plasmonic metasurfaces with this novel simple technique.
Collapse
Affiliation(s)
- Tae-In Jeong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - Sehyeon Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - San Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - Minchan Shin
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - Alexander Gliserin
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - Tae Young Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| | - Seungchul Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan46241, Republic of Korea
| |
Collapse
|
22
|
Zhu S, Jaffiol R, Crunteanu A, Vézy C, Chan ST, Yuan W, Ho HP, Zeng S. Label-free biosensing with singular-phase-enhanced lateral position shift based on atomically thin plasmonic nanomaterials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:2. [PMID: 38161210 PMCID: PMC10757996 DOI: 10.1038/s41377-023-01345-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Rapid plasmonic biosensing has attracted wide attention in early disease diagnosis and molecular biology research. However, it was still challenging for conventional angle-interrogating plasmonic sensors to obtain higher sensitivity without secondary amplifying labels such as plasmonic nanoparticles. To address this issue, we developed a plasmonic biosensor based on the enhanced lateral position shift by phase singularity. Such singularity presents as a sudden phase retardation at the dark point of reflection from resonating plasmonic substrate, leading to a giant position shift on reflected beam. Herein, for the first time, the atomically thin layer of Ge2Sb2Te5 (GST) on silver nanofilm was demonstrated as a novel phase-response-enhancing plasmonic material. The GST layer was not only precisely engineered to singularize phase change but also served as a protective layer for active silver nanofilm. This new configuration has achieved a record-breaking largest position shift of 439.3 μm measured in calibration experiments with an ultra-high sensitivity of 1.72 × 108 nm RIU-1 (refractive index unit). The detection limit was determined to be 6.97 × 10-7 RIU with a 0.12 μm position resolution. Besides, a large figure of merit (FOM) of 4.54 × 1011 μm (RIU∙°)-1 was evaluated for such position shift interrogation, enabling the labelfree detection of trace amounts of biomolecules. In targeted biosensing experiments, the optimized sensor has successfully detected small cytokine biomarkers (TNF-α and IL-6) with the lowest concentration of 1 × 10-16 M. These two molecules are the key proinflammatory cancer markers in clinical diagnosis, which cannot be directly screened by current clinical techniques. To further validate the selectivity of our sensing systems, we also measured the affinity of integrin binding to arginylglycylaspartic acid (RGD) peptide (a key protein interaction in cell adhesion) with different Mn2+ ion concentrations, ranging from 1 nM to 1 mM.
Collapse
Affiliation(s)
- Shaodi Zhu
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Rodolphe Jaffiol
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
| | - Aurelian Crunteanu
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123, Avenue Albert Thomas, Limoges, France
| | - Cyrille Vézy
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
| | - Sik-To Chan
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000, Troyes, France.
| |
Collapse
|