1
|
Guo H, Loh CCJ. Noncovalent interactions: An emerging focal point in stereoselective catalytic carbohydrate synthesis. Carbohydr Res 2025; 552:109458. [PMID: 40132292 DOI: 10.1016/j.carres.2025.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
The incorporation of frontier synthetic concepts into stereoselective carbohydrate synthesis is gaining significant traction. In the last five years, there are increasing reports documenting that the consideration of weak non-covalent interactions (NCIs) constitutes a vital factor in steering the anomeric and site-selectivity, as well as in activating difficult glycosylations. In light of blossoming developments on this front, we present a brief overview of recent case studies that involve the harnessing of hydrogen bonding (HB), halogen bonding (XB), chalcogen bonding (ChB) and π-interactions. These NCIs represent a considerable palette of classical/non-classical weak interactions that is of current interest to the broad synthesis community. Significantly, a close mechanistic analysis often revealed that NCIs were instrumental in dictating the final stereoselectivity outcome of many glycosylation pathways. We are optimistic that by expanding the focal point from purely glycosyl substrate modifications towards tweaking catalytic NCIs at the supramolecular level of chemical glycosylations, this emerging concept offers new levers of stereoselectivity control beyond classical stereoelectronic and steric considerations.
Collapse
Affiliation(s)
- Hao Guo
- College of Chemistry and Materials Science, And Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, PR China
| | - Charles C J Loh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Stoian C, Schmidt N, Kuczmera TJ, Puylaert P, Lork E, Nachtsheim BJ, Hupf E, Beckmann J. Oxidative addition of diaryldichalcogenides to the diferrocenylphosphenium ion: synthesis, structure and organocatalytic activity. Chem Commun (Camb) 2025. [PMID: 40341328 DOI: 10.1039/d5cc01555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The reaction of the phosphenium ion [Fc2P]+ with dichalcogenides gace rise to the respective phosphonium ions [Fc2P(ChR)2]+ (Ch = S, Se, Te; R = Ph, Fc, biphen), which were employed in chalcogen bond mediated Michael additions.
Collapse
Affiliation(s)
- Corina Stoian
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Nils Schmidt
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Thomas J Kuczmera
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Pim Puylaert
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Enno Lork
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Boris J Nachtsheim
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen, Germany.
| |
Collapse
|
3
|
Tawara R, Hamada S, Furuta T, Kobayashi Y. Impacts of Chalcogen Bonding on the Stability and Reactivity of 5-Iminothianthrene Platform: Toward Electrophilic Nitrogen Sources. Chemistry 2025:e202501045. [PMID: 40320368 DOI: 10.1002/chem.202501045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
The thianthrene scaffold has recently attracted significant attention in various coupling reactions. Although 5-iminothianthrene and its derivatives are expected to function as electrophilic aminating reagents, their properties and reactivity have not been fully investigated. In this work, it was found that 5-iminothianthrene reacted with various electrophiles, such as acid chlorides, protons, and isothiocyanates to give the corresponding adducts. In addition, intramolecular chalcogen bonding (ChB) was identified in those adducts, and this interaction was found to contribute to their stability and reactivity. Finally, the potential of N-acyliminothianthrenes as N-acylnitrene equivalents was demonstrated.
Collapse
Affiliation(s)
- Ryutaro Tawara
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Shohei Hamada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takumi Furuta
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| |
Collapse
|
4
|
Wang Y, Chen WK, Zeng Y. Catalytic Performances of Carbon-Based Tetrel Bond Catalysis by Density Functional Theory and Machine Learning. Chemistry 2025; 31:e202500625. [PMID: 40105212 DOI: 10.1002/chem.202500625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/20/2025]
Abstract
The non-covalent interaction catalysis has been widely developed and applied in organocatalysis for its green and economical characteristics. In recent years, the carbon-based tetrel bonds have been successfully applied in organocatalysis. In this work, the structure-property relationship of carbon-based tetrel bond catalysts is established by utilizing density functional theory (DFT) and machine learning (ML). Taking the Michael addition reaction as an example, the reaction mechanism and new insight into the catalytic active site are introduced based on the DFT-calculated results. The bowl-like 1,1-dicyano-3,3-dicarbonylcyclopropane (DCDC) unit based σ-hole is much more important than the 1,1,2,2-tetracyanocyclopropane (TCCP) unit in tetrel bond catalysts. Introducing electron-withdrawing groups into catalysts significantly enhances the catalytic activity and provides a new strategy for designing efficient catalysts. Furthermore, the construction and evaluation of ML models demonstrate their potential in predicting the catalyst performance, offering a new protocol for fast prediction of the catalytic performance of tetrel bond catalysts.
Collapse
Affiliation(s)
- Yanjiang Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
5
|
Petroselli M, Ballester P. Molecular Balances as Physical Organic Chemistry Tools to Quantify Non-Covalent Interactions. Chemistry 2025; 31:e202404351. [PMID: 39817356 DOI: 10.1002/chem.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/18/2025]
Abstract
Non-covalent interactions are present in numerous synthetic and biological systems, playing an essential role in vital life processes, such as the stabilization of proteins' structures or reversible binding in substrate-receptor complexes. Their study is relevant but faces challenges due to its inherent weak nature. In this context, molecular balances (MBs) are one of the most efficient physical organic chemistry tools to quantify non-covalent interactions, bringing beneficial knowledge regarding their nature and strength. Herein, we report an overview and critical discussion of recent studies related to various MBs in the quantification of a collection of non-covalent interactions, covering from the well-known aryl • • • aryl and CH • • • aryl interaction to the newest fullerene • • • aryl and chalcogen • • • chalcogen interactions.
Collapse
Affiliation(s)
- Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Païs Catalans 16, 43007, Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Païs Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08018, Barcelona, Spain
| |
Collapse
|
6
|
Jakka SR, Mugesh G. Emerging Role of Noncovalent Interactions and Disulfide Bond Formation in the Cellular Uptake of Small Molecules and Proteins. Chem Asian J 2025; 20:e202401734. [PMID: 39831847 DOI: 10.1002/asia.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Intracellular delivery of proteins and small molecules is an important barrier in the development of strategies to deliver functional proteins and therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. The conjugations of small molecules such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose. Molecular level interactions are governed mostly by ionic (cationic/anionic), covalent and noncovalent interactions with various molecular entities of glycocalyx matrix on plasma membrane lipid bilayer. Although the role of noncovalent interactions in cellular uptake is not fully understood, several recent advances have focused on the noncovalent interaction-based strategies of intracellular delivery of small molecules and proteins into mammalian cells. These are achieved by simple modification of protein surfaces with chemical moieties which can form noncovalent interactions other than hydrogen bonding. In this review, we describe the recent advances and the mechanistic aspects of intracellular delivery and role of noncovalent interactions in the cellular uptake of proteins and small molecules.
Collapse
Affiliation(s)
- Surendar R Jakka
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
7
|
Cao RF, Su R, Wei ZW, Li ZL, Zhu D, Huo YX, Xue XS, Chen ZM. Chiral sulfide and achiral sulfonic acid cocatalyzed enantioselective electrophilic tandem selenylation semipinacol rearrangement of allenols. Nat Commun 2025; 16:2147. [PMID: 40032867 DOI: 10.1038/s41467-025-57381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
A highly enantioselective electrophilic selenylation/semipinacol rearrangement of allenols has been developed, which is enabled by the cooperative catalysis of a chiral sulfide and an achiral sulfonic acid. The designed and synthesized chiral sulfide catalyst and selenylating reagent play a crucial role in enhancing both enantioselectivity and reactivity. This approach exhibits excellent regio-, chemo-, and enantioselectivity, providing access to diverse enantioenriched cyclopentanones featuring an arylselenovinyl-substituted quaternary carbon stereocenter. Furthermore, these products can be transformed into synthetically valuable alkyne, vinyl bromide, and aniline derivatives. Mechanistic studies reveal that the combination of a chiral sulfide and an achiral sulfonic acid not only facilitates the formation of catalytically active species, but also governs the enantioselectivity of the reaction. Meanwhile, density functional theory calculations disclose that four hydrogen bond interactions and a π‧‧‧π interaction are responsible for the observed enantioselectivity.
Collapse
Affiliation(s)
- Ren-Fei Cao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Ruirui Su
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China
| | - Zheng-Wei Wei
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Ze-Long Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Deng Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yu-Xuan Huo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao-Song Xue
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200232, Shanghai, China.
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
8
|
Tse YC, Docker A, Marques I, Félix V, Beer PD. Amphoteric chalcogen-bonding and halogen-bonding rotaxanes for anion or cation recognition. Nat Chem 2025; 17:373-381. [PMID: 39979414 PMCID: PMC11882458 DOI: 10.1038/s41557-025-01742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The ever-increasing demand in the development of host molecules for the recognition of charged species is stimulated by their fundamental roles in numerous biological and environmental processes. Here, capitalizing on the inherent amphoteric nature of anisotropically polarized tellurium or iodine atoms, we demonstrate a proof of concept in charged guest recognition, where the same neutral host structure binds both cations or anions solely through its chalcogen or halogen donor atoms. Through extensive 1H nuclear magnetic resonance titration experiments and computational density functional theory studies, a library of chalcogen-bonding (ChB) and halogen-bonding (XB) mechanically interlocked [2]rotaxane molecules, including seminal examples of all-ChB and mixed ChB/XB [2]rotaxanes, are shown to function as either Lewis-acidic or Lewis-basic multidentate hosts for selective halide anion and metal cation binding. Notably, the exploitation of the inherent amphoteric character of an atom for the strategic purpose of either cation or anion recognition constitutes the inception of a previously unexplored area of supramolecular host-guest chemistry.
Collapse
Affiliation(s)
- Yuen Cheong Tse
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Igor Marques
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Vítor Félix
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Zhao C, Li Y, Chen WK, Zeng Y. Computational Study of Hypervalent Chalcogen Bond Catalysis on the Hydroarylation of Styrene with Phenol: O-Activation vs π-Activation. J Org Chem 2025; 90:2860-2868. [PMID: 39950601 DOI: 10.1021/acs.joc.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Chalcogen bond catalysis is gaining recognition in organocatalysis due to its environmental benignity and relatively low cost. The hypervalent selenium salts can drive the hydroarylation of styrene and phenol, and hypervalent chalcogen···π catalysis has been proposed [Zhang, Q. Angew. Chem., Int. Ed. 2022, 61, e202208009]. In this work, the hydroarylation of styrene and phenol catalyzed by cyclic hypervalent selenium-based catalysts is investigated by density functional theory (DFT) calculations, and two activation modes are observed: one is on the styrene (π-activation mode), and the other is on the phenol (O-activation mode). The energy barriers via the O-activation mode are lower than those of the π-activation mode, and our proposed O-activation mode in this work may be more favorable. For the O-activation mode, energy barriers for the ortho-hydroarylation are lower than those for the para-hydroarylation, which is consistent with the experimental observation that the ortho-hydroarylation product is the major product and supports our proposed O-activation mode. Further investigation revealed that the stronger electrostatic interaction is the main factor leading to the ortho-hydroarylation in the O-activation mode compared to the para-hydroarylation. Moreover, the substituent effect of cyclic hypervalent selenium-based catalysts on the reactivity was investigated. This work would provide a valuable perspective on expanding applications for chalcogen bond catalysis.
Collapse
Affiliation(s)
- Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
10
|
He X, Fu Y, Xi R, Zhang C, Lan K, Su Z, Wang F, Feng X, Liu X. Asymmetric Carbene Insertion into Se-S Bonds by Synergistic Rh(II)/Guanidine Catalysis Involving Chalcogen-Bond Assistance. Angew Chem Int Ed Engl 2025; 64:e202417636. [PMID: 39487093 DOI: 10.1002/anie.202417636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
The efficient construction of chalcogen-atom-based chiral compounds remains a challenge, despite the importance of organoselenium and organosulfur compounds in life and materials science. Chalcogen atoms can form net attractive interactions called chalcogen bonds, but it is an undeveloped tool to assist asymmetric catalysis. Herein, we report an enantioselective insertion platform to install a stereogenic center bearing selenyl and thiocyano functional groups. Our method operates by synergistic catalysis by a chiral guanidine and an achiral dirhodium complex in a three-component or four-component reaction, through Se-S bond insertion into carbene species, competing successfully with the spontaneous racemic process and showing high regioselectivity. As elucidated by spectroscopic experiments and computational studies, a unique mechanism involving chalcogen as well as hydrogen bonding was established to account for the enantiocontrol. The high stereoselectivity holds for a broad array of selenylthiocyanatopropanoates, which showed excellent anti-inflammatory toward IL-1β and low cytotoxicity.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kexin Lan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Yue MS, Luo N, Wang XD, Ao YF, Wang DX, Wang QQ. Cooperative Anion-π Catalysis with Chiral Molecular Cages toward Enantioselective Desymmetrization of Anhydrides. J Am Chem Soc 2025; 147:2303-2308. [PMID: 39790015 DOI: 10.1021/jacs.4c15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Exploiting novel noncovalent interactions for catalysis design represents a fascinating direction. For the flexible and relatively weak anion-π interactions, manipulation of two or more π-acidic surfaces for cooperative activation is highly desirable. Here, we demonstrate the strategy of cooperative anion-π catalysis based on chiral molecular cages with V-shaped electron-deficient cavities for synergic binding and activation of dicarbonyl electrophiles toward highly enantioselective desymmetrization transformation. The chiral cages were readily synthesized by incorporation of additional chiral base sites in one step. The cages efficiently catalyzed methanolytic desymmetrization of a series of meso cyclic anhydrides in nearly quantitative yields and up to 94% ee. In contrast, the non-cage analogues and simple control catalysts showed sluggish conversion and much lower enantioselectivity. Crystal structure, substrate binding studies, and theoretical modeling consistently suggested the essential role of the cage electron-deficient cavities in harnessing cooperative anion-π interactions for efficient activation and excellent selectivity control.
Collapse
Affiliation(s)
- Ming-Sen Yue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Janicki MJ, Szabla R. Chalcogen Bonds Enable Efficient Photoreduction of Sulfur-Containing Heterocycles. Angew Chem Int Ed Engl 2025; 64:e202413498. [PMID: 39363735 DOI: 10.1002/anie.202413498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. We demonstrate this concept through the photoreduction of the sulfur-containing DNA nucleoside precursor thioanhydrouridine to 2'-deoxy-thiouridine, revealing the previously unrecognized role of bisulfide in this process. Based on quantum chemical simulations, we identify a stable chalcogen-bonding complex of the hydrosulfide anion and thionhydrouridine (HS-⋅⋅⋅S contacts), which enables directional photoinduced electron transfer, resulting in the formation of non-canonical DNA nucleoside. We also disprove the possibility that photoreduction of thioanhydronucleosides could be initiated by hydrated electrons generated from irradiated bisulfide anions which do not interact with the chromophore. Finally, we show that selective photoreduction mediated by chalcogen bonds can only occur for chromophores, which exhibit sufficiently long excited-state lifetimes in the locally-excited states to undergo transition to the productive charge transfer state. These findings can be further used in the design of similar photoredox reactions which can employ the potential of chalcogen bonding interactions.
Collapse
Affiliation(s)
- Mikołaj J Janicki
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| |
Collapse
|
13
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
14
|
Chen R, Lei F, Jin D, Peng K, Liu Q, Zhong Y, Hong L, Li X, Zeng Z, Lu T. Unraveling the Strength and Nature of Se∙∙∙O Chalcogen Bonds: A Comparative Study of SeF 2 and SeF 4 Interactions with Oxygen-Bearing Lewis Bases. Molecules 2024; 29:5739. [PMID: 39683896 DOI: 10.3390/molecules29235739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Chalcogen bonds (ChBs) involving selenium have attracted substantial scholarly interest in past years owing to their fundamental roles in various chemical and biological fields. However, the effect of the valency state of the electron-deficient selenium atom on the characteristics of such ChBs remains unexplored. Herein, we comparatively studied the σ-hole-type Se∙∙∙O ChBs between SeF2/SeF4 and a series of oxygen-bearing Lewis bases, including water, methanol, dimethyl ether, ethylene oxide, formaldehyde, acetaldehyde, acetone, and formic acid, using ab initio computations. The interaction energies of these chalcogen-bonded heterodimers vary from -5.25 to -11.16 kcal/mol. SeF2 participates in a shorter and stronger ChB than SeF4 for all the examined heterodimers. Such Se∙∙∙O ChBs are closed-shell interactions, exhibiting some covalent character for all the examined heterodimers, except for SeF4∙∙∙water. Most of these chalcogen-bonded heterodimers are predominantly stabilized through orbital interactions between the lone pair of the O atom in Lewis bases and the σ*(Se-F) antibonding orbitals of Lewis acids. The back-transfer of charge from the lone pair of selenium into the σ* or π* antibonding orbitals of Lewis bases is also observed for all systems. Energy decomposition analysis reveals that the electrostatic component significantly stabilizes the targeted heterodimers, while the induction and dispersion contributions cannot be ignored.
Collapse
Affiliation(s)
- Renhua Chen
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Deze Jin
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Ke Peng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Qingyu Liu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yeshuang Zhong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Liang Hong
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Tao Lu
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
15
|
Wang QQ. Anion Recognition-Directed Supramolecular Catalysis with Functional Macrocycles and Molecular Cages. Acc Chem Res 2024; 57:3227-3240. [PMID: 39449574 DOI: 10.1021/acs.accounts.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
ConspectusThe development of supramolecular chemistry has provided a variety of host molecules and noncovalent tools for boosting catalytic processes, stimulating the emergence and advance of supramolecular catalysis, among which macrocyclic and cage-like compounds have attracted great attention due to their possession of an enzyme-mimetic cavity and recognition ability. While the privileged scaffolds such as crown ethers, cyclodextrins, cucurbiturils, calixarenes, and metal-coordinated cages have been widely used, their skeletons usually do not contain a directional binding site; binding and activation mainly rely on cation-associated interactions or hydrophobic effects. In this context, the recent advance of anion supramolecular chemistry has drawn our attention to developing an anion recognition-directed approach by using tailor-made functionalized macrocycles and cages. Anions are important widely existing species in both biological and chemical systems and play an important role in regulating the structure and function of enzymes. We envisioned that by taking advantage of anions, including their rich variety, diverse geometry, and multiple interaction sites, the sophisticated cooperation of multiple noncovalent interactions can be manipulated in a confined cavity for directing efficient and selective catalysis.Following this concept, we initiated our study by introducing typical thiourea H-bonding groups to design and synthesize a series of bis-thiourea macrocycles, especially chiral macrocycles, by incorporating chiral linkers. Taking advantage of the obtained strong, cooperative anion binding, a macrocycle-enabled counteranion trapping strategy was developed, which afforded greatly enhanced catalytic efficiency and excellent stereocontrol in acid-catalyzing reactions. Furthermore, inspired by sulfate-induced macrocyclic dimerization assembly, we built a substrate-induced assembly system, enabling an induced-fit cooperative activation network for efficient and enantioselective catalysis. In addition, anion recognition-driven chirality gearing with a more sophisticated trithiourea cage was revealed, which could provide a basis for implementing anion-triggered allosteric catalysis within the induced helical space. Not limited to hydrogen bonding, the emerging anion-π interactions were largely exploited. A series of triazine-based prism cages containing three V-shaped electron-deficient π-cavities were constructed, and their anion-π binding properties were studied. Based on this system, cooperative anion-π activation was established for driving highly efficient and selective catalysis, which paved a way to push anion-π interactions toward more practical and useful catalyst design.These results demonstrated that the anion-recognition direction can serve as a powerful, versatile approach for boosting highly efficient and selective supramolecular catalysis. It is feasible not only for employing exogenous anions (e.g., counteranion) as a handle but also for recognition and regulation of anionic active intermediates/transition states, from use in conventional H-bonding to emerging anion-π recognition.
Collapse
Affiliation(s)
- Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Lin B, Liu H, Scott HM, Karki I, Vik EC, Madukwe DO, Pellechia PJ, Shimizu KD. Transition State Stabilizing Effects of Oxygen and Sulfur Chalcogen Bond Interactions. Chemistry 2024; 30:e202402011. [PMID: 39024522 DOI: 10.1002/chem.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Non-covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the transition stabilizing effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in their bond rotation transition states. This enabled the kinetic influences to be assessed by monitoring changes in the rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects on the rotational barriers. Sulfur stabilized the bond rotation transition state by as much as -7.2 kcal/mol without electron-withdrawing groups. The key was to design a system where the sulfur σ ${\sigma }$ -hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron-withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems.
Collapse
Affiliation(s)
- Binzhou Lin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Harrison M Scott
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ishwor Karki
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Erik C Vik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Daniel O Madukwe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
17
|
Georges T, Ovens JS, Bryce DL. Electrostatic Surface Potentials and Chalcogen-Bonding Motifs of Substituted 2,1,3-Benzoselenadiazoles Probed via 77Se Solid-State NMR Spectroscopy. Chemistry 2024; 30:e202402254. [PMID: 38958873 DOI: 10.1002/chem.202402254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Chalcogen bonds (ChB) are moderately strong, directional, and specific non-covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ-holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self-complementary ChB networks of 2,1,3-benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ-holes on selenium are largely influenced by the electron-withdrawing character of these substituents. Structural analyses via X-ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6-dimethyl-2,1,3-benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid-state magic-angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self-complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ-holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.
Collapse
Affiliation(s)
- Tristan Georges
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private Ottawa, K1N 6N5, Ontario, Canada
| | - Jeffrey S Ovens
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private Ottawa, K1N 6N5, Ontario, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private Ottawa, K1N 6N5, Ontario, Canada
| |
Collapse
|
18
|
Liu Y, Hao A, Xing P. A photoactivated chiral molecular clamp rotated by selective anion binding. Chem Sci 2024:d4sc04216f. [PMID: 39268215 PMCID: PMC11388084 DOI: 10.1039/d4sc04216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Developing chiral molecular platforms that respond to external fields provides opportunities for designing smart chiroptical materials. Herein, we introduce a molecular clamp whose chiral properties can be turned on by photoactivation. Selective anion binding achieves rational tuning of the conformations and chiroptical properties of the clamp, including circular dichroism and circularly polarized luminescence. Cyanostilbene segments were conjugated to chiral amines with a rotatable axis. Negligible chiroptical signals were significantly enhanced through a light illumination-induced isomerization. Binding with halide ions (F-, Cl- and Br-) enables chiroptical inversion and subsequent amplification of the resulting opposite handedness state by photo treatment. In contrast, the larger I- and NO3 - ions failed to achieve chiroptical inversion. Also the handedness inversion was hampered in conformationally locked amines. Density-functional theory-based computational studies and experimental results reveal a structural transformation that proceeds from a butterfly-like open geometry to a closed V-shaped state initiated by four hydrogen bonds and the rotatable axis. This work illustrates design protocols for use in smart chiroptical molecular platforms mediated by photo treatment and anion binding.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
19
|
Groslambert L, Pale P, Mamane V. Telluronium-Catalyzed Halogenation Reactions: Chalcogen-Bond Activation of N-Halosuccinimides and Catalysis. Chemistry 2024; 30:e202401650. [PMID: 38785097 DOI: 10.1002/chem.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
The ability of triaryltelluronium salts to interact with N-halosuccinimides (NXS) through chalcogen bonding (ChB) in the solid state and in solution is demonstrated herein. Cocrystals of the triaryltelluronium bearing two CF3 electron-withdrawing groups per aryl ring with N-chloro-, N-bromo- and N-iodosuccinimide (respectively NCS, NBS and NIS) were analyzed by X-ray diffraction, evidencing a ChB between tellurium and the carbonyl group of NXS. This ChB was confirmed in solution by NMR spectroscopy, especially by 125Te NMR titration experiment, which allowed the determination of the association constant (Ka) between the telluronium and NBS. The so-obtained Ka value of 17.3±0.6 M-1 indicated a moderate interaction in solution because of the competitive role of the solvent. The strength of the Te⋅⋅⋅O ChB was however sufficient enough to promote the catalytic halofunctionalization of aromatics and of alkenes such as the intra- and intermolecular haloalkoxylation and haloesterification of alkenes.
Collapse
Affiliation(s)
- Loic Groslambert
- Institute of Chemistry of Strasbourg, UMR 7177, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
20
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
21
|
Ma W, Schmidt A, Strohmann C, Loh CCJ. Stereoselective Entry into α,α'-C-Oxepane Scaffolds through a Chalcogen Bonding Catalyzed Strain-Release C-Septanosylation Strategy. Angew Chem Int Ed Engl 2024; 63:e202405706. [PMID: 38687567 DOI: 10.1002/anie.202405706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The utility of unconventional noncovalent interactions (NCIs) such as chalcogen bonding has lately emerged as a robust platform to access synthetically difficult glycosides stereoselectively. Herein, we disclose the versatility of a phosphonochalcogenide (PCH) catalyst to facilitate access into the challenging, but biologically interesting 7-membered ring α,α'-C-disubstituted oxepane core through an α-selective strain-release C-glycosylation. Methodically, this strategy represents a switch from more common but entropically less desired macrocyclizations to a thermodynamically favored ring-expansion approach. In light of the general lack of stereoselective methods to access C-septanosides, a remarkable palette of silyl-based nucleophiles can be reliably employed in our method. This include a broad variety of useful synthons, such as easily available silyl-allyl, silyl-enol ether, silyl-ketene acetal, vinylogous silyl-ketene acetal, silyl-alkyne and silylazide reagents. Mechanistic investigations suggest that a mechanistic shift towards an intramolecular aglycone transposition involving a pentacoordinate silicon intermediate is likely responsible in steering the stereoselectivity.
Collapse
Affiliation(s)
- Wenpeng Ma
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Annika Schmidt
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
22
|
Liu CZ, Zhang C, Li ZY, Chen J, Wang T, Zhang XK, Yan M, Zhai B. Multiple non-covalent-interaction-directed supramolecular double helices: the orthogonality of hydrogen, halogen and chalcogen bonding. Chem Commun (Camb) 2024; 60:6063-6066. [PMID: 38780308 DOI: 10.1039/d4cc01472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, a benzoselenadiazole- and pyridine-bifunctionalized hydrogen-bonded arylamide foldamer was synthesized. A co-crystallization experiment with 1,4-diiodotetrafluorobenzene showed that a new type of supramolecular double helices, which were induced by three orthogonal interactions, namely, three-center hydrogen bonding (O⋯H⋯O), I⋯N halogen bonding and Se⋯N chalcogen bonding, have been constructed in the solid state. This work presents a novel instance of multiple non-covalent interactions that work together to construct supramolecular architectures.
Collapse
Affiliation(s)
- Chuan-Zhi Liu
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Chi Zhang
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Zhong-Yi Li
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Jiale Chen
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Tonglu Wang
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xiang-Kun Zhang
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Bin Zhai
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| |
Collapse
|
23
|
Lu T, Chen R, Liu Q, Zhong Y, Lei F, Zeng Z. Unveiling the Nature and Strength of Selenium-Centered Chalcogen Bonds in Binary Complexes of SeO 2 with Oxygen-/Sulfur-Containing Lewis Bases: Insights from Theoretical Calculations. Int J Mol Sci 2024; 25:5609. [PMID: 38891796 PMCID: PMC11171880 DOI: 10.3390/ijms25115609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π-hole-type Se∙∙∙O/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from -4.68 kcal/mol to -10.83 kcal/mol for the Se∙∙∙O chalcogen-bonded complexes and vary between -3.53 kcal/mol and -13.77 kcal/mol for the Se∙∙∙S chalcogen-bonded complexes. The Se∙∙∙O/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The Se∙∙∙O/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these Se∙∙∙O/S ChBs generally surpasses that of the C/O-H∙∙∙O hydrogen bonds within the same complex. It should be noted that additional C/O-H∙∙∙O interactions have a large effect on the geometric structures and strength of Se∙∙∙O/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2∙∙∙HCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well.
Collapse
Affiliation(s)
| | | | | | | | - Fengying Lei
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (T.L.); (R.C.); (Q.L.); (Y.Z.)
| | - Zhu Zeng
- School of Basic Medical Sciences/School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (T.L.); (R.C.); (Q.L.); (Y.Z.)
| |
Collapse
|
24
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angew Chem Int Ed Engl 2024; 63:e202316667. [PMID: 38116860 DOI: 10.1002/anie.202316667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Harnessing unconventional noncovalent interactions (NCIs) is emerging as a formidable synthetic approach in difficult-to-access glycosidic chemical space. C-Glycosylation, in particular, has gained a flurry of recent attention. However, most reported methods are restricted to the relatively facile access to α-C-glycosides. Herein, we disclose a β-stereoselective glycosylation of indoles by employing a phosphonoselenide catalyst. The robustness of this protocol is exemplified by its amenability for reaction at both the indolyl C- and N- reactivity sites. In contrast to previous reports, in which the chalcogens were solely involved in Lewis acidic activation, our mechanistic investigation unraveled that the often neglected flanking aromatic substituents of phosphonoselenides can substantially contribute to catalysis by engaging in π-interactions. Computations and NMR spectroscopy indicated that the chalcogenic and aromatic components of the catalyst can be collectively exploited to foster conformational distortion of the glycal away from the usual half-chair to the boat conformation, which liberates the convex β-face for nucleophilic attack.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|