1
|
Jin L, Qin Y, Zhao Y, Zhou X, Zeng Y. Endothelial cytoskeleton in mechanotransduction and vascular diseases. J Biomech 2025; 182:112579. [PMID: 39938443 DOI: 10.1016/j.jbiomech.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The cytoskeleton is an important structural component that regulates various aspects of cell morphology, movement, and intracellular signaling. It plays a pivotal role in the cellular response to biomechanical stimuli, particularly in endothelial cells, which are critical for vascular homeostasis and the pathogenesis of cardiovascular diseases. Mechanical forces, such as shear and tension, activate intracellular signaling cascades that regulate transcription, translation, and cellular behaviors. Despite extensive research into cytoskeletal functions, the precise mechanisms by which the cytoskeleton transduces mechanical signals remain incompletely understood. This review focuses on the role of cytoskeletal components in membrane, cytoplasm, and nucleus in mechanotransduction, with an emphasis on their structure, mechanical and biological behaviors, dynamic interactions, and response to mechanical forces. The collaboration between membrane cytoskeleton, cytoplasmic cytoskeleton, and nucleoskeleton is indispensable for endothelial cells to respond to mechanical stimuli. Understanding their mechanoresponsive mechanisms is essential for advancing therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Yunran Zhao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
2
|
Yang H, Yan J, Xu Y, Gao E, Hu Y, Sun H. Efficient in-droplet cell culture and cytomechanics measurement for assessment of human cellular responses to alcohol. Anal Chim Acta 2025; 1339:343636. [PMID: 39832875 DOI: 10.1016/j.aca.2025.343636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Excessive alcohol consumption poses a significant threat to human health, leading to cellular dehydration, degeneration, and necrosis. Alcohol-induced cellular damage is closely linked to alterations in cellular mechanical properties. However, characterizing these changes following alcohol-related injury remains challenging. Moreover, current research on single-cell mechanics often struggles to culture and measure cells within a controlled microenvironment, leading to complex experimental procedures and imprecise results. (63). RESULTS In this study, we developed a novel single cell measurement method that combines cell microculture in alcohol-containing solutions with cytomechanics assessment within microdroplets. This approach integrates key operations, including single-cell encapsulation and culture in droplets, droplet reinjection, and cell deformation analysis within droplets, enabling high-throughput and multi-parameter quantification of single-cell mechanical properties. The use of droplets provides a precisely regulated microculture environment, effectively avoiding channel clogging issues. Additionally, the integration of cytomechanics measurement simplifies the analytical process by eliminating the need for complex techniques within the droplets. Gastric mucosal epithelial cells (GES-1) and human umbilical vein endothelial cells (HUVECs) were selected as models for ethanol-induced injury to validate the proposed technique. The results demonstrate a bidirectional response in cellular deformability following ethanol treatment, with cells becoming stiffer at lower ethanol concentrations and softer at higher concentrations. (136). SIGNIFICANCE The integration of droplet microfluidics and cell mechanics offers a powerful platform for investigating the underlying mechanisms of ethanol-induced cellular damage. This approach is also applicable for studying changes in cellular mechanical properties by precisely modulating the microculture environment, providing a reliable tool for drug screening and disease modeling in biochemistry and biomedical engineering. (54).
Collapse
Affiliation(s)
- Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Jiaqi Yan
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Youyuan Xu
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Enting Gao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215299, China.
| | - Yichong Hu
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Haizhen Sun
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Ansarizadeh M, Nguyen HT, Lazovic B, Kettunen J, De Silva L, Sivakumar R, Junttila P, Rissanen SL, Hicks R, Singh P, Eklund L. Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions. LAB ON A CHIP 2025; 25:613-630. [PMID: 39847008 DOI: 10.1039/d4lc00824c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems. Using genetically engineered human umbilical vein endothelial cells (HUVECs) and induced pluripotent stem cell (iPSC)-derived ECs (iECs) to express the recurrent TIE2L914F VM mutation we assessed responses on EC orientation and area, actin organization, and Golgi polarization to uni- and bidirectional flow and varying WSS. Comparison of control and TIE2L914F expressing ECs showed differential cellular responses to flow and WSS in terms of cell shape elongation, orientation of F-actin, and Golgi polarization, indicating altered mechanosensory or mechanotransduction signaling pathways in the presence of the VM causative mutation. The data also revealed significant differences in how the primary and iPSC-derived iECs responded to flow. As a conclusion, the developed microfluidic platform allowed simulation of multiple flow conditions in a scalable and pumpless format. The design made it a desirable tool for studying different EC types as well as cellular changes in vascular disease. The platform should offer new opportunities for biomechanical research by providing a controlled environment to analyze the flow-dependent mechanosensory pathways in ECs.
Collapse
Affiliation(s)
- Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Hoang-Tuan Nguyen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
- Finnadvance Ltd., Oulu, Finland
| | - Bojana Lazovic
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Laknee De Silva
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
| | | | | | | | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | | | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.
| |
Collapse
|
4
|
Siekhaus DE, Stanley-Ahmed JA. Discovering mechanisms of macrophage tissue infiltration with Drosophila. Curr Opin Immunol 2024; 91:102502. [PMID: 39536472 DOI: 10.1016/j.coi.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Much is known about the importance of macrophages for regulating diverse aspects of organismal physiology, alongside their essential roles in inflammation. Relatively unexplored are the processes influencing macrophages' and monocytes' ability to invade into the tissues where they carry out these functions. Drosophila plasmatocytes, also called hemocytes, show similarities to vertebrate macrophages in their function and their molecular specification; they have recently been shown to also infiltrate into tissues during development and inflammation. Extravasation across vasculature, into tumors, the brain, and adipose tissue have all been observed. We discuss the striking parallels in some of these systems to vertebrate immune responses, including a requirement for tumor necrosis factor. Finally, we highlight the new pathways regulating infiltration found in the fly that remain as yet unexamined in a vertebrate context.
Collapse
Affiliation(s)
- Daria E Siekhaus
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA.
| | - Jasmine A Stanley-Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095 USA; Centre for Mechanobiochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
5
|
Hu SY, Xue CD, Li YJ, Li S, Gao ZN, Qin KR. Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage. MECHANOBIOLOGY IN MEDICINE 2024; 2:100069. [DOI: 10.1016/j.mbm.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Casanova CR, Casanova MR, Reis RL, Oliveira JM. Advancing diagnostics and disease modeling: current concepts in biofabrication of soft microfluidic systems. IN VITRO MODELS 2024; 3:139-150. [PMID: 39872940 PMCID: PMC11756457 DOI: 10.1007/s44164-024-00072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 01/30/2025]
Abstract
Soft microfluidic systems play a pivotal role in personalized medicine, particularly in in vitro diagnostics tools and disease modeling. These systems offer unprecedented precision and versatility, enabling the creation of intricate three-dimensional (3D) tissue models that can closely emulate both physiological and pathophysiological conditions. By leveraging innovative biomaterials and bioinks, soft microfluidic systems can circumvent the current limitations involving the use of polydimethylsiloxane (PDMS), thus facilitating the development of customizable systems capable of sustaining the functions of encapsulated cells and mimicking complex biological microenvironments. The integration of lab-on-a-chip technologies with soft nanodevices further enhances disease models, paving the way for tailored therapeutic strategies. The current research concepts underscore the transformative potential of soft microfluidic systems, exemplified by recent breakthroughs in soft lithography and 3D (bio)printing. Novel applications, such as multi-layered tissues-on-chips and skin-on-a-chip devices, demonstrate significant advancements in disease modeling and personalized medicine. However, further exploration is warranted to address challenges in replicating intricate tissue structures while ensuring scalability and reproducibility. This exploration promises to drive innovation in biomedical research and healthcare, thus offering new insights and solutions to complex medical challenges and unmet needs.
Collapse
Affiliation(s)
- César R. Casanova
- 3B’s Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs – Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimaraes, Braga, Portugal
| | - Marta R. Casanova
- 3B’s Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs – Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimaraes, Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs – Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimaraes, Braga, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs – Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimaraes, Braga, Portugal
| |
Collapse
|
7
|
Fan K, Guo C, Liu N, Liang X, Jin K, Wang Z, Zhu C. Visualization and Analysis of Mapping Knowledge Domain of Fluid Flow Related to Microfluidic Chip. ACS OMEGA 2024; 9:22801-22818. [PMID: 38826539 PMCID: PMC11137721 DOI: 10.1021/acsomega.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Microfluidic chips are important tools to study the microscopic flow of fluid. To better understand the research clues and development trends related to microfluidic chips, a bibliometric analysis of microfluidic chips was conducted based on 1115 paper records retrieved from the Web of Science Core Collection database. CiteSpace and VOSviewer software were used to analyze the distribution of annual paper quantity, country/region distribution, subject distribution, institution distribution, major source journals distribution, highly cited papers, coauthor cooperation relationship, research knowledge domain, research focuses, and research frontiers, and a knowledge domain map was drawn. The results show that the number of papers published on microfluidic chips increased from 2010 to 2023, among which China, the United States, Iran, Canada, and Japan were the most active countries in this field. The United States was the most influential country. Nanoscience, energy, and chemical industry and multidisciplinary materials science were the main fields of microfluidic chip research. Lab on a Chip, Microfluidics and Nanofluidics, and Journal of Petroleum Science and Engineering were the main sources of papers published. The fabrication of chips, as well as their applications in porous media flow and multiphase flow, is the main knowledge domain of microfluidic chips. Micromodeling, fluid displacement, wettability, and multiphase flow are the research focuses in this field currently. The research frontiers in this field are enhanced oil recovery, interfacial tension, and stability.
Collapse
Affiliation(s)
- Kai Fan
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Chang Guo
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Nan Liu
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xiaoyu Liang
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Kan Jin
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Zedong Wang
- College
of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Chuanjie Zhu
- School
of Safety Engineering, China University
of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
8
|
Heng Y, Zheng X, Xu Y, Yan J, Li Y, Sun L, Yang H. Microfluidic device featuring micro-constrained channels for multi-parametric assessment of cellular biomechanics and high-precision mechanical phenotyping of gastric cells. Anal Chim Acta 2024; 1301:342472. [PMID: 38553127 DOI: 10.1016/j.aca.2024.342472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Cellular biomechanics plays a significant role in the regulation of cellular physiological and pathological processes. In recent years, multiple methods have been developed to evaluate cellular biomechanics, such as atomic force microscopy (AFM), micropipette aspiration, and magnetic tweezers. However, most of these methods only focus on a single parameter and cannot automate the process at a high-efficiency level. A novel microfluidic method is necessary to achieve the simultaneous multi-parametric measurement of cellular biomechanics and high-precision cellular mechanical phenotyping at high throughput. RESULTS To tackle the issue concerning the low-throughput and cellular single-parameter evaluation, we designed and fabricated a microfluidic chip featuring multiple micro-constrained channels structure, providing a simultaneous multi-parametric assessment of cellular biomechanics, including elastic modulus, recovery capability, and deformability. We compared the biomechanical properties of normal human gastric mucosal epithelial cells (GES-1) and human gastric cancer cells (AGS and MKN-45) by the chip. Results demonstrated that the elastic modulus of GES-1, AGS, and MKN-45 cells decreased sequentially, which was the opposite of their invasiveness and metastasis potential, suggesting the inverse correlation between cellular elastic modulus and malignancy. Meanwhile, the recovery capability and deformability of GES-1, AGS, and MKN-45 cells increased sequentially, demonstrating the positive correlation between cellular deformability and malignancy. Furthermore, multiple parameters were used to distinguish gastric cancer cells from normal gastric cells via machine learning. An accuracy of over 94.8% for identifying gastric cancer cells was achieved. SIGNIFICANCE This study provides a deep insight into the biophysical mechanism of gastric cancer metastasis at the single-cell level and possesses great potential to function as a valuable tool for single-cell analysis, thereby facilitating high-precision and high-throughput discrimination of cellular phenotypes that are not easily discernible through single-marker analysis.
Collapse
Affiliation(s)
- Yang Heng
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Xinyu Zheng
- Suzhou Medical College of Soochow University, Suzhou, 215000, China; Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Youyuan Xu
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Jiaqi Yan
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Ying Li
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Lining Sun
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
9
|
Lu Y, Chen Y, Hou G, Lei H, Liu L, Huang X, Sun S, Liu L, Liu X, Na J, Zhao Y, Cheng L, Zhong L. Zinc-Iron Bimetallic Peroxides Modulate the Tumor Stromal Microenvironment and Enhance Cell Immunogenicity for Enhanced Breast Cancer Immunotherapy Therapy. ACS NANO 2024; 18:10542-10556. [PMID: 38561324 DOI: 10.1021/acsnano.3c12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.
Collapse
Affiliation(s)
- Yujie Lu
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xuan Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Luyao Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiyu Liu
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yongxiang Zhao
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liang Cheng
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liping Zhong
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
10
|
Rane A, Jarmoshti J, Siddique AB, Adair S, Torres-Castro K, Honrado C, Bauer TW, Swami NS. Dielectrophoretic enrichment of live chemo-resistant circulating-like pancreatic cancer cells from media of drug-treated adherent cultures of solid tumors. LAB ON A CHIP 2024; 24:561-571. [PMID: 38174422 PMCID: PMC10826460 DOI: 10.1039/d3lc00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Due to low numbers of circulating tumor cells (CTCs) in liquid biopsies, there is much interest in enrichment of alternative circulating-like mesenchymal cancer cell subpopulations from in vitro tumor cultures for utilization within molecular profiling and drug screening. Viable cancer cells that are released into the media of drug-treated adherent cancer cell cultures exhibit anoikis resistance or anchorage-independent survival away from their extracellular matrix with nutrient sources and waste sinks, which serves as a pre-requisite for metastasis. The enrichment of these cell subpopulations from tumor cultures can potentially serve as an in vitro source of circulating-like cancer cells with greater potential for scale-up in comparison with CTCs. However, these live circulating-like cancer cell subpopulations exhibit size overlaps with necrotic and apoptotic cells in the culture media, which makes it challenging to selectively enrich them, while maintaining them in their suspended state. We present optimization of a flowthrough high frequency (1 MHz) positive dielectrophoresis (pDEP) device with sequential 3D field non-uniformities that enables enrichment of the live chemo-resistant circulating cancer cell subpopulation from an in vitro culture of metastatic patient-derived pancreatic tumor cells. Central to this strategy is the utilization of single-cell impedance cytometry with gates set by supervised machine learning, to optimize the frequency for pDEP, so that live circulating cells are selected based on multiple biophysical metrics, including membrane physiology, cytoplasmic conductivity and cell size, which is not possible using deterministic lateral displacement that is solely based on cell size. Using typical drug-treated samples with low levels of live circulating cells (<3%), we present pDEP enrichment of the target subpopulation to ∼44% levels within 20 minutes, while rejecting >90% of dead cells. This strategy of utilizing single-cell impedance cytometry to guide the optimization of dielectrophoresis has implications for other complex biological samples.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, USA.
| | - Javad Jarmoshti
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| | | | - Sara Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | | | - Carlos Honrado
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Chemistry, University of Virginia, Charlottesville, USA.
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| |
Collapse
|
11
|
Zhao H, Cao Z, Sun D, Chen X, Kang S, Zheng Y, Sun D. Ultrasonic neural regulation over two-dimensional graphene analog biomaterials: Enhanced PC12 cell differentiation under diverse ultrasond excitation. ULTRASONICS SONOCHEMISTRY 2023; 101:106678. [PMID: 37984209 PMCID: PMC10696118 DOI: 10.1016/j.ultsonch.2023.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Two-dimensional (2D) biomaterials, with unique planar topology and quantum effect, have been widely recognized as a versatile nanoplatform for bioimaging, drug delivery and tissue engineering. However, during the complex application of nerve repair, in which inflammatory microenvironment control is imperative, the gentle manipulation and trigger of 2D biomaterials with inclusion and diversity is still challenging. Herein, inspired by the emerging clinical progress of ultrasound neuromodulation, we systematically studied ultrasound-excited 2D graphene analogues (graphene, graphene oxide, reduced graphene oxide (rGO) and carbon nitride) to explore their feasibility, accessibility, and adjustability for ultrasound-induced nerve repair in vitro. Quantitative observation of cell differentiation morphology demonstrates that PC12 cells added with rGO show the best compatibility and differentiation performance under the general ultrasound mode (0.5 w/cm2, 2 min/day) compared with graphene, graphene oxide and carbon nitride. Furthermore, the general condition can be improved by using a higher intensity of 0.7 w/cm2, but it cannot go up further. Later, ultrasonic frequency and duty cycle conditions were investigated to demonstrate the unique and remarkable inclusion and diversity of ultrasound over conventional electrical and surgical means. The pulse waveform with power of 1 MHz and duty cycle of 50 % may be even better, while the 3 MHz and 100 % duty cycle may not work. Overall, various graphene analog materials can be regarded as biosafe and accessible in both fundamental research and clinical ultrasound therapy, even for radiologists without material backgrounds. The enormous potential of diverse and personalized 2D biomaterials-based therapies can be expected to provide a new mode of ultrasound neuromodulation.
Collapse
Affiliation(s)
- Huijia Zhao
- Jinzhou Medical University Graduate Training Base (Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine), 121001 Jinzhou, PR China; Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Ziqi Cao
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China
| | - Dandan Sun
- Department of Ultrasonography, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, PR China
| | - Xingzhou Chen
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shifei Kang
- Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, 200093 Shanghai, PR China.
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China.
| | - Di Sun
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, PR China.
| |
Collapse
|