1
|
Zhang L, Deng Z, Du Y, Xu Z, Zhang T, Tong Z, Ai H, Liang LJ, Liu L. RAD18-catalysed formation of ubiquitination intermediate mimic of proliferating cell nuclear antigen PCNA. Bioorg Med Chem 2025; 117:118016. [PMID: 39580855 DOI: 10.1016/j.bmc.2024.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The 2-((2-chloroethyl)amino)ethane-1-thiol (CAET)-based chemical trapping strategy is a practical tool for mechanistic studies of E3-catalysed ubiquitination. However, the construction of ubiquitination intermediate mimics (E2-Ub-substrate conjugates) via CAET has been limited to peptides, while its application to folded protein substrates remains unexplored. Here, we report that disulfide bond formation between E2-Ub (RAD6A-Ub) and the folded protein substrate PCNA (proliferating cell nuclear antigen) occurs upon the addition of the PCNA-associated E3 ligase RAD18. Leveraging this finding, we employed intein splicing technology to generate a stable, covalently linked RAD18-RAD6A-Ub-PCNA complex, enabling chemical crosslinking mass spectrometry (CX-MS) analysis to study the structure of this complex. This work showcases use of a substrate-associated E3 ligase to promote disulfide bond formation between an E2-Ub conjugate and a folded substrate for CAET-based trapping, thereby expanding the scope of this technique.
Collapse
Affiliation(s)
- Liying Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yunxiang Du
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyu Xu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyi Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huasong Ai
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Whedon S, Lee K, Wang ZA, Zahn E, Lu C, Yapa Abeywardana M, Fairall L, Nam E, DuBois-Coyne S, De Ioannes P, Sheng X, Andrei A, Lundberg E, Jiang J, Armache KJ, Zhao Y, Schwabe JWR, Wu M, Garcia BA, Cole PA. Circular Engineered Sortase for Interrogating Histone H3 in Chromatin. J Am Chem Soc 2024; 146:33914-33927. [PMID: 39585806 PMCID: PMC11638967 DOI: 10.1021/jacs.4c12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Reversible modification of the histone H3 N-terminal tail is critical in regulating the chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here, we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle-down proteomics with tandem mass tags. This cut-and-paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetic discovery and therapeutic development.
Collapse
Affiliation(s)
- Samuel
D. Whedon
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kwangwoon Lee
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhipeng A. Wang
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Zahn
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Congcong Lu
- Epigenetics
Institute, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Maheeshi Yapa Abeywardana
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Louise Fairall
- Leicester
Institute of Structural and Chemical Biology, Department of Molecular
and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Eunju Nam
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah DuBois-Coyne
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pablo De Ioannes
- Department
of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Xinlei Sheng
- Ben
May Department
for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Adelina Andrei
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Lundberg
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer Jiang
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingming Zhao
- Ben
May Department
for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - John W. R. Schwabe
- Leicester
Institute of Structural and Chemical Biology, Department of Molecular
and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Mingxuan Wu
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin A. Garcia
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Philip A. Cole
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Whedon SD, Lee K, Wang ZA, Zahn E, Lu C, Yapa-Abeywardana M, Fairall L, Nam E, Dubois-Coyne S, Ioannes PD, Sheng X, Andrei A, Lundberg E, Jiang J, Armache KJ, Zhao Y, Schwabe JWR, Wu M, Garcia BA, Cole PA. A circular engineered sortase for interrogating histone H3 in chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612318. [PMID: 39372790 PMCID: PMC11451751 DOI: 10.1101/2024.09.10.612318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reversible modification of the histone H3 N-terminal tail is critical in regulating chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle down proteomics with tandem mass tags. This cut-and- paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetics discovery and therapeutic development.
Collapse
Affiliation(s)
- Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Congcong Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Maheeshi Yapa-Abeywardana
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah Dubois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Xinlei Sheng
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, United States
| | - Adelina Andrei
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Lundberg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Yingming Zhao
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, United States
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Peng S, Liu X, Lu C, Wang H, Liu X, Gong Q, Tao H, Xu H, Tian C, Xu G, Li JB. Efficient Chemical Synthesis of Multi-Monoubiquitylated and Diubiquitylated Histones by the α-Halogen Ketone-Mediated Strategy. Bioconjug Chem 2024; 35:944-953. [PMID: 38954775 DOI: 10.1021/acs.bioconjchem.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.
Collapse
Affiliation(s)
- Shuai Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Haibo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xiaotong Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Qingyue Gong
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huizhong Tao
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Hongrui Xu
- Suzhou Municipal Center for Disease Control and Prevention, Suzhou 215004, China
| | - Changlin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Cai H, Wu X, Mao J, Tong Z, Yan D, Weng Y, Zheng Q. Sequential release of interacting proteins and Ub-modifying enzymes by disulfide heterotypic ubiquitin reagents. Bioorg Chem 2024; 145:107186. [PMID: 38387394 DOI: 10.1016/j.bioorg.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Heterotypic ubiquitin (Ub) chains have emerged as fundamental components in a wide range of cellular processes. The integrative identification of Ub-interacting proteins (readers) and Ub-modifying enzymes (writers and erasers) that selectively recognize and regulate heterotypic ubiquitination may provide crucial insights into these processes. In this study, we employed the bifunctional molecule-assisted (CAET) strategy to develop a type of disulfide bond-activated heterotypic Ub reagents, which allowed to enrich heterotypic Ub-interacting proteins and modifying enzymes simultaneously. The sequential release of readers which are non-covalently bound and writers or erasers which are covalently conjugated by using urea and reductant, respectively, combined with label-free quantitative (LFQ) MS indicated that these heterotypic Ub reagents would facilitate future investigations into functional roles played by heterotypic Ub chains.
Collapse
Affiliation(s)
- Hongyi Cai
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China; Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangwei Wu
- Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Junxiong Mao
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China; Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zebin Tong
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dingfei Yan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yicheng Weng
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qingyun Zheng
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|