1
|
Zhu S, Yang Z, Liu Y, Cheng L, Long D, Dai F. Oral Lipid Nanoparticles for Improving the Efficiency of Drug Delivery Systems in Ulcerative Colitis: Recent Advances and Future Prospects. Pharmaceutics 2025; 17:547. [PMID: 40430840 PMCID: PMC12114620 DOI: 10.3390/pharmaceutics17050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/12/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by persistent, recurrent, and relapsing inflammation of the mucosal layer. Its pathogenesis is complex and not yet fully understood, with current treatments mainly focused on alleviating symptoms through pharmacological methods. Direct drug administration for UC often leads to poor intestinal bioavailability, suboptimal targeting, and an increased risk of resistance. Therefore, there is an urgent need for effective drug delivery systems. Lipid nanoparticles (LNPs) are promising candidates for UC drug delivery due to their high biocompatibility, stability, and customizable properties. Oral administration, as a preferred treatment approach for UC, offers benefits such as convenience, cost-effectiveness, and better patient compliance. However, oral drug delivery systems must navigate the complex gastrointestinal tract to effectively target colonic lesions, posing significant challenges for LNP-based systems. Researchers are exploring ways to enhance oral delivery efficiency by adjusting LNP composition, surface functionalization, and coating. This article reviews recent advancements in oral LNP research aimed at improving drug delivery efficiency for UC treatment and discusses future prospects.
Collapse
Affiliation(s)
- Siyu Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; (S.Z.); (Z.Y.); (Y.L.); (L.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhenlin Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; (S.Z.); (Z.Y.); (Y.L.); (L.C.)
| | - Yulong Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; (S.Z.); (Z.Y.); (Y.L.); (L.C.)
| | - Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; (S.Z.); (Z.Y.); (Y.L.); (L.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644000, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; (S.Z.); (Z.Y.); (Y.L.); (L.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644000, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; (S.Z.); (Z.Y.); (Y.L.); (L.C.)
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644000, China
| |
Collapse
|
2
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Huo DY, Li YF, Song LJ, Zhang WX, Li XD, Zhang J, Ren S, Wang Z, Li W. Colon-Targeted Ginseng Polysaccharides-Based Microspheres for Improving Ulcerative Colitis via Anti-Inflammation and Gut Microbiota Modulation. Adv Healthc Mater 2025; 14:e2404122. [PMID: 39797462 DOI: 10.1002/adhm.202404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC. These pWGPAC MSs are fabricated by incorporating pWGP into calcium-crosslinked alginate microspheres with subsequent chitosan surface modification to enhance mucosal adhesion. These pWGPAC MSs demonstrated exceptional stability under acidic conditions while enabling targeted release in the colon. In a mouse model of UC, the pWGPAC MSs effectively mitigated mucosal injury, attenuated inflammation, and restored intestinal barrier function. Further mechanistic investigations revealed that these pWGPAC MSs modulated the TLR4/MYD88 signaling pathway and promoted M2 macrophage polarization. Integrated microbiome and metabolome analyses demonstrated that these pWGPAC MSs regulated the gut microbiota composition and decreased pro-inflammatory metabolite levels. In addition, these microspheres demonstrated promising safety profiles. Collectively, these findings establish pWGPAC MSs as a promising therapeutic strategy for the treatment of UC and provide a solid foundation for future clinical applications.
Collapse
Affiliation(s)
- De-Yang Huo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Fei Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ling-Jie Song
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Wen-Xin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, 130118, China
| |
Collapse
|
4
|
Kciuk M, Kruczkowska W, Wanke K, Gałęziewska J, Kołat D, Mujwar S, Kontek R. The Role of Genistein in Type 2 Diabetes and Beyond: Mechanisms and Therapeutic Potential. Molecules 2025; 30:1068. [PMID: 40076293 PMCID: PMC11901726 DOI: 10.3390/molecules30051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) necessitates the exploration of novel therapeutic approaches to mitigate its complex molecular pathogenesis. This review investigates the potential role of genistein, a prominent isoflavone derived from soybeans, in the management of T2DM. Recognized for its selective estrogen receptor modulator (SERM) activity, genistein exerts a multifaceted influence on key intracellular signaling pathways, which are crucial in regulating cell proliferation, apoptosis, and insulin signaling. Genistein's anti-inflammatory, anti-oxidant, and metabolic regulatory properties position it as a promising candidate for T2DM intervention. This review synthesizes current research spanning preclinical studies and clinical trials, emphasizing genistein's impact on insulin sensitivity, glucose metabolism, and inflammatory markers. Additionally, this review addresses genistein's bioavailability, safety, and potential influence on gut microbiota composition. By consolidating these findings, this review aims to provide a comprehensive understanding of genistein's therapeutic potential in T2DM management, offering valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (D.K.)
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Univeristy of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
5
|
Shang H, Wang J, Guo B, Zhu H, Li H. Immobilization of Phospholipase D on Fe 3O 4@SiO 2-Graphene Oxide Nanocomposites: A Strategy to Improve Catalytic Stability and Reusability in the Efficient Production of Phosphatidylserine. Molecules 2025; 30:912. [PMID: 40005222 PMCID: PMC11857893 DOI: 10.3390/molecules30040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Phospholipase D (PLD) plays a pivotal role in the biosynthesis of phosphatidylserine (PS), but its practical application is constrained by limitations in stability and reusability. In this study, we successfully fabricated the Fe3O4@SiO2-graphene oxide (GO) nanocomposite by chemical binding of Fe3O4@SiO2 and GO. Subsequently, PLD was immobilized onto the nanocomposite via physical adsorption, with the aim of enhancing catalytic stability, reducing mass transfer resistance, and improving reusability. Under optimal conditions, the immobilization efficiency reached 84.4%, with a PLD loading capacity of 111.4 mg/gsupport. The optimal pH for PS production by immobilized PLD shifted from 6.0 to 6.5, while the optimal temperature increased from 45 °C to 50 °C. Notably, the immobilized PLD demonstrated a shorter reaction time and a higher PS yield, achieving a 95.4% yield within 90 min, compared to the free PLD (78.1% yield within 150 min), representing a 1.04-fold improvement in production efficiency. Furthermore, the immobilized PLD exhibited outstanding storage stability and thermal stability, along with remarkable reusability. Even after being reused for 10 cycles, the PS yield still stays as high as 78.3%. These findings strongly suggest that the Fe3O4@SiO2-GO immobilized PLD has the potential for the efficient production of PS.
Collapse
Affiliation(s)
- Huiyi Shang
- Institute of Chemistry, Henan Academy of Sciences, 266-38 Mingli Road, Zhengzhou 450046, China;
- Institute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou 450002, China; (J.W.); (B.G.)
| | - Juntan Wang
- Institute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou 450002, China; (J.W.); (B.G.)
| | - Bishan Guo
- Institute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou 450002, China; (J.W.); (B.G.)
| | - Haihua Zhu
- Institute of Business Scientific, Henan Academy of Sciences, 87 Wenhua Road, Zhengzhou 450002, China; (J.W.); (B.G.)
| | - Huijuan Li
- School of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 6 Longzihu North Road, Zhengzhou 450046, China
| |
Collapse
|
6
|
Gazzi R, Gelli R, Aleandri S, Carone M, Luciani P. Bioinspired and bioderived nanomedicine for inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1986. [PMID: 39140489 DOI: 10.1002/wnan.1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Due to its chronic nature and complex pathophysiology, inflammatory bowel disease (IBD) poses significant challenges for treatment. The long-term therapies for patients, often diagnosed between the ages of 20 and 40, call for innovative strategies to target inflammation, minimize systemic drug exposure, and improve patients' therapeutic outcomes. Among the plethora of strategies currently pursued, bioinspired and bioderived nano-based formulations have garnered interest for their safety and versatility in the management of IBD. Bioinspired nanomedicine can host and deliver not only small drug molecules but also biotherapeutics, be made gastroresistant and mucoadhesive or mucopenetrating and, for these reasons, are largely investigated for oral administration, while surprisingly less for rectal delivery, recommended first-line treatment approach for several IBD patients. The use of bioderived nanocarriers, mostly extracellular vesicles (EVs), endowed with unique homing abilities, is still in its infancy with respect to the arsenal of nanomedicine under investigation for IBD treatment. An emerging source of EVs suited for oral administration is ingesta, that is, plants or milk, thanks to their remarkable ability to resist the harsh environment of the upper gastrointestinal tract. Inspired by the unparalleled properties of natural biomaterials, sophisticated avenues for enhancing therapeutic efficacy and advancing precision medicine approaches in IBD care are taking shape, although bottlenecks arising either from the complexity of the nanomedicine designed or from the lack of a clear regulatory pathway still hinder a smooth and efficient translation to the clinics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafaela Gazzi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marianna Carone
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|