1
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
2
|
Feruloyl esterase Fae1 is required specifically for host colonisation by the rice-blast fungus Magnaporthe oryzae. Curr Genet 2021; 68:97-113. [PMID: 34524467 DOI: 10.1007/s00294-021-01213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Plant cell wall acts as a primary barrier for microbial pathogens during infection. A cell wall-degrading enzyme thus may be a crucial virulence factor, as it may aid the pathogen in successful host invasion. Nine genes coding for feruloyl esterases (Fae), likely involved in plant cell wall degradation, have been annotated in the genome of the cereal-blast fungus Magnaporthe oryzae. However, role of any Fae in pathogenicity of M. oryzae remains hitherto under explored. Here, we identified FAE1 gene (MGG_08737) that was significantly upregulated during host penetration and subsequent colonisation stages of infection. Accordingly, while deletion of FAE1 in M. oryzae did not affect the vegetative growth and asexual development, the fae1Δ mutant showed significantly reduced pathogenesis on rice plants, mainly due to impaired host invasion and colonisation. Very few (< 10%) fae1Δ appressoria that formed the primary invasive hyphae failed to elaborate from the first invaded cell to the neighbouring plant cells. Interestingly, exogenously added glucose, as a simple carbon source, or ferulic acid, a product of the Fae activity, significantly supported the invasive growth of the fae1Δ mutant. We show that the Fae1-based feruloyl esterase activity, by targeting the plant cell wall, plays an important role in accumulating ferulic acid and/or sugar molecules, as a likely energy source, to enable host invasion and colonisation by M. oryzae. Given its role in plant cell wall digestion and host colonisation, M. oryzae Fae1 could be a potential candidate for a novel antifungal strategy and a biotechnological application in biofuel production.
Collapse
|
3
|
Production of Protocatechuic Acid from p-Hydroxyphenyl (H) Units and Related Aromatic Compounds Using an Aspergillus niger Cell Factory. mBio 2021; 12:e0039121. [PMID: 34154420 PMCID: PMC8262893 DOI: 10.1128/mbio.00391-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protocatechuic acid (3,4-dihydroxybenzoic acid) is a chemical building block for polymers and plastics. In addition, protocatechuic acid has many properties of great pharmaceutical interest. Much research has been performed in creating bacterial protocatechuic acid production strains, but no protocatechuic acid-producing fungal cell factories have been described. The filamentous fungus Aspergillus niger can produce protocatechuic acid as an intermediate of the benzoic acid metabolic pathway. Recently, the p-hydroxybenzoate-m-hydroxylase (phhA) and protocatechuate 3,4-dioxygenase (prcA) of A. niger have been identified. It has been shown that the prcA deletion mutant is still able to grow on protocatechuic acid. This led to the identification of an alternative pathway that converts protocatechuic acid to hydroxyquinol (1,3,4-trihydroxybenzene). However, the gene involved in the hydroxylation of protocatechuic acid to hydroxyquinol remained unidentified. Here, we describe the identification of protocatechuate hydroxylase (decarboxylating) (PhyA) by using whole-genome transcriptome data. The identification of phyA enabled the creation of a fungal cell factory that is able to accumulate protocatechuic acid from benzyl alcohol, benzaldehyde, benzoic acid, caffeic acid, cinnamic acid, cinnamyl alcohol, m-hydroxybenzoic acid, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, p-anisyl alcohol, p-anisaldehyde, p-anisic acid, p-coumaric acid, and protocatechuic aldehyde. IMPORTANCE Aromatic compounds have broad applications and are used in many industries, such as the cosmetic, food, fragrance, paint, plastic, pharmaceutical, and polymer industries. The majority of aromatic compounds are synthesized from fossil sources, which are becoming limited. Plant biomass is the most abundant renewable resource on Earth and can be utilized to produce chemical building blocks, fuels, and bioplastics through fermentations with genetically modified microorganisms. Therefore, knowledge about the metabolic pathways and the genes and enzymes involved is essential to create efficient strategies for producing valuable aromatic compounds such as protocatechuic acid. Protocatechuic acid has many pharmaceutical properties but also can be used as a chemical building block to produce polymers and plastics. Here, we show that the fungus Aspergillus niger can be engineered to produce protocatechuic acid from plant-derived aromatic compounds and contributes to creating alternative methods for the production of platform chemicals. .
Collapse
|
4
|
Reijngoud J, Arentshorst M, Ruijmbeek C, Reid I, Alazi ED, Punt PJ, Tsang A, Ram AFJ. Loss of function of the carbon catabolite repressor CreA leads to low but inducer-independent expression from the feruloyl esterase B promoter in Aspergillus niger. Biotechnol Lett 2021; 43:1323-1336. [PMID: 33738610 PMCID: PMC8197723 DOI: 10.1007/s10529-021-03104-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
Objective
With the aim to decipher the mechanisms involved in the transcriptional regulation of feruloyl esterase encoded by faeB, a genetic screen was performed to isolate A. niger mutants displaying inducer-independent expression from the faeB promoter.
Result PfaeB-amdS and PfaeB-lux dual reporter strains were constructed and used to isolate trans-acting mutants in which the expression of both reporters was increased, based on the ability to grow on acetamide plates and higher luciferase activity, respectively. The genetic screen on the non-inducing carbon source D-fructose yielded in total 111 trans-acting mutants. The genome of one of the mutants was sequenced and revealed several SNPs, including a point mutation in the creA gene encoding a transcription factor known to be involved in carbon catabolite repression. Subsequently, all mutants were analyzed for defects in carbon catabolite repression by determining sensitivity towards allyl alcohol. All except four of the 111 mutants were sensitive to allyl alcohol, indicating that the vast majority of the mutants are defective in carbon catabolite repression. The creA gene of 32 allyl alcohol sensitive mutants was sequenced and 27 of them indeed contained a mutation in the creA gene. Targeted deletion of creA in the reporter strain confirmed that the loss of CreA results in constitutive expression from the faeB promoter. Conclusion
Loss of function of CreA leads to low but inducer-independent expression from the faeB promoter in A. niger. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03104-2.
Collapse
Affiliation(s)
- Jos Reijngoud
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Bioscienz, Goeseelsstraat 10, 4817 MV, Breda, The Netherlands
| | - Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Claudine Ruijmbeek
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Ebru Demirci Alazi
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Peter J Punt
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
5
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
6
|
Underlin EN, Frommhagen M, Dilokpimol A, van Erven G, de Vries RP, Kabel MA. Feruloyl Esterases for Biorefineries: Subfamily Classified Specificity for Natural Substrates. Front Bioeng Biotechnol 2020; 8:332. [PMID: 32391342 PMCID: PMC7191039 DOI: 10.3389/fbioe.2020.00332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Feruloyl esterases (FAEs) have an important role in the enzymatic conversion of lignocellulosic biomass by decoupling plant cell wall polysaccharides and lignin. Moreover, FAEs release anti-oxidative hydroxycinnamic acids (HCAs) from biomass. As a plethora of FAE candidates were found in fungal genomes, FAE classification related to substrate specificity is an indispensability for selection of most suitable candidates. Hence, linking distinct substrate specificities to a FAE classification, such as the recently classified FAE subfamilies (SF), is a promising approach to improve the application of these enzymes for a variety of industrial applications. In total, 14 FAEs that are classified members of SF1, 5, 6, 7, 9, and 13 were tested in this research. All FAEs were investigated for their activity toward a variety of substrates: synthetic model substrates, plant cell wall-derived substrates, including lignin, and natural substrates. Released HCAs were determined using reverse phase-ultra high performance liquid chromatography coupled to UV detection and mass spectrometry. Based on this study, FAEs of SF5 and SF7 showed the highest release of FA, pCA, and diFAs over the range of substrates, while FAEs of SF6 were comparable but less pronounced for diFAs release. These results suggest that SF5 and SF7 FAEs are promising enzymes for biorefinery applications, like the production of biofuels, where a complete degradation of the plant cell wall is desired. In contrast, SF6 FAEs might be of interest for industrial applications that require a high release of only FA and pCA, which are needed as precursors for the production of biochemicals. In contrast, FAEs of SF1, 9 and 13 showed an overall low release of HCAs from plant cell wall-derived and natural substrates. The obtained results substantiate the previous SF classification as a useful tool to predict the substrate specificity of FAEs, which eases the selection of FAE candidates for industrial applications.
Collapse
Affiliation(s)
- Emilie N. Underlin
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
7
|
de O Buanafina MM, Fernanda Buanafina M, Laremore T, Shearer EA, Fescemyer HW. Characterization of feruloyl esterases in maize pollen. PLANTA 2019; 250:2063-2082. [PMID: 31576447 DOI: 10.1007/s00425-019-03288-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Ferulic acid esterases have been identified and partially purified from maize pollen. Results suggest that maize pollen FAEs may play an important role in pollen fertilization. A critical step in maize (Zea mays) seed production involves fertilization of the ovule by pollen, a process that relies on ability of the pollen tube to grow through the highly structured and feruloylated arabinoxylan/cellulose-rich tissue of the silk and stigma. It is known that different cell wall hydrolases are present on the surface of pollen. An important hydrolase reported to date is an endo-xylanase (ZmXYN1). We report presence and characterization of another hydrolase, ferulic acid esterase (FAE), in maize pollen. Using a combination of biochemical approaches, these FAEs were partially purified and characterized with respect to their biochemical properties and putative sequences. Maize pollen FAEs were shown to be expressed early during pollen development, to release significant amounts of both monomeric and dimeric ferulates esterified from maize silks and other grass cell walls, and to synergize with an externally applied fungal endo-1,4-β-xylanase on the release of cell wall ferulates and diferulates. Preliminary analysis of maize silk cell walls following pollination, showed a significant reduction of esterified ferulates up to 96 h following pollination, compared to unpollinated silks. These results suggest that maize pollen FAEs may play an important biological role in pollen fertilization and possibly in seed production.
Collapse
Affiliation(s)
- Marcia M de O Buanafina
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - M Fernanda Buanafina
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana Laremore
- Penn State Proteomics and Mass Spectrometry Core Facility, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Erica A Shearer
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Howard W Fescemyer
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Mogodiniyai Kasmaei K, Schlosser D, Sträuber H, Kleinsteuber S. Does glucose affect the de-esterification of methyl ferulate by Lactobacillus buchneri? Microbiologyopen 2019; 9:e971. [PMID: 31782612 PMCID: PMC7002112 DOI: 10.1002/mbo3.971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Silage, the fermented product from anaerobic storage of forage crops with high water contents (50%–70%), is normally used as animal feed but also for the production of biofuels and value‐added products. To improve the utilization of plant fibers during ensiling, previous attempts have aimed at breaking linkages between lignin and hemicellulose by use of Lactobacillus buchneri LN 4017 (ATCC PTA‐6138), a feruloyl esterase (FAE)‐producing strain, but results have been inconsistent. Normally, there are sufficient amounts of readily available substrates for bacterial growth in silage. We thus hypothesized that the inconsistent effect of L. buchneri LN 4017 on the digestibility of silage fibers is due to the catabolic repression of FAE activity by substrates present in silage (e.g., glucose). To test this hypothesis, we analyzed the effect of glucose on the de‐esterification of methyl ferulate (MF), a model substrate used for FAE activity assays. At three glucose:MF ratios (0:1, 1:1, and 13:1), the bacteria continued hydrolyzing MF with increasing glucose:MF ratios, indicating that the de‐esterification reaction was not repressed by glucose. We therefore conclude that the de‐esterification activity of L. buchneri LN 4017 is not repressed by silage substrates during ensiling.
Collapse
Affiliation(s)
- Kamyar Mogodiniyai Kasmaei
- Department of Animal Nutrition and management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
9
|
Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP. Evolutionary adaptation of Aspergillus niger for increased ferulic acid tolerance. J Appl Microbiol 2019; 128:735-746. [PMID: 31674709 PMCID: PMC7027748 DOI: 10.1111/jam.14505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023]
Abstract
AIMS To create an Aspergillus niger mutant with increased tolerance against ferulic acid using evolutionary adaptation. METHODS AND RESULTS Evolutionary adaptation of A. niger N402 was performed by consecutive growth on increasing concentrations of ferulic acid in the presence of 25 mmol l-1 d-fructose, starting from 0·5 mmol l-1 and ending with 5 mmol l-1 ferulic acid. The A. niger mutant obtained after six months, named Fa6, showed increased ferulic acid tolerance compared to the parent. In addition, Fa6 has increased ferulic acid consumption and a higher conversion rate, suggesting that the mutation affects aromatic metabolism of this species. Transcriptome analysis of the evolutionary mutant on ferulic acid revealed a distinct gene expression profile compared to the wild type. Further analysis of this mutant and the parent strain provided the first experimental confirmation that A. niger converts coniferyl alcohol to ferulic acid. CONCLUSIONS The evolutionary adaptive A. niger mutant Fa6 has beneficial mutations that increase the tolerance, conversion rate and uptake of ferulic acid. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that evolutionary adaptation is a powerful tool to modify micro-organisms towards increased tolerance to harsh conditions, which is beneficial for various industrial applications.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A J Liwanag
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - M Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - I Benoit-Gelber
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Canada
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Wallner A, King E, Ngonkeu ELM, Moulin L, Béna G. Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genomics 2019; 20:803. [PMID: 31684866 PMCID: PMC6829993 DOI: 10.1186/s12864-019-6186-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background Burkholderia cenocepacia is a human opportunistic pathogen causing devastating symptoms in patients suffering from immunodeficiency and cystic fibrosis. Out of the 303 B. cenocepacia strains with available genomes, the large majority were isolated from a clinical context. However, several isolates originate from other environmental sources ranging from aerosols to plant endosphere. Plants can represent reservoirs for human infections as some pathogens can survive and sometimes proliferate in the rhizosphere. We therefore investigated if B. cenocepacia had the same potential. Results We selected genome sequences from 31 different strains, representative of the diversity of ecological niches of B. cenocepacia, and conducted comparative genomic analyses in the aim of finding specific niche or host-related genetic determinants. Phylogenetic analyses and whole genome average nucleotide identity suggest that strains, registered as B. cenocepacia, belong to at least two different species. Core-genome analyses show that the clade enriched in environmental isolates lacks multiple key virulence factors, which are conserved in the sister clade where most clinical isolates fall, including the highly virulent ET12 lineage. Similarly, several plant associated genes display an opposite distribution between the two clades. Finally, we suggest that B. cenocepacia underwent a host jump from plants/environment to animals, as supported by the phylogenetic analysis. We eventually propose a name for the new species that lacks several genetic traits involved in human virulence. Conclusion Regardless of the method used, our studies resulted in a disunited perspective of the B. cenocepacia species. Strains currently affiliated to this taxon belong to at least two distinct species, one having lost several determining animal virulence factors.
Collapse
Affiliation(s)
- Adrian Wallner
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eoghan King
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Eddy L M Ngonkeu
- Institute of Agronomic Research for Development (IRAD), PO Box 2123, Yaoundé, Cameroon
| | - Lionel Moulin
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Gilles Béna
- IRD, CIRAD, University of Montpellier, IPME; 911 avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
11
|
Lubbers RJM, Dilokpimol A, Navarro J, Peng M, Wang M, Lipzen A, Ng V, Grigoriev IV, Visser J, Hildén KS, de Vries RP. Cinnamic Acid and Sorbic acid Conversion Are Mediated by the Same Transcriptional Regulator in Aspergillus niger. Front Bioeng Biotechnol 2019; 7:249. [PMID: 31612133 PMCID: PMC6776626 DOI: 10.3389/fbioe.2019.00249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Cinnamic acid is an aromatic compound commonly found in plants and functions as a central intermediate in lignin synthesis. Filamentous fungi are able to degrade cinnamic acid through multiple metabolic pathways. One of the best studied pathways is the non-oxidative decarboxylation of cinnamic acid to styrene. In Aspergillus niger, the enzymes cinnamic acid decarboxylase (CdcA, formally ferulic acid decarboxylase) and the flavin prenyltransferase (PadA) catalyze together the non-oxidative decarboxylation of cinnamic acid and sorbic acid. The corresponding genes, cdcA and padA, are clustered in the genome together with a putative transcription factor previously named sorbic acid decarboxylase regulator (SdrA). While SdrA was predicted to be involved in the regulation of the non-oxidative decarboxylation of cinnamic acid and sorbic acid, this was never functionally analyzed. In this study, A. niger deletion mutants of sdrA, cdcA, and padA were made to further investigate the role of SdrA in cinnamic acid metabolism. Phenotypic analysis revealed that cdcA, sdrA and padA are exclusively involved in the degradation of cinnamic acid and sorbic acid and not required for other related aromatic compounds. Whole genome transcriptome analysis of ΔsdrA grown on different cinnamic acid related compounds, revealed additional target genes, which were also clustered with cdcA, sdrA, and padA in the A. niger genome. Synteny analysis using 30 Aspergillus genomes demonstrated a conserved cinnamic acid decarboxylation gene cluster in most Aspergilli of the Nigri clade. Aspergilli lacking certain genes in the cluster were unable to grow on cinnamic acid, but could still grow on related aromatic compounds, confirming the specific role of these three genes for cinnamic acid metabolism of A. niger.
Collapse
Affiliation(s)
- Ronnie J. M. Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Jorge Navarro
- Fungal Natural Products, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | | | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Lin L, Ye W, Wu J, Xuan M, Li Y, Gao J, Wang Y, Wang Y, Dong S, Wang Y. The MADS-box Transcription Factor PsMAD1 Is Involved in Zoosporogenesis and Pathogenesis of Phytophthora sojae. Front Microbiol 2018; 9:2259. [PMID: 30319576 PMCID: PMC6165875 DOI: 10.3389/fmicb.2018.02259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023] Open
Abstract
Transcriptional regulation is critical for plant pathogen development and virulence. MADS-box transcription factors belong to a highly conserved transcriptional regulator family in eukaryotic organisms that are involved in various important biological processes. Only one predicted MADS-box gene, PsMAD1, was identified in Phytophthora sojae, which was highly expressed during the sporangia and infection stages. To investigate its function, we generated PsMAD1 knockout mutants using the CRISPR/Cas9 system. Compared with the wild-type strain, the mutants showed no changes in vegetative growth, oospore production, or no differences in sensitivity to various abiotic stresses. Although sporangia production was normal, no zoospore release was detected in PsMAD1 mutants. Microscopy analyses revealed failure of cleavage of the cytoplasm into uninucleate zoospores in the mutants. In addition, the mutants showed reduced virulence in soybean. RNA-seq data indicated that PsMAD1 may regulate many zoospore development and infection associated genes. Thus, PsMAD1 may be a major regulator of P. sojae involved in zoosporogenesis and pathogenesis.
Collapse
Affiliation(s)
- Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jiawei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Mingrun Xuan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yufei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jian Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yonglin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
13
|
Tailoring the specificity of the type C feruloyl esterase FoFaeC from Fusarium oxysporum towards methyl sinapate by rational redesign based on small molecule docking simulations. PLoS One 2018; 13:e0198127. [PMID: 29795702 PMCID: PMC5967792 DOI: 10.1371/journal.pone.0198127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/14/2018] [Indexed: 01/15/2023] Open
Abstract
The type C feruloyl esterase FoFaeC from Fusarium oxysporum is a newly discovered enzyme with high potential for use in the hydrolysis of lignocellulosic biomass but it shows low activity towards sinapates. In this work, small molecule docking simulations were employed in order to identify important residues for the binding of the four model methyl esters of hydroxycinnamic acids, methyl ferulate/caffeate/sinapate/p-coumarate, to the predicted structure of FoFaeC. Subsequently rational redesign was applied to the enzyme’ active site in order to improve its specificity towards methyl sinapate. A double mutation (F230H/T202V) was considered to provide hydrophobic environment for stabilization of the methoxy substitution on sinapate and a larger binding pocket. Five mutant clones and the wild type were produced in Pichia pastoris and biochemically characterized. All clones showed improved activity, substrate affinity, catalytic efficiency and turnover rate compared to the wild type against methyl sinapate, with clone P13 showing a 5-fold improvement in catalytic efficiency. Although the affinity of all mutant clones was improved against the four model substrates, the catalytic efficiency and turnover rate decreased for the substrates containing a hydroxyl substitution.
Collapse
|
14
|
Mäkelä MR, Aguilar-Pontes MV, van Rossen-Uffink D, Peng M, de Vries RP. The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Sci Rep 2018; 8:6655. [PMID: 29703914 PMCID: PMC5923239 DOI: 10.1038/s41598-018-25152-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
In nature, the fungus Aspergillus niger degrades plant biomass polysaccharides to monomeric sugars, transports them into its cells, and uses catabolic pathways to convert them into biochemical building blocks and energy. We show that when grown in liquid cultures, A. niger takes up plant-biomass derived sugars in a largely sequential manner. Interestingly, this sequential uptake was not mediated by the fungal general carbon catabolite repressor protein CreA. Furthermore, transcriptome analysis strongly indicated that the preferential use of the monomeric sugars is arranged at the level of transport, but it is not reflected in transcriptional regulation of sugar catabolism. Therefore, the results indicate that the regulation of sugar transport and catabolism are separate processes in A. niger.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - María Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Diana van Rossen-Uffink
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands. .,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Mäkelä MR, Dilokpimol A, Koskela SM, Kuuskeri J, de Vries RP, Hildén K. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrate-active enzymes (CAZy) database. Microb Biotechnol 2018; 11:869-880. [PMID: 29697197 PMCID: PMC6116738 DOI: 10.1111/1751-7915.13273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell‐wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate‐active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Salla M Koskela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Jaana Kuuskeri
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Kristiina Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| |
Collapse
|
16
|
Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genomics 2017; 18:900. [PMID: 29169319 PMCID: PMC5701360 DOI: 10.1186/s12864-017-4164-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022] Open
Abstract
Background The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. Results The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Conclusions Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In addition, the data provides additional evidence in favor of and against the similarity-based functions assigned to uncharacterized genes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4164-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Birgit S Gruben
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - Joanna E Kowalczyk
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: ATGM, Avans University of Applied Sciences, Lovensdijkstraat 61-63, 4818, AJ, Breda, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.,Current affiliation: Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W, Montreal, QC, Canada
| | - Ronald P De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands. .,Microbiology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands. .,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Xu Z, He H, Zhang S, Guo T, Kong J. Characterization of Feruloyl Esterases Produced by the Four Lactobacillus Species: L. amylovorus, L. acidophilus, L. farciminis and L. fermentum, Isolated from Ensiled Corn Stover. Front Microbiol 2017. [PMID: 28626449 PMCID: PMC5454770 DOI: 10.3389/fmicb.2017.00941] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains (L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli. The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility.
Collapse
Affiliation(s)
- Zhenshang Xu
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China
| | - Huiying He
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China
| | - Susu Zhang
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China
| |
Collapse
|
18
|
Zwane EN, van Zyl PJ, Duodu KG, Rose SH, Rumbold K, van Zyl WH, Viljoen-Bloom M. Enrichment of maize and triticale bran with recombinant Aspergillus tubingensis ferulic acid esterase. Journal of Food Science and Technology 2017; 54:778-785. [PMID: 28298692 DOI: 10.1007/s13197-017-2521-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
Abstract
Ferulic acid is a natural antioxidant found in various plants and serves as a precursor for various fine chemicals, including the flavouring agent vanillin. However, expensive extraction methods have limited the commercial application of ferulic acid, in particular for the enrichment of food substrates. A recombinant Aspergillus tubingensis ferulic acid esterase Type A (FAEA) was expressed in Aspergillus niger D15#26 and purified with anion-exchange chromatography (3487 U/mg, Km = 0.43 mM, Kcat = 0.48/min on methyl ferulate). The 36-kDa AtFAEA protein showed maximum ferulic acid esterase activity at 50 °C and pH 6, suggesting potential application in industrial processes. A crude AtFAEA preparation extracted 26.56 and 8.86 mg/g ferulic acid from maize bran and triticale bran, respectively, and also significantly increased the levels of p-coumaric and caffeic acid from triticale bran. The cost-effective production of AtFAEA could therefore allow for the enrichment of brans generally used as food and fodder, or for the production of fine chemicals (such as ferulic and p-coumaric acid) from plant substrates. The potential for larger-scale production of AtFAEA was demonstrated with the A. niger D15[AtfaeA] strain yielding a higher enzyme activity (185.14 vs. 83.48 U/ml) and volumetric productivity (3.86 vs. 1.74 U/ml/h) in fed-batch than batch fermentation.
Collapse
Affiliation(s)
- Eunice N Zwane
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | | | - Kwaku G Duodu
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028 South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand (WITS), Private Bag X3, Wits, 2050 South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| |
Collapse
|
19
|
Oleas G, Callegari E, Sepulveda R, Eyzaguirre J. Properties of Two Novel Esterases Identified from Culture Supernatant of Penicillium purpurogenum Grown on Sugar Beet Pulp. INSIGHTS IN ENZYME RESEARCH 2016; 1:4. [PMID: 28828411 PMCID: PMC5562236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The filamentous fungus Penicillium purpurogenum grows on a variety of natural carbon sources, such as sugar beet pulp, and secretes to the medium a large number of enzymes that degrade the carbohydrate components of lignocellulose. Sugar beet pulp is rich in pectin, and the purpose of this work is to identify novel esterases produced by the fungus, which may participate in pectin degradation. METHODS AND FINDINGS Partially purified culture supernatants of the fungus grown on sugar beet pulp were subjected to mass spectrometry analysis. Peptides thus identified, which may be part of potential esterases were probed against the proteins deduced from the fungal genome sequence. The cDNAs of two putative esterases identified were expressed in Pichia pastoris and their properties studied. One of these enzymes, named FAET, is a feruloyl esterase, while the other, PE, is classified as a pectin methyl esterase. CONCLUSIONS These findings add to our knowledge of the enzymology of pectin degradation by Penicillium purpurogenum, and define properties of two novel esterases acting on de-esterification of pectin. Their availability may be useful as tools for the study of pectin structure and degradation.
Collapse
Affiliation(s)
- Gabriela Oleas
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, SD, USA
| | - Romina Sepulveda
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Jaime Eyzaguirre
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
20
|
Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:63-137. [PMID: 25911233 DOI: 10.1016/bs.aambs.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mila Marinović
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - April J M Liwanag
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jussi Sipilä
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Kristiina S Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Martins TM, Hartmann DO, Planchon S, Martins I, Renaut J, Silva Pereira C. The old 3-oxoadipate pathway revisited: New insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans. Fungal Genet Biol 2015; 74:32-44. [DOI: 10.1016/j.fgb.2014.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/06/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
|
22
|
A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis. Appl Environ Microbiol 2014; 81:1679-88. [PMID: 25548041 DOI: 10.1128/aem.02911-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.
Collapse
|
23
|
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 2014; 78:614-49. [PMID: 25428937 PMCID: PMC4248655 DOI: 10.1128/mmbr.00035-14] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer Yuzon
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Gimbert IH, Levasseur A, Raouche S, Sigoillot JC. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger. Fungal Biol Biotechnol 2014; 1:1-14. [PMID: 26457194 PMCID: PMC4599204 DOI: 10.1186/s40694-014-0003-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/23/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. RESULTS In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw to a greater extent than willow. Genes not encoding CAZymes were also induced on willow such as hydrophobins as well as genes of unknown function. Several genes were identified as promising targets for future study. CONCLUSIONS By comparing this first study of the global transcriptional response of a fungus to willow with the response to straw, we have shown that the inducing lignocellulosic substrate has a marked effect upon the range of transcripts and enzymes expressed by A. niger. The use by industry of complex substrates such as wheat straw or willow could benefit efficient biofuel production.
Collapse
Affiliation(s)
- Nadège Liaud
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- ARD, Agro-Industry Research and Development, Pômacle, F-51100 France
| | - Christian Giniés
- INRA, UMR 1260, « Nutrition, Obésité et Risque Thrombotique », Marseille, F-13385 France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, F-13385 France
- Université d’Aix-Marseille, UMR 1260, « Nutrition, Obésité et Risque Thrombotique », Faculté de Médecine, Marseille, F-13385 France
| | - David Navarro
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- INRA, International Center for Microbial Resources collection-Filamentous fungi CIRM-CF, Marseille, F-13288 France
| | - Nicolas Fabre
- ARD, Agro-Industry Research and Development, Pômacle, F-51100 France
| | - Sylvaine Crapart
- ARD, Agro-Industry Research and Development, Pômacle, F-51100 France
| | - Isabelle Herpoël- Gimbert
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
| | - Anthony Levasseur
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
| | - Sana Raouche
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Polytech’ Marseille (ex ESIL), UMR 1163 BCF - INRA / AMU, 163 Avenue de Luminy CP 925, Marseille, F-13288 France
| | - Jean-Claude Sigoillot
- INRA, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
- Aix Marseille Université, UMR1163 Biotechnology of Filamentous Fungi, Marseille, F-13288 France
| |
Collapse
|
25
|
Blackman LM, Cullerne DP, Hardham AR. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 2014; 15:785. [PMID: 25214042 PMCID: PMC4176579 DOI: 10.1186/1471-2164-15-785] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen’s genome. Results Our bioinformatic analysis indicates that 431 (2%) of the 20,825 predicted proteins encoded by the P. parasitica genome, are carbohydrate-active enzymes (CAZymes) involved in the degradation of cell wall polysaccharides. Of the 431 proteins, 337 contain classical N-terminal secretion signals and 67 are predicted to be targeted to the non-classical secretion pathway. Identification of CAZyme catalytic activity based on primary protein sequence is difficult, nevertheless, detailed comparisons with previously characterized enzymes has allowed us to determine likely enzyme activities and targeted substrates for many of the P. parasitica CWDEs. Some proteins (12%) contain more than one CAZyme module but, in most cases, multiple modules are from the same CAZyme family. Only 12 P. parasitica CWDEs contain both catalytically-active (glycosyl hydrolase) and non-catalytic (carbohydrate binding) modules, a situation that contrasts with that in fungal phytopathogens. Other striking differences between the complements of CWDEs in P. parasitica and fungal phytopathogens are seen in the CAZyme families that target cellulose, pectins or β-1,3-glucans (e.g. callose). About 25% of P. parasitica CAZymes are solely directed towards pectin degradation, with the majority coming from pectin lyase or carbohydrate esterase families. Fungal phytopathogens typically contain less than half the numbers of these CAZymes. The P. parasitica genome, like that of other Oomycetes, is rich in CAZymes that target β-1,3-glucans. Conclusions This detailed analysis of the full complement of P. parasitica cell wall degrading enzymes provides a framework for an in-depth study of patterns of expression of these pathogen genes during plant infection and the induction or repression of expression by selected substrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-785) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
26
|
Suzuki K, Hori A, Kawamoto K, Thangudu RR, Ishida T, Igarashi K, Samejima M, Yamada C, Arakawa T, Wakagi T, Koseki T, Fushinobu S. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Proteins 2014; 82:2857-67. [PMID: 25066066 DOI: 10.1002/prot.24649] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 11/12/2022]
Abstract
Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three-dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/β-hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the "CS-D-HC motif," is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site.
Collapse
Affiliation(s)
- Kentaro Suzuki
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tai ES, Hsieh PC, Sheu SC. Effect of polygalacturonase and feruloyl esterase from Aspergillus tubingensis on demucilage and quality of coffee beans. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Kowalczyk JE, Benoit I, de Vries RP. Regulation of plant biomass utilization in Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:31-56. [PMID: 24767425 DOI: 10.1016/b978-0-12-800260-5.00002-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of fungi to survive in every known biotope, both natural and man-made, relies in part on their ability to use a wide range of carbon sources. Fungi degrade polymeric carbon sources present in the environment (polysaccharides, proteins, and lignins) to use the monomeric components as nutrients. However, the available carbon sources vary strongly in nature, both between biotopes and in time. The degradation of polymeric carbon sources is mediated through the production of a broad range of enzymes, the production of which is tightly controlled by a network of regulators and linked to the activation of catabolic pathways to convert the released monomers. This review summarizes the knowledge of Aspergillus regulators involved in plant biomass utilization.
Collapse
Affiliation(s)
| | - Isabelle Benoit
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Nieter A, Haase-Aschoff P, Linke D, Nimtz M, Berger RG. A halotolerant type A feruloyl esterase from Pleurotus eryngii. Fungal Biol 2014; 118:348-57. [PMID: 24607359 DOI: 10.1016/j.funbio.2014.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 11/16/2022]
Abstract
An extracellular feruloyl esterase (PeFaeA) from the culture supernatant of Pleurotus eryngii was purified to homogeneity using cation exchange, hydrophobic interaction, and size exclusion chromatography. The length of the complete coding sequence of PeFaeA was determined to 1668 bp corresponding to a protein of 555 amino acids. The catalytic triad of Ser-Glu-His demonstrated the uniqueness of the enzyme compared to previously published FAEs. The purified PeFaeA was a monomer with an estimated molecular mass of 67 kDa. Maximum feruloyl esterase (FAE) activity was observed at pH 5.0 and 50 °C, respectively. Metal ions (5 mM), except Hg(2+), had no significant influence on the enzyme activity. Substrate specificity profiling characterized the enzyme as a type A FAE preferring bulky natural substrates, such as feruloylated saccharides, rather than small synthetic ones. Km and kcat of the purified enzyme for methyl ferulate were 0.15 mM and 0.85 s(-1). In the presence of 3 M NaCl activity of the enzyme increased by 28 %. PeFaeA alone released only little ferulic acid from destarched wheat bran (DSWB), whereas after addition of Trichoderma viride xylanase the concentration increased more than 20 fold.
Collapse
Affiliation(s)
- Annabel Nieter
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, D-30167 Hannover, Germany.
| | - Paul Haase-Aschoff
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, D-30167 Hannover, Germany
| | - Diana Linke
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, D-30167 Hannover, Germany
| | - Manfred Nimtz
- Helmholtz Zentrum für Infektionsforschung, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Ralf G Berger
- Institut für Lebensmittelchemie, Leibniz Universität Hannover, Callinstraße 5, D-30167 Hannover, Germany
| |
Collapse
|
30
|
Haase-Aschoff P, Linke D, Nimtz M, Popper L, Berger RG. An enzyme from Auricularia auricula-judae combining both benzoyl and cinnamoyl esterase activity. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Franck WL, Gokce E, Oh Y, Muddiman DC, Dean RA. Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation. Mol Cell Proteomics 2013; 12:2249-65. [PMID: 23665591 PMCID: PMC3734583 DOI: 10.1074/mcp.m112.025874] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Indexed: 11/06/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity.
Collapse
Affiliation(s)
| | - Emine Gokce
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- From the ‡Center for Integrated Fungal Research
| | - David C. Muddiman
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | | |
Collapse
|
32
|
Draft Genome Sequence of Dematiaceous Coelomycete Pyrenochaeta sp. Strain UM 256, Isolated from Skin Scraping. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00158-13. [PMID: 23723391 PMCID: PMC3667999 DOI: 10.1128/genomea.00158-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pyrenochaeta, classified under the order Pleosporales, is known to cause diseases in plants and humans. Here, we report a draft genome sequence of a Pyrenochaeta sp. isolated from a skin scraping, with an estimated genome size of 39.4 Mb. Genes associated with the synthesis of proteases, toxins, plant cell wall degradation, and multidrug resistance were found.
Collapse
|
33
|
Kumar CG, Kamle A, Kamal A. Purification and biochemical characterization of feruloyl esterases from Aspergillus terreus MTCC 11096. Biotechnol Prog 2013; 29:924-32. [PMID: 23606660 DOI: 10.1002/btpr.1729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/02/2013] [Indexed: 11/10/2022]
Abstract
Aspergillus terreus MTCC 11096 isolated from the soils of agricultural fields cultivating sweet sorghum was previously identified to produce feruloyl esterases (FAEs). The enzymes responsible for feruloyl esterase activity were purified to homogeneity and named as AtFAE-1, AtFAE-2, and AtFAE-3. The enzymes were monomeric having molecular masses of 74, 23 and 36 kDa, respectively. Active protein bands were identified by a developed pH-dependent zymogram on native PAGE. The three enzymes exhibited variation in pH tolerance ranging between pH 5-8 and thermostability of up to 55°C. Inhibition studies revealed that the serine residue was essential for feruloyl esterase activity; moreover aspartyl and glutamyl residues are not totally involved at the active site. Metal ions such as Ca(2+), K(+), and Mg(2+) stabilized the enzyme activity for all three FAEs. Kinetic data indicated that all three enzymes showed catalytic efficiencies (k(cat) /K(m)) against different synthesized alkyl and aryl esters indicating their broad substrate specificity. The peptide mass fingerprinting by MALDI/TOF-MS analysis and enzyme affinity toward methoxy and hydroxy substituents on the benzene ring revealed that the AtFAE-1 belonged to type A while AtFAE-2 and AtFAE-3 were type C FAE. The FAEs could release 65 to 90% of ferulic acid from agrowaste substrates in the presence of xylanase.
Collapse
Affiliation(s)
- C Ganesh Kumar
- Chemical Biology Laboratory, Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Andhra Pradesh, 500007, India.
| | | | | |
Collapse
|
34
|
Komeil D, Simao-Beaunoir AM, Beaulieu C. Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria. Can J Microbiol 2013; 59:294-303. [PMID: 23647341 DOI: 10.1139/cjm-2012-0741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptomyces scabiei causes common scab, an economically important disease of potato tubers. Some authors have previously suggested that S. scabiei penetration into host plant tissue is facilitated by secretion of esterase enzymes degrading suberin, a lipidic biopolymer of the potato periderm. In the present study, S. scabiei EF-35 showed high esterase activity in suberin-containing media. This strain also exhibited esterase activity in the presence of other biopolymers, such as lignin, cutin, or xylan, but at a much lower level. In an attempt to identify the esterases involved in suberin degradation, translated open reading frames of S. scabiei 87-22 were examined for the presence of protein sequences corresponding to extracellular esterases of S. scabiei FL1 and of the fungus Coprinopsis cinerea VTT D-041011, which have previously been shown to be produced in the presence of suberin. Two putative extracellular suberinase genes, estA and sub1, were identified. The presence of these genes in several actinobacteria was investigated by Southern blot hybridization, and both genes were found in most common-scab-inducing strains. Moreover, reverse transcription - polymerase chain reaction performed with S. scabiei EF-35 showed that estA was expressed in the presence of various biopolymers, including suberin, whereas the sub1 gene appeared to be specifically expressed in the presence of suberin and cutin.
Collapse
Affiliation(s)
- Doaa Komeil
- Centre SÈVE, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | | | | |
Collapse
|
35
|
An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides. Appl Microbiol Biotechnol 2012. [PMID: 23203636 DOI: 10.1007/s00253-012-4598-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Investigating the secretion of esterases by the basidiomycetous fungus Pleurotus sapidus in a Tween 80-rich nutrient medium, an enzyme was discovered that hydrolyzed the ester bond of feruloylated saccharides. The enzyme was purified by ion exchange and size exclusion chromatography. Polyacrylamide gel electrophoresis analysis showed a monomeric protein of about 55 kDa. The complete coding sequence with an open reading frame of 1,665 bp encoded a protein (Est1) consisting of 554 amino acids. The enzyme showed no significant homology to any published feruloyl esterase sequences, but possessed putative conserved domains of the lipase/esterase superfamily. Substrate specificity studies classified the new enzyme as type-A feruloyl esterase, hydrolyzing methyl ferulate, methyl sinapate, and methyl p-coumarate but no methyl caffeate. The enzyme had a pH optimum of 6 and a temperature optimum at 50 °C. Ferulic acid was efficiently released from ferulated saccharides, and the feruloyl esterase exhibited moderate stability in biphasic systems (50 % toluene or tert-butylmethyl ether).
Collapse
|
36
|
Andersen MR, Giese M, de Vries RP, Nielsen J. Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genomics 2012; 13:313. [PMID: 22799883 PMCID: PMC3542576 DOI: 10.1186/1471-2164-13-313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.
Collapse
Affiliation(s)
- Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
37
|
Uno T, Itoh A, Miyamoto T, Kubo M, Kanamaru K, Yamagata H, Yasufuku Y, Imaishi H. Ferulic Acid Production in the Brewing of Rice Wine (Sake). JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2009.tb00355.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Balcerzak M, Harris LJ, Subramaniam R, Ouellet T. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts. Fungal Biol 2012; 116:478-88. [DOI: 10.1016/j.funbio.2012.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/10/2012] [Accepted: 01/21/2012] [Indexed: 11/25/2022]
|
39
|
Study of new feruloyl esterases to understand lipase evolution: the case of Bacillus flexus. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 861:53-61. [PMID: 22426711 DOI: 10.1007/978-1-61779-600-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Recently, the crystal structure of the feruloyl esterase A from Aspergillus niger (AnFaeA) was elucidated. This enzyme displays an α/β hydrolase fold and a catalytic triad similar to that found in fungal lipases (30-37% identity). Surprisingly, AnFaeA showed an overall fold similarity with the Rhizomucor miehei and other related fungal lipases. All these data strongly suggest that the ancestral function (lipase) had shifted, with molecular adaptation leading to a novel enzyme (type-A feruloyl esterase). The discovery of new feruloyl esterases could lead to get insight into the evolutionary pathways of these enzymes and into new possibilities of directed evolution of lipases. In this chapter, the production of Bacillus flexus NJY2 feruloyl esterases is described. Unlike the previously described feruloyl esterases, which mostly belong to eukaryotes (mainly fungus), this unique feruloyl esterases from a prokaryotic alkaliphile microorganism could be the starting point for new discoveries on lipase and feruloyl esterase evolutionary relationships.
Collapse
|
40
|
Kühnel S, Pouvreau L, Appeldoorn M, Hinz S, Schols H, Gruppen H. The ferulic acid esterases of Chrysosporium lucknowense C1: Purification, characterization and their potential application in biorefinery. Enzyme Microb Technol 2012; 50:77-85. [DOI: 10.1016/j.enzmictec.2011.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/08/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022]
|
41
|
Pouvreau L, Jonathan M, Kabel M, Hinz S, Gruppen H, Schols H. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme Microb Technol 2011; 49:312-20. [DOI: 10.1016/j.enzmictec.2011.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 11/24/2022]
|
42
|
Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 2011; 91:1477-92. [PMID: 21785931 PMCID: PMC3160556 DOI: 10.1007/s00253-011-3473-2] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 07/10/2011] [Indexed: 02/01/2023]
Abstract
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families.
Collapse
|
43
|
Ou S, Zhang J, Wang Y, Zhang N. Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources. Enzyme Res 2011; 2011:848939. [PMID: 21603274 PMCID: PMC3092627 DOI: 10.4061/2011/848939] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
A mixture of wheat bran with maize bran as a carbon source and addition of (NH(4))SO(4) as nitrogen source was found to significantly increase production of feruloyl esterase (FAE) enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g) to water 1 : 1, maize bran to wheat bran 1 : 2, (NH(4))SO(4) 1.2 g and MgSO(4) 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures.
Collapse
Affiliation(s)
- Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | | | | | | |
Collapse
|
44
|
Screening of edible mushrooms for release of ferulic acid from wheat bran by fermentation. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
|
46
|
Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:25. [PMID: 19832970 PMCID: PMC2768689 DOI: 10.1186/1754-6834-2-25] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 10/15/2009] [Indexed: 05/03/2023]
Abstract
BACKGROUND Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i) a host gut cDNA library and (ii) a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. RESULTS Over 10,000 expressed sequence tags (ESTs) were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist) glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450). Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. CONCLUSION To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort has been conducted in a single termite species. This sequence database represents an important new genomic resource for use in further studies of collaborative host-symbiont termite digestion, as well as development of coevolved host and symbiont-derived biocatalysts for use in industrial biomass-to-bioethanol applications. Additionally, this study demonstrates that: (i) phenoloxidase activities are prominent in the R. flavipes gut and are not symbiont derived, (ii) expands the known number of host and symbiont glycosyl hydrolase families in Reticulitermes, and (iii) supports previous models of lignin degradation and host-symbiont collaboration in cellulose/hemicellulose digestion in the termite gut. All sequences in this paper are available publicly with the accession numbers FL634956-FL640828 (Termite Gut library) and FL641015-FL645753 (Symbiont library).
Collapse
Affiliation(s)
- Aurélien Tartar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Division of Math, Science and Technology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marsha M Wheeler
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Current address : Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - Xuguo Zhou
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
- Current address : Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Monique R Coy
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Drion G Boucias
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Michael E Scharf
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Kheder F, Delaunay S, Abo-Chameh G, Paris C, Muniglia L, Girardin M. Production and biochemical characterization of a type B ferulic acid esterase from Streptomyces ambofaciens. Can J Microbiol 2009; 55:729-38. [DOI: 10.1139/w09-027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the first time, the presence of a ferulic acid esterase (FAE) was demonstrated in Streptomyces ambofaciens . This extracellular enzyme was produced on a range of lignocellulosic substrates. The maximal level of activity was detected in the presence of either destarched wheat bran or oat spelt xylan as the sole carbon source. We found that 1% (m/v) of destarched wheat bran was the optimal concentration to induce its production. With this inducer, no ferulic acid dimers were released from the cell wall by the produced FAE. Interestingly, rape cattle cake ( Brassica napus ), which does not contain esterified ferulic acid, was also shown to induce the production of the FAE from S. ambofaciens. The FAE was partially purified from the culture supernatant. The purified enzyme was optimally active at pH 7 and 40 °C. The substrate specificity of the FAE from S. ambofaciens was investigated: the highest activity was determined with methyl p-coumarate, methyl ferulate, and methyl cinnamate. Furthermore, the FAE required a certain distance between the benzene ring and the ester bond to be active. According to these biochemical characteristics, the FAE from S. ambofaciens has been classified as a type B FAE.
Collapse
Affiliation(s)
- Fadi Kheder
- Laboratoire d’Ingénierie des Biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
- Laboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
| | - Stéphane Delaunay
- Laboratoire d’Ingénierie des Biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
- Laboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
| | - Ghassan Abo-Chameh
- Laboratoire d’Ingénierie des Biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
- Laboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
| | - Cédric Paris
- Laboratoire d’Ingénierie des Biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
- Laboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
| | - Lionel Muniglia
- Laboratoire d’Ingénierie des Biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
- Laboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
| | - Michel Girardin
- Laboratoire d’Ingénierie des Biomolécules, Nancy-Université, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
- Laboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 2 avenue de la Forêt de Haye, B.P. 172 F-54505 Vandœuvre lès Nancy, France
| |
Collapse
|
48
|
Filamentous fungi for production of food additives and processing aids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [PMID: 18253709 DOI: 10.1007/10_2007_094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic.
Collapse
|
49
|
Aurilia V, Parracino A, D'Auria S. Microbial carbohydrate esterases in cold adapted environments. Gene 2007; 410:234-40. [PMID: 18242884 DOI: 10.1016/j.gene.2007.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Psychrophiles produce cold-evolved enzymes that display a high catalytic efficiency, associated with a low thermal stability. In recent years, these enzymes have attracted the attention of scientists because of their peculiar properties that render them particularly useful in investigating the relationship existing between enzyme stability and flexibility on one hand, and enzyme activity on the other hand. Among these enzymes, the esterases, and particularly the feruloyl esterases, have potential uses over a broad range of applications in the agro-food industries. In recent years, the number of microbial feruloyl esterase activities has increased in the growing genome databases. Based on substrate utilization data and supported by primary sequence identity, four subclasses of esterase have been characterized so far. Up to the present, ten genomes from psychrophilic bacteria have been completely sequenced and additional fourteen genomes are under investigation. From the bacteria strains whose genome has been completely sequenced, we analyzed the presence of esterase genes, both the putative genes and the determined experimentally genes, and performed a ClustalW analysis for feruloyl esterases. Major details will be presented for the ORF PSHAa1385 from P. haloplanktis TAC125 that recently has been studied in our research group. In addition, the potential biotechnology applications of this class of enzymes will be discussed.
Collapse
Affiliation(s)
- Vincenzo Aurilia
- Institute of Protein Biochemistry, C.N.R., Via Pietro Castellino, 111-80131, Napoli, Italy
| | | | | |
Collapse
|
50
|
Cloning, characterisation and expression analysis of α-glucuronidase from the thermophilic fungus Talaromyces emersonii. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|