1
|
Vignesh V, Kavalappa YP, Ponesakki G, Madhan B, Shanmugam G. Lutein, a carotenoid found in numerous plants and the human eye, demonstrates the capacity to bundle collagen fibrils. Int J Biol Macromol 2024; 274:133389. [PMID: 38925203 DOI: 10.1016/j.ijbiomac.2024.133389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Collagen fibrils serve as the building blocks of the extracellular matrix, providing a resilient and structural framework for tissues. However, the bundling of collagen fibrils is of paramount importance in maintaining the structural integrity and functionality of various tissues in the human body. In this scenario, there is limited exploration of molecules that promote the bundling of collagen fibrils. Investigating the interactions of well-known carotenoids, commonly associated with ocular health, particularly in the retina, with collagen presents a novel and significant area of study. Here, we studied the influence of lutein, a well-known carotenoid present in many plant tissues and has several biological properties, on the structure, thermal stability, self-assembly, and fibrillation of collagen. Fibrillation kinetics and electron microscopic analyses indicated that lutein did not interfere with fibrillation process of collagen, whereas it enhances the lateral fusion of collagen fibrils leading to the formation of compact bundles of thick fibrils under physiological conditions. The hydrophobic and hydrogen bonding interactions between lutein and collagen fibrils are most likely the cause of the bundling of the fibrils. This study establishes the first investigation of collagen-carotenoid interactions, showcasing the unique property of lutein in bundling collagen fibrils, which may find potential application in tissue engineering.
Collapse
Affiliation(s)
- Venkatesan Vignesh
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research - Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600020, India
| | - Yogendra Prasad Kavalappa
- Biochemistry and Biotechnology Laboratory, CSIR-CLRI, Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Ganesan Ponesakki
- Biochemistry and Biotechnology Laboratory, CSIR-CLRI, Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Balaraman Madhan
- Biochemistry and Biotechnology Laboratory, CSIR-CLRI, Sardar Patel Road, Adyar, Chennai 600 020, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research - Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai 600020, India.
| |
Collapse
|
2
|
Pulze L, Baranzini N, Acquati F, Marcolli G, Grimaldi A. Dynamic relationship among extracellular matrix and body wall cells in Hirudo verbana morphogenesis. Cell Tissue Res 2024; 396:213-229. [PMID: 38424269 PMCID: PMC11055932 DOI: 10.1007/s00441-024-03874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
A great bulk of recent experimental evidence suggests the key role of the complex crosstalk between the extracellular matrix (ECM) and the cellular component of tissues during morphogenesis and embryogenesis. In particular, remodeling of the ECM and of its physical interactions pattern with surrounding cells represent two crucial processes that might be involved in muscle development. However, little information is available on this topic, especially on invertebrate species. To obtain new insights on how tuning the ECM microenvironment might drive cellular fate during embryonic development, we used the invertebrate medicinal leech Hirudo verbana as a valuable experimental model, due to its simple anatomy and the recapitulation of many aspects of the basic biological processes of vertebrates. Our previous studies on leech post-embryonic development have already shown the pivotal role of ECM changes during the growth of the body wall and the role of Yes-associated protein 1 (YAP1) in mechanotransduction. Here, we suggest that the interactions between stromal cell telocytes and ECM might be crucial in driving the organization of muscle layers during embryogenesis. Furthermore, we propose a possible role of the pleiotropic enzyme HvRNASET2 as a possible modulator of collagen deposition and ECM remodeling not only during regenerative processes (as previously demonstrated) but also in embryogenesis.
Collapse
Affiliation(s)
- Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy
| | - Gaia Marcolli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy.
- ILFARM s.r.l., via Guicciardini 14, 21100, Varese, Italy.
| |
Collapse
|
3
|
Spatio-Temporal Changes of Extracellular Matrix (ECM) Stiffness in the Development of the Leech Hirudo verbana. Int J Mol Sci 2022; 23:ijms232415953. [PMID: 36555595 PMCID: PMC9787456 DOI: 10.3390/ijms232415953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The invertebrate leech Hirudo verbana represents a powerful experimental animal model for improving the knowledge about the functional interaction between the extracellular matrix (ECM) and cells within the tissue microenvironment (TME), and the key role played by ECM stiffness during development and growth. Indeed, the medicinal leech is characterized by a simple anatomical organization reproducing many aspects of the basic biological processes of vertebrates and in which a rapid spatiotemporal development is well established and easily assessed. Our results show that ECM structural organization, as well as the amount of fibrillar and non-fibrillar collagen are deeply different from hatching leeches to adult ones. In addition, the changes in ECM remodelling occurring during the different leech developmental stages, leads to a gradient of stiffness regulating both the path of migratory cells and their fates. The ability of cells to perceive and respond to changes in ECM composition and mechanics strictly depend on nuclear or cytoplasmic expression of Yes-Associated Protein 1 (YAP1), a key mediator converting mechanical signals into transcriptional outputs, expression, and activation.
Collapse
|
4
|
Parisi MG, Grimaldi A, Baranzini N, La Corte C, Dara M, Parrinello D, Cammarata M. Mesoglea Extracellular Matrix Reorganization during Regenerative Process in Anemonia viridis (Forskål, 1775). Int J Mol Sci 2021; 22:5971. [PMID: 34073146 PMCID: PMC8198993 DOI: 10.3390/ijms22115971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
Given the anatomical simplicity and the extraordinary ability to regenerate missing parts of the body, Cnidaria represent an excellent model for the study of the mechanisms regulating regenerative processes. They possess the mesoglea, an amorphous and practically acellular extracellular matrix (ECM) located between the epidermis and the gastrodermis of the body and tentacles and consists of the same molecules present in the ECM of vertebrates, such as collagen, laminin, fibronectin and proteoglycans. This feature makes cnidarians anthozoans valid models for understanding the ECM role during regenerative processes. Indeed, it is now clear that its role in animal tissues is not just tissue support, but instead plays a key role during wound healing and tissue regeneration. This study aims to explore regenerative events after tentacle amputation in the Mediterranean anemone Anemonia viridis, focusing in detail on the reorganization of the ECM mesoglea. In this context, both enzymatic, biometric and histological experiments reveal how this gelatinous connective layer plays a fundamental role in the correct restoration of the original structures by modifying its consistency and stiffness. Indeed, through the deposition of collagen I, it might act as a scaffold and as a guide for the reconstruction of missing tissues and parts, such as amputated tentacles.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant 3, 21100 Varese, Italy;
| | - Nicolò Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant 3, 21100 Varese, Italy;
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Sea Sciences, University of Palermo, 90123 Palermo, Italy; (C.L.C.); (M.D.); (D.P.); (M.C.)
| |
Collapse
|
5
|
Despoudi K, Mantzoros I, Ioannidis O, Loutzidou L, Christidis P, Chatzakis C, Gkasdaris G, Raptis D, Pramateftakis MG, Angelopoulos S, Zaraboukas T, Koliakos G, Tsalis K. Healing of colonic anastomosis in rats under obstructive ileus conditions. Discoveries (Craiova) 2021; 9:e129. [PMID: 34849396 PMCID: PMC8627191 DOI: 10.15190/d.2021.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The anastomosis leak in colon resections is a crucial post-operative complication with significant morbidity and mortality. Methods: Forty (40) Wistar rats were allocated in two groups. In SHAM group only anastomosis was performed. In ILEUS group anastomosis was performed following one day of ileus. Animals in both groups were subdivided in two groups according to the day they were sacrificed, 4th or 8th post-operative day. A number of variables between the groups were estimated. RESULTS Body weight loss was higher following obstructive ileus on both days. Adhesion score in 4th and 8th post-operative day was higher in ILEUS1, ILEUS2 groups compared to SHAM1, SHAM2 groups respectively (p<0.001 for both). Neovascularization decreased following obstructive ileus compared to control on the 4th day (ILEUS1 vs. SHAM1, p=0.038). Bursting pressure was lower in ILEUS2 group than SHAM2 group (p<0.001). The number of fibroblasts decreased following obstructive ileus compared to control on the 4th and 8th day (ILEUS1 vs. SHAM1, p=0.001, ILEUS2 vs SHAM2, p=0.016). Hydroxyproline concentration was decreased in ILEUS2 group compared to SHAM2 group (p<0.001). CONCLUSIONS The balance of collagenolysis and collagenogenesis plays a decisive role in the healing of anastomoses following bowel obstruction. Under those circumstances, anastomosis' bursting pressure is reduced owning to decreased neovascularization, reduced fibroblast presence and lower hydroxyproline concertation. In our study, local inflammation, neocollagen concentration and collagenase activity were not associated with this adverse effect. However, further research should delineate the mechanisms of healing of colonic anastomoses and identify those factors that can improve our outcomes.
Collapse
Affiliation(s)
- Kalliopi Despoudi
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Ioannis Mantzoros
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Orestis Ioannidis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Lydia Loutzidou
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Panagiotis Christidis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Christos Chatzakis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Grigorios Gkasdaris
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Dimitrios Raptis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Manousos George Pramateftakis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Stamatios Angelopoulos
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Thomas Zaraboukas
- Department of Pathology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - George Koliakos
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Konstantinos Tsalis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
6
|
Baranzini N, Pulze L, Tettamanti G, Acquati F, Grimaldi A. HvRNASET2 Regulate Connective Tissue and Collagen I Remodeling During Wound Healing Process. Front Physiol 2021; 12:632506. [PMID: 33716780 PMCID: PMC7943632 DOI: 10.3389/fphys.2021.632506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Several studies have recently demonstrated that the correct regeneration of damaged tissues and the maintaining of homeostasis after wounds or injuries are tightly connected to different biological events, involving immune response, fibroplasia, and angiogenetic processes, in both vertebrates and invertebrates. In this context, our previous data demonstrated that the Hirudo verbana recombinant protein rHvRNASET2 not only plays a pivotal role in innate immune modulation, but is also able to activate resident fibroblasts leading to new collagen production, both in vivo and in vitro. Indeed, when injected in the leech body wall, which represents a consolidated invertebrate model for studying both immune response and tissue regeneration, HvRNASET2 induces macrophages recruitment, fibroplasia, and synthesis of new collagen. Based on this evidence, we evaluate the role of HvRNASET2 on muscle tissue regeneration and extracellular matrix (ECM) remodeling in rHvRNASET2-injected wounded leeches, compared to PBS-injected wounded leeches used as control. The results presented here not only confirms our previous evidence, reporting that HvRNASET2 leads to an increased collagen production, but also shows that an overexpression of this protein might influence the correct progress of muscle tissue regeneration. Moreover, due to its inhibitory effect on vasculogenesis and angiogenesis, HvRNASET2 apparently interfere with the recruitment of the myoendothelial vessel-associated precursor cells that in turn are responsible for muscle regeneration during wound healing repair.
Collapse
Affiliation(s)
- Nicolò Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Laura Pulze
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
7
|
Bodó K, Baranzini N, Girardello R, Kokhanyuk B, Németh P, Hayashi Y, Grimaldi A, Engelmann P. Nanomaterials and Annelid Immunity: A Comparative Survey to Reveal the Common Stress and Defense Responses of Two Sentinel Species to Nanomaterials in the Environment. BIOLOGY 2020; 9:biology9100307. [PMID: 32977601 PMCID: PMC7598252 DOI: 10.3390/biology9100307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary Nanotechnology is a dynamically developing field producing large amounts of nanocompounds that are applied in industry, daily life, and health care. During production, use, and waste these materials could end up in water or soil. Large scale contaminations of our environment are a threat to public health. Pollution can have harmful effects on the immune system, as revealed by numerous studies in humans and other vertebrates. The relative simplicity of invertebrate immune functions offers potentially sensitive and accessible means of monitoring the effects and complex interactions of nanoparticles which ultimately affect host resistance. Among terrestrial and freshwater invertebrates, earthworms and leeches are the “keystone” species to evaluate the health of our ecosystems. In this review we compare the conserved stress and immune responses of these invertebrate model organisms toward nanoparticles. The obtained knowledge provides exciting insights into the conserved molecular and cellular mechanisms of nanomaterial-related toxicity in invertebrates and vertebrates. Understanding the unique characteristics of engineered nanoproducts and their interactions with biological systems in our environment is essential to the safe realization of these materials in novel biomedical applications. Abstract Earthworms and leeches are sentinel animals that represent the annelid phylum within terrestrial and freshwater ecosystems, respectively. One early stress signal in these organisms is related to innate immunity, but how nanomaterials affect it is poorly characterized. In this survey, we compare the latest literature on earthworm and leeches with examples of their molecular/cellular responses to inorganic (silver nanoparticles) and organic (carbon nanotubes) nanomaterials. A special focus is placed on the role of annelid immunocytes in the evolutionarily conserved antioxidant and immune mechanisms and protein corona formation and probable endocytosis pathways involved in nanomaterial uptake. Our summary helps to realize why these environmental sentinels are beneficial to study the potential detrimental effects of nanomaterials.
Collapse
Affiliation(s)
- Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Nicoló Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
- Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Bohdana Kokhanyuk
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark;
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (N.B.); (R.G.)
- Correspondence: (A.G.); (P.E.); Tel.: +39-0332-421-325 (A.G.); +36-72-536-288 (P.E.); Fax: +39-0332-421-326 (A.G.); +36-72-536-289 (P.E.)
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u, 12, 7643 Pécs, Hungary; (K.B.); (B.K.); (P.N.)
- Correspondence: (A.G.); (P.E.); Tel.: +39-0332-421-325 (A.G.); +36-72-536-288 (P.E.); Fax: +39-0332-421-326 (A.G.); +36-72-536-289 (P.E.)
| |
Collapse
|
8
|
Recombinant HvRNASET2 protein induces marked connective tissue remodelling in the invertebrate model Hirudo verbana. Cell Tissue Res 2020; 380:565-579. [PMID: 32043208 DOI: 10.1007/s00441-020-03174-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/20/2020] [Indexed: 01/03/2023]
Abstract
The RNASET2 ribonuclease, belonging to the highly conserved RH/T2/s RNase gene family, has been recently shown to modulate inflammatory processes in both vertebrates and invertebrates. Indeed, the RNASET2 protein acts as a chemoattractor for macrophages in both in vitro and in vivo experimental settings and its expression significantly increases following bacterial infections. Moreover, we recently observed that injection of human recombinant RNASET2 protein in the body wall of the medicinal leech (a consolidated invertebrate model for both immune response and tissue regeneration) not only induced immune cell recruitment but also apparently triggered massive connective tissue remodelling as well. Based on these data, we evaluate here a possible role of leech recombinant RNASET2 protein (rHvRNASET2) in connective tissue remodelling by characterizing the cell types involved in this process through histochemical, morphological and immunofluorescent assays. Moreover, a time-course expression analysis of newly synthesized pro-collagen1α1 (COL1α1) and basic FGF receptor (bFGFR, a known fibroblast marker) following rHvRNASET2 injection in the leech body wall further supported the occurrence of rHvRNASET2-mediated matrix remodelling. Human MRC-5 fibroblast cells were also investigated in order to evaluate their pattern of collagen neosynthesis driven by rHvRNASET2 injection.Taken together, the data reported in this work provide compelling evidence in support of a pleiotropic role for RNASET2 in orchestrating an evolutionarily conserved crosstalk between inflammatory response and regenerative process, based on macrophage recruitment and fibroblast activation, coupled to a massive extracellular reorganization.
Collapse
|
9
|
Cialdai F, Colciago A, Pantalone D, Rizzo AM, Zava S, Morbidelli L, Celotti F, Bani D, Monici M. Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models. Int J Mol Sci 2020; 21:407. [PMID: 31936443 PMCID: PMC7013931 DOI: 10.3390/ijms21020407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.
Collapse
Affiliation(s)
- Francesca Cialdai
- ASA campus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy;
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Desiré Pantalone
- Unit of Surgery and Trauma Care, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Stefania Zava
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (A.C.); (A.M.R.); (S.Z.); (F.C.)
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy;
| | - Monica Monici
- ASA campus Joint Laboratory, ASA Res. Div., Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
10
|
Baranzini N, Monti L, Vanotti M, Orlandi VT, Bolognese F, Scaldaferri D, Girardello R, Tettamanti G, de Eguileor M, Vizioli J, Taramelli R, Acquati F, Grimaldi A. AIF-1 and RNASET2 Play Complementary Roles in the Innate Immune Response of Medicinal Leech. J Innate Immun 2018; 11:150-167. [PMID: 30368505 DOI: 10.1159/000493804] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Recent studies demonstrated that allograft inflammatory factor-1 (AIF-1) and RNASET2 act as chemoattractants for macrophages and modulate the inflammatory processes in both vertebrates and invertebrates. The expression of these proteins significantly increases after bacterial infection; however, the mechanisms by which they regulate the innate immune response are still poorly defined. Here, we evaluate the effect of bacterial lipopolysaccharide injection on the expression pattern of these genes and the interrelation between them during innate immune response in the medicinal leech, an invertebrate model with a simple anatomy and a marked similarity with vertebrates in inflammatory processes. Collectively, prokaryotic-eukaryotic co-cultures and in vivo infection assays suggest that RNASET2 and AIF-1 play a crucial role in orchestrating a functional cross-talk between granulocytes and macrophages in leeches, resulting in the activation of an effective response against pathogen infection. RNASET2, firstly released by granulocytes, likely plays an early antibacterial role. Subsequently, AIF-1+ RNASET2-recruited macrophages further recruit other macrophages to potentiate the antibacterial inflammatory response. These experimental data are in keeping with the notion of RNA-SET2 acting as an alarmin-like molecule whose role is to locally transmit a "danger" signal (such as a bacterial infection) to the innate immune system in order to trigger an appropriate host response.
Collapse
Affiliation(s)
- Nicolò Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Laura Monti
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Marta Vanotti
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Viviana T Orlandi
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Debora Scaldaferri
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Jacopo Vizioli
- Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, University of Lille, Lille, France
| | - Roberto Taramelli
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Varese,
| |
Collapse
|
11
|
Not only tendons: The other architecture of collagen fibrils. Int J Biol Macromol 2018; 107:1668-1674. [DOI: 10.1016/j.ijbiomac.2017.10.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/28/2023]
|
12
|
A new cellular type in invertebrates: first evidence of telocytes in leech Hirudo medicinalis. Sci Rep 2017; 7:13580. [PMID: 29051571 PMCID: PMC5648783 DOI: 10.1038/s41598-017-13202-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/19/2017] [Indexed: 01/30/2023] Open
Abstract
Telocytes, a peculiar cell type, were recently found in vertebrates. Hence this cell system has been reported as ubiquitous in the bodies of mammals and interpreted as an important player in innate immunity and tissue regeneration, it is reasonable to look for it also in invertebrates, that rely their integrity solely by innate immunity. Here we describe, at morphological and functional level, invertebrate telocytes from the body of leech Hirudo medicinalis (Annelida), suggesting how these cells, forming a resident stromal 3D network, can influence or participate in different events. These findings support the concepts that leech telocytes: i) are organized in a cellular dynamic and versatile 3D network likewise the vertebrate counterpart; ii) are an evolutionarily conserved immune-neuroendocrine system; iii) form an immuno-surveillance system of resident cells responding faster than migrating immunocytes recruited in stimulated area; iv) communicate with neighbouring cells directly and indirectly, via cell-cell contacts and soluble molecules secreted by multivesicular bodies; v) present within neo-vessels, share with immunocytes the mesodermal lineage; vi) are involved in regenerative processes. In conclusion, we propose that HmTCs, integrating so different functions, might explain the innate immune memory and can be associated with several aged related diseases.
Collapse
|
13
|
Despoudi K, Mantzoros I, Ioannidis O, Cheva A, Antoniou N, Konstantaras D, Symeonidis S, Pramateftakis MG, Kotidis E, Angelopoulos S, Tsalis K. Effects of albumin/glutaraldehyde glue on healing of colonic anastomosis in rats. World J Gastroenterol 2017; 23:5680-5691. [PMID: 28883693 PMCID: PMC5569282 DOI: 10.3748/wjg.v23.i31.5680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/08/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To evaluate the effect of local surgical adhesive glue (albumin/glutaraldehyde-Bioglue) on the healing of colonic anastomoses in rats. METHODS Forty Albino-Wistar male rats were randomly divided into two groups, with two subgroups of ten animals each. In the control group, an end-to-end colonic anastomosis was performed after segmental resection. In the Bioglue group, the anastomosis was protected with extraluminar application of adhesive glue containing albumin and glutaraldehyde. Half of the rats were sacrificed on the fourth and the rest on the eighth postoperative day. Anastomoses were resected and macroscopically examined. Bursting pressures were calculated and histological features were graded. Other parameters of healing, such as hydroxyproline and collagenase concentrations, were evaluated. The experimental data were summarized and computed from the results of a one-way ANOVA. Fisher's exact test was applied to compare percentages. RESULTS Bursting pressures, adhesion formation, inflammatory cell infiltration, and collagen deposition were significantly higher on the fourth postoperative day in the albumin/glutaraldehyde group than in the control group. Furthermore, albumin/glutaraldehyde significantly increased adhesion formation, inflammatory cell infiltration, neoangiogenesis, and collagen deposition on the eighth postoperative day. There was no difference in fibroblast activity or hydroxyproline and collagenase concentrations. CONCLUSION Albumin/glutaraldehyde, when applied on colonic anastomoses, promotes their healing in rats. Therefore, the application of protective local agents in colonic anastomoses leads to better outcomes.
Collapse
Affiliation(s)
- Kalliopi Despoudi
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Ioannis Mantzoros
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Orestis Ioannidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Aggeliki Cheva
- Department of Pathology, General Hospital “G. Papanikolaou”, 57010 Thessaloniki, Greece
| | - Nikolaos Antoniou
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Dimitrios Konstantaras
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Savvas Symeonidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | | | - Efstathios Kotidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Stamatis Angelopoulos
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Konstantinos Tsalis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
14
|
Antman-Passig M, Levy S, Gartenberg C, Schori H, Shefi O. Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth. Tissue Eng Part A 2017; 23:403-414. [PMID: 28437179 DOI: 10.1089/ten.tea.2016.0185] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies in the field of neuro-tissue engineering have demonstrated the promising effects of aligned contact guidance cue to scaffolds of enhancement and direction of neuronal growth. In vivo, neurons grow and develop neurites in a complex three-dimensional (3D) extracellular matrix (ECM) surrounding. Studies have utilized hydrogel scaffolds derived from ECM molecules to better simulate natural growth. While many efforts have been made to control neuronal growth on 2D surfaces, the development of 3D scaffolds with an elaborate oriented topography to direct neuronal growth still remains a challenge. In this study, we designed a method for growing neurons in an aligned and oriented 3D collagen hydrogel. We aligned collagen fibers by inducing controlled uniaxial strain on gels. To examine the collagen hydrogel as a suitable scaffold for neuronal growth, we evaluated the physical properties of the hydrogel and measured collagen fiber properties. By combining the neuronal culture in 3D collagen hydrogels with strain-induced alignment, we were able to direct neuronal growth in the direction of the aligned collagen matrix. Quantitative evaluation of neurite extension and directionality within aligned gels was performed. The analysis showed neurite growth aligned with collagen matrix orientation, while maintaining the advantageous 3D growth.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Shahar Levy
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Chaim Gartenberg
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| |
Collapse
|
15
|
Baranzini N, Pedrini E, Girardello R, Tettamanti G, de Eguileor M, Taramelli R, Acquati F, Grimaldi A. Human recombinant RNASET2-induced inflammatory response and connective tissue remodeling in the medicinal leech. Cell Tissue Res 2017; 368:337-351. [PMID: 28070637 DOI: 10.1007/s00441-016-2557-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
In recent years, several studies have demonstrated that the RNASET2 gene is involved in the control of tumorigenicity in ovarian cancer cells. Furthermore, a role in establishing a functional cross-talk between cancer cells and the surrounding tumor microenvironment has been unveiled for this gene, based on its ability to act as an inducer of the innate immune response. Although several studies have reported on the molecular features of RNASET2, the details on the mechanisms by which this evolutionarily conserved ribonuclease regulates the immune system are still poorly defined. In the effort to clarify this aspect, we report here the effect of recombinant human RNASET2 injection and its role in regulating the innate immune response after bacterial challenge in an invertebrate model, the medicinal leech. We found that recombinant RNASET2 injection induces fibroplasias, connective tissue remodeling and the recruitment of numerous infiltrating cells expressing the specific macrophage markers CD68 and HmAIF1. The RNASET2-mediated chemotactic activity for macrophages has been further confirmed by using a consolidated experimental approach based on injection of the Matrigel biomatrice (MG) supplemented with recombinant RNASET2 in the leech body wall. One week after injection, a large number of CD68+ and HmAIF-1+ macrophages massively infiltrated MG sponges. Finally, in leeches challenged with lipopolysaccharides (LPS) or with the environmental bacteria pathogen Micrococcus nishinomiyaensis, numerous macrophages migrating to the site of inoculation expressed high levels of endogenous RNASET2. Taken together, these results suggest that RNASET2 is likely involved in the initial phase of the inflammatory response in leeches.
Collapse
Affiliation(s)
- Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Edoardo Pedrini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Roberto Taramelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
16
|
Girardello R, Tasselli S, Baranzini N, Valvassori R, de Eguileor M, Grimaldi A. Effects of Carbon Nanotube Environmental Dispersion on an Aquatic Invertebrate, Hirudo medicinalis. PLoS One 2015; 10:e0144361. [PMID: 26636582 PMCID: PMC4670124 DOI: 10.1371/journal.pone.0144361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022] Open
Abstract
The recent widespread applications of nanomaterials, because of their properties, opens new scenarios that affect their dispersal in the environment. In particular multiwall carbon nanotubes (MWCNTs), despite their qualities, seem to be harmful for animals and humans. To evaluate possible toxic effects caused by carbon nanotube environmental dispersion, with regard to aquatic compartment, we proposed as experimental model a freshwater invertebrate: Hirudo medicinalis. In the present study we analyse acute and chronic immune responses over a short (1, 3, 6 and 12 hours) and long time (from 1 to 5 weeks) exposure to MWCNTs by optical, electron and immunohistochemical approaches. In the exposed leeches angiogenesis and fibroplasia accompanied by massive cellular migration occur. Immunocytochemical characterization using specific markers shows that in these inflammatory processes the monocyte-macrophages (CD45+, CD68+) are the most involved cells. These immunocompetent cells are characterized by sequence of events starting from the expression of pro-inflammatory cytokines (in particular IL-18), and amyloidogenensis. Our combined experimental approaches, basing on high sensitive inflammatory response can highlight adverse effects of nanomaterials on aquatic organisms and could be useful to assess the MWCNTs impact on aquatic, terrestrial animal and human health.
Collapse
Affiliation(s)
- Rossana Girardello
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Stefano Tasselli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Roberto Valvassori
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- * E-mail:
| |
Collapse
|
17
|
Almeida BMD, Nascimento MFD, Pereira-Filho RN, Melo GCD, Santos JCD, Oliveira CRD, Gomes MZ, Lima SO, Albuquerque-Júnior RLCD. Immunohistochemical profile of stromal constituents and lymphoid cells over the course of wound healing in murine model. Acta Cir Bras 2014; 29:596-602. [DOI: 10.1590/s0102-8650201400150007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/18/2014] [Indexed: 11/21/2022] Open
|
18
|
Eckert T, Stötzel S, Burg-Roderfeld M, Sewing J, Lütteke T, E. Nifantiev N, F. G. Vliegenthart J, Siebert HC. <i>In silico</i> Study on Sulfated and Non-Sulfated Carbohydrate Chains from Proteoglycans in <i>Cnidaria</i> and Interaction with Collagen. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpc.2012.22017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Palmer CV, Traylor-Knowles NG, Willis BL, Bythell JC. Corals use similar immune cells and wound-healing processes as those of higher organisms. PLoS One 2011; 6:e23992. [PMID: 21887359 PMCID: PMC3161096 DOI: 10.1371/journal.pone.0023992] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 08/03/2011] [Indexed: 01/04/2023] Open
Abstract
Sessile animals, like corals, frequently suffer physical injury from a variety of sources, thus wound-healing mechanisms that restore tissue integrity and prevent infection are vitally important for defence. Despite the ecological importance of reef-building corals, little is known about the cells and processes involved in wound healing in this group or in phylogenetically basal metazoans in general. A histological investigation into wound healing of the scleractinian coral Porites cylindrica at 0 h, 6 h, 24 h and 48 h after injury revealed differences in cellular components between injured and healthy tissues. Cell counts of the obligate endosymbiont, Symbiodinium, and melanin volume fraction analysis revealed rapid declines in both Symbiodinium abundance and tissue cross-sectional area occupied by melanin-containing granular cells after injury. Four phases of wound healing were identified, which are similar to phases described for both vertebrates and invertebrates. The four phases included (i) plug formation via the degranulation of melanin-containing granular cells; (ii) immune cell infiltration (inflammation); (iii) granular tissue formation (proliferation); and (iv) maturation. This study provides detailed documentation of the processes involved in scleractinian wound healing for the first time and further elucidates the roles of previously-described immune cells, such as fibroblasts. These results demonstrate the conservation of wound healing processes from anthozoans to humans.
Collapse
Affiliation(s)
- Caroline V Palmer
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | | | | | |
Collapse
|
20
|
Grimaldi A, Banfi S, Vizioli J, Tettamanti G, Noonan DM, de Eguileor M. Cytokine loaded biopolymers as a novel strategy to study stem cells during wound-healing processes. Macromol Biosci 2011; 11:1008-19. [PMID: 21400659 DOI: 10.1002/mabi.201000452] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/10/2011] [Indexed: 12/12/2022]
Abstract
The biopolymer matrigel loaded with cytokine can be used for the recruitment in vivo of specific cell populations and as a vector for the preparation of cell cultures. Data demonstrate that the injection of the matrigel biopolymer supplemented with interleukin-8 (IL-8) in the leech Hirudo medicinalis can be used to purify cell populations showing the same morphofunctional and molecular mechanisms of specific populations of vertebrate hematopoietic precursor cells involved in tissue repair. These cells spontaneously differentiated into myofibroblasts. This approach highlights how the innovative use of a cytokine-loaded biopolymer for an in vivo cell sorting method, applied to a simple invertebrate model, can be a tool for studying myofibroblast cell biology and its regulation, step by step.
Collapse
Affiliation(s)
- Annalisa Grimaldi
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Reitzel AM, Sullivan JC, Traylor-Knowles N, Finnerty JR. Genomic survey of candidate stress-response genes in the estuarine anemone Nematostella vectensis. THE BIOLOGICAL BULLETIN 2008; 214:233-254. [PMID: 18574101 DOI: 10.2307/25470666] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salt marshes are challenging habitats due to natural variability in key environmental parameters including temperature, salinity, ultraviolet light, oxygen, sulfides, and reactive oxygen species. Compounding this natural variation, salt marshes are often heavily impacted by anthropogenic insults including eutrophication, toxic contamination, and coastal development that alter tidal and freshwater inputs. Commensurate with this environmental variability, estuarine animals generally exhibit broader physiological tolerances than freshwater, marine, or terrestrial species. One factor that determines an organism's physiological tolerance is its ability to upregulate "stress-response genes" in reaction to particular stressors. Comparative studies on diverse organisms have identified a number of evolutionarily conserved genes involved in responding to abiotic and biotic stressors. We used homology-based scans to survey the sequenced genome of Nematostella vectensis, the starlet sea anemone, an estuarine specialist, to identify genes involved in the response to three kinds of insult-physiochemical insults, pathogens, and injury. Many components of the stress-response networks identified in triploblastic animals have clear orthologs in the sea anemone, meaning that they must predate the cnidarian-triploblast split (e.g., xenobiotic receptors, biotransformative genes, ATP-dependent transporters, and genes involved in responding to reactive oxygen species, toxic metals, osmotic shock, thermal stress, pathogen exposure, and wounding). However, in some instances, stress-response genes known from triploblasts appear to be absent from the Nematostella genome (e.g., many metal-complexing genes). This is the first comprehensive examination of the genomic stress-response repertoire of an estuarine animal and a member of the phylum Cnidaria. The molecular markers of stress response identified in Nematostella may prove useful in monitoring estuary health and evaluating coastal conservation efforts. These data may also inform conservation efforts on other cnidarians, such as the reef-building corals.
Collapse
Affiliation(s)
- Adam M Reitzel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
22
|
Grimaldi A, Caccia S, Congiu T, Ferrarese R, Tettamanti G, Rivas-Pena M, Perletti G, Valvassori R, Giordana B, Falabella P, Pennacchio F, de Eguileor M. Structure and function of the extraembryonic membrane persisting around the larvae of the parasitoid Toxoneuron nigriceps. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:870-80. [PMID: 16843482 DOI: 10.1016/j.jinsphys.2006.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 05/10/2023]
Abstract
The embryo of Toxoneuron nigriceps (Hymenoptera, Braconidae) is surrounded by an extraembryonic membrane, which, at hatching, releases teratocytes and gives rise to a cell layer embedding the body of the 1st instar larva. This cell layer was studied at different developmental times, from soon after hatching up to the first larval moult, in order to elucidate its ultrastructural, immunocytochemical and physiological function. The persisting "larval serosa" shows a striking structural and functional complexity: it is a multifunctional barrier with protective properties, limits the passage of macromolecules and it is actively involved in the enzymatic processing and uptake of nutrients. The reported results emphasizes the important role that the embryo-derived host regulation factors may have in parasitism success in Hymenoptera koinobionts.
Collapse
Affiliation(s)
- A Grimaldi
- Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, via Dunant 3, 21100 Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|