1
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
2
|
Huet D, Moreno SNJ. Interorganellar Communication Through Membrane Contact Sites in Toxoplasma Gondii. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231189064. [PMID: 37560622 PMCID: PMC10408353 DOI: 10.1177/25152564231189064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Apicomplexan parasites are a group of protists that cause disease in humans and include pathogens like Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, the etiological agent of toxoplasmosis and one of the most ubiquitous human parasites in the world. Membrane contact sites (MCSs) are widespread structures within eukaryotic cells but their characterization in apicomplexan parasites is only in its very beginnings. Basic biological features of the T. gondii parasitic cycle support numerous organellar interactions, including the transfer of Ca2+ and metabolites between different compartments. In T. gondii, Ca2+ signals precede a series of interrelated molecular processes occurring in a coordinated manner that culminate in the stimulation of key steps of the parasite life cycle. Calcium transfer from the endoplasmic reticulum to other organelles via MCSs would explain the precision, speed, and efficiency that is needed during the lytic cycle of T. gondii. In this short review, we discuss the implications of these structures in cellular signaling, with an emphasis on their potential role in Ca2+ signaling.
Collapse
Affiliation(s)
- Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Li ZH, King TP, Ayong L, Asady B, Cai X, Rahman T, Vella SA, Coppens I, Patel S, Moreno SNJ. A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii. Nat Commun 2021; 12:5802. [PMID: 34608145 PMCID: PMC8490419 DOI: 10.1038/s41467-021-25987-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Two-pore channels (TPCs) are a ubiquitous family of cation channels that localize to acidic organelles in animals and plants to regulate numerous Ca2+-dependent events. Little is known about TPCs in unicellular organisms despite their ancient origins. Here, we characterize a TPC from Toxoplasma gondii, the causative agent of toxoplasmosis. TgTPC is a member of a novel clad of TPCs in Apicomplexa, distinct from previously identified TPCs and only present in coccidians. We show that TgTPC localizes not to acidic organelles but to the apicoplast, a non-photosynthetic plastid found in most apicomplexan parasites. Conditional silencing of TgTPC resulted in progressive loss of apicoplast integrity, severely affecting growth and the lytic cycle. Isolation of TPC null mutants revealed a selective role for TPCs in replication independent of apicoplast loss that required conserved residues within the pore-lining region. Using a genetically-encoded Ca2+ indicator targeted to the apicoplast, we show that Ca2+ signals deriving from the ER but not from the extracellular space are selectively transmitted to the lumen. Deletion of the TgTPC gene caused reduced apicoplast Ca2+ uptake and membrane contact site formation between the apicoplast and the ER. Fundamental roles for TPCs in maintaining organelle integrity, inter-organelle communication and growth emerge.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Thayer P King
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Lawrence Ayong
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD, 21205, USA
| | - Xinjiang Cai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, USA
| | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD, 21205, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA. .,Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Sato S. Plasmodium-a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 2021; 40:1. [PMID: 33413683 PMCID: PMC7792015 DOI: 10.1186/s40101-020-00251-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria is one of the most devastating infectious diseases of humans. It is problematic clinically and economically as it prevails in poorer countries and regions, strongly hindering socioeconomic development. The causative agents of malaria are unicellular protozoan parasites belonging to the genus Plasmodium. These parasites infect not only humans but also other vertebrates, from reptiles and birds to mammals. To date, over 200 species of Plasmodium have been formally described, and each species infects a certain range of hosts. Plasmodium species that naturally infect humans and cause malaria in large areas of the world are limited to five-P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. The first four are specific for humans, while P. knowlesi is naturally maintained in macaque monkeys and causes zoonotic malaria widely in South East Asia. Transmission of Plasmodium species between vertebrate hosts depends on an insect vector, which is usually the mosquito. The vector is not just a carrier but the definitive host, where sexual reproduction of Plasmodium species occurs, and the parasite's development in the insect is essential for transmission to the next vertebrate host. The range of insect species that can support the critical development of Plasmodium depends on the individual parasite species, but all five Plasmodium species causing malaria in humans are transmitted exclusively by anopheline mosquitoes. Plasmodium species have remarkable genetic flexibility which lets them adapt to alterations in the environment, giving them the potential to quickly develop resistance to therapeutics such as antimalarials and to change host specificity. In this article, selected topics involving the Plasmodium species that cause malaria in humans are reviewed.
Collapse
Affiliation(s)
- Shigeharu Sato
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
5
|
Molecular Phylogeny of Marine Gregarines (Apicomplexa) from the Sea of Japan and the Northwest Pacific Including the Description of Three Novel Species of Selenidium and Trollidium akkeshiense n. gen. n. sp. Protist 2020; 171:125710. [DOI: 10.1016/j.protis.2019.125710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/11/2019] [Accepted: 12/01/2019] [Indexed: 11/21/2022]
|
6
|
There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules 2019; 9:biom9080378. [PMID: 31430853 PMCID: PMC6722601 DOI: 10.3390/biom9080378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron–sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
Collapse
|
7
|
Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (apicomplexa). Protist 2014; 165:493-511. [PMID: 24998785 DOI: 10.1016/j.protis.2014.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/21/2022]
Abstract
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellaeRay 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans.
Collapse
|
8
|
Lemgruber L, Kudryashev M, Dekiwadia C, Riglar DT, Baum J, Stahlberg H, Ralph SA, Frischknecht F. Cryo-electron tomography reveals four-membrane architecture of the Plasmodium apicoplast. Malar J 2013; 12:25. [PMID: 23331966 PMCID: PMC3662607 DOI: 10.1186/1475-2875-12-25] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022] Open
Abstract
Background The apicoplast is a plastid organelle derived from a secondary endosymbiosis, containing biosynthetic pathways essential for the survival of apicomplexan parasites. The Toxoplasma apicoplast clearly possesses four membranes but in related Plasmodium spp. the apicoplast has variably been reported to have either three or four membranes. Methods Cryo-electron tomography was employed to image merozoites of Plasmodium falciparum and Plasmodium berghei frozen in their near-native state. Three-dimensional reconstructions revealed the number of apicoplast membranes and the association of the apicoplast with other organelles. Routine transmission electron microscopy of parasites preserved by high-pressure freezing followed by freeze substitution techniques was also used to analyse apicoplast morphology. Results Cryo-preserved parasites showed clearly four membranes surrounding the apicoplast. A wider gap between the second and third apicoplast membranes was frequently observed. The apicoplast was found in close proximity to the nucleus and to the rhoptries. The apicoplast matrix showed ribosome-sized particles and membranous whorls. Conclusions The Plasmodium apicoplast possesses four membranes, as do the apicoplasts of other apicomplexan parasites. This is consistent with a four-membraned secondary endosymbiotic plastid ancestor.
Collapse
Affiliation(s)
- Leandro Lemgruber
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sheiner L, Striepen B. Protein sorting in complex plastids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:352-9. [PMID: 22683761 DOI: 10.1016/j.bbamcr.2012.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022]
Abstract
Taming a cyanobacterium in a pivitol event of endosymbiosis brought photosynthesis to eukaryotes, and gave rise to the plastids found in glaucophytes, red and green algae, and the descendants of the latter, the plants. Ultrastructural as well as molecular research over the last two decades has demonstrated that plastids have enjoyed surprising lateral mobility across the tree of life. Numerous independent secondary and tertiary endosymbiosis have led to a spread of plastids into a variety of, up to that point, non-photosynthetic lineages. Happily eating and subsequently domesticating one another protists conquered a wide variety of ecological niches. The elaborate evolution of secondary, or complex, plastids is reflected in the numerous membranes that bound them (three or four compared to the two membranes of the primary plastids). Gene transfer to the host nucleus is a hallmark of endosymbiosis and provides centralized cellular control. Here we review how these proteins find their way back into the stroma of the organelle and describe the advances in the understanding of the molecular mechanisms that allow protein translocation across four membranes. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| | | |
Collapse
|
10
|
Kurth T, Wiedmer S, Entzeroth R. Improvement of Ultrastructural Preservation of Eimeria Oocysts by Microwave-assisted Chemical Fixation or by High Pressure Freezing and Freeze Substitution. Protist 2012; 163:296-305. [DOI: 10.1016/j.protis.2011.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/14/2011] [Indexed: 11/24/2022]
|
11
|
Caballero MC, Pedroni MJ, Palmer GH, Suarez CE, Davitt C, Lau AOT. Characterization of acyl carrier protein and LytB in Babesia bovis apicoplast. Mol Biochem Parasitol 2011; 181:125-33. [PMID: 22057350 PMCID: PMC3278595 DOI: 10.1016/j.molbiopara.2011.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 10/12/2011] [Accepted: 10/18/2011] [Indexed: 01/09/2023]
Abstract
The apicoplast is a highly specialized organelle that mediates required functions in the growth and replication of apicomplexan parasites. Despite structural conservation of the apicoplast among different parasite genera and species, there are also critical differences in the metabolic requirements of different parasites and at different stages of the life cycle. To specifically compare apicoplast pathways between parasites that have both common and unique stages, we characterized the apicoplast in Babesia bovis, which has only intraerythrocytic asexual stages in the mammalian host, and compared it to that of Plasmodium falciparum, which has both asexual intraerythrocytic and hepatic stages. Specifically focusing on the type II fatty acid (FASII) and isoprenoid (MEP) biosynthesis pathways, we searched for pathway components and retention of active sites within the genome, localized key components [acyl carrier protein (ACP) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB)] to the apicoplast, and demonstrated that the N-terminal bipartite signals of both proteins are required and sufficient for trafficking to the apicoplast lumen. Using specific pharmacologic inhibition, we demonstrated that MEP biosynthesis may be disrupted and its presence is required for intraerythrocytic growth of B. bovis asexual stages, consistent with the genomic pathway analysis and with its requirement in the asexual erythrocytic stages of P. falciparum. In contrast, FASII biosynthesis may or may not be present and specific drug targets did not have any inhibitory effect to B. bovis intraerythrocytic growth, which is consistent with the lack of requirement for P. falciparum intraerythrocytic growth. However, genomic analysis revealed the loss of FASII pathway components in B. bovis whereas the pathway is intact for P. falciparum but regulated to be expressed when needed (hepatic stages) and silent when not (intraerythrocytic stages). The results indicate specialized molding of apicoplast biosynthetic pathways to meet the requirements of individual apicomplexan parasites and their unique intracellular niches.
Collapse
Affiliation(s)
- Marina C Caballero
- Program of Genomics, Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sato S. The apicomplexan plastid and its evolution. Cell Mol Life Sci 2011; 68:1285-96. [PMID: 21380560 PMCID: PMC3064897 DOI: 10.1007/s00018-011-0646-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
Protistan species belonging to the phylum Apicomplexa have a non-photosynthetic secondary plastid-the apicoplast. Although its tiny genome and even the entire nuclear genome has been sequenced for several organisms bearing the organelle, the reason for its existence remains largely obscure. Some of the functions of the apicoplast, including housekeeping ones, are significantly different from those of other plastids, possibly due to the organelle's unique symbiotic origin.
Collapse
Affiliation(s)
- Shigeharu Sato
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, UK.
| |
Collapse
|
13
|
Agrawal S, Striepen B. More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 2010; 161:672-87. [PMID: 21036664 DOI: 10.1016/j.protis.2010.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastids are found across the tree of life in a tremendous diversity of life forms. Surprisingly they are not limited to photosynthetic organisms but also found in numerous predators and parasites. An important reason for the pervasiveness of plastids has been their ability to move laterally and to jump from one branch of the tree of life to the next through secondary endosymbiosis. Eukaryotic algae have entered endosymbiotic relationships with other eukaryotes on multiple independent occasions. The descendants of these endosymbiotic events now carry complex plastids, organelles that are bound by three or even four membranes. As in all endosymbiotic organelles most of the symbiont's genes have been transferred to the host and their protein products have to be imported into the organelle. As four membranes might suggest, this is a complex process. The emerging mechanisms display a series of translocons that mirror the divergent ancestry of the membranes they cross. This review is written from the viewpoint of a parasite biologist and seeks to provide a brief overview of plastid evolution in particular for readers not already familiar with plant and algal biology and then focuses on recent molecular discoveries using genetically tractable Apicomplexa and diatoms.
Collapse
Affiliation(s)
- Swati Agrawal
- Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | | |
Collapse
|
14
|
Tomova C, Humbel BM, Geerts WJC, Entzeroth R, Holthuis JCM, Verkleij AJ. Membrane Contact Sites between Apicoplast and ER inToxoplasma gondiiRevealed by Electron Tomography. Traffic 2009; 10:1471-80. [DOI: 10.1111/j.1600-0854.2009.00954.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Pierson J, Sani M, Tomova C, Godsave S, Peters PJ. Toward visualization of nanomachines in their native cellular environment. Histochem Cell Biol 2009; 132:253-62. [PMID: 19649648 PMCID: PMC2729413 DOI: 10.1007/s00418-009-0622-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2009] [Indexed: 11/01/2022]
Abstract
The cellular nanocosm is made up of numerous types of macromolecular complexes or biological nanomachines. These form functional modules that are organized into complex subcellular networks. Information on the ultra-structure of these nanomachines has mainly been obtained by analyzing isolated structures, using imaging techniques such as X-ray crystallography, NMR, or single particle electron microscopy (EM). Yet there is a strong need to image biological complexes in a native state and within a cellular environment, in order to gain a better understanding of their functions. Emerging methods in EM are now making this goal reachable. Cryo-electron tomography bypasses the need for conventional fixatives, dehydration and stains, so that a close-to-native environment is retained. As this technique is approaching macromolecular resolution, it is possible to create maps of individual macromolecular complexes. X-ray and NMR data can be 'docked' or fitted into the lower resolution particle density maps to create a macromolecular atlas of the cell under normal and pathological conditions. The majority of cells, however, are too thick to be imaged in an intact state and therefore methods such as 'high pressure freezing' with 'freeze-substitution followed by room temperature plastic sectioning' or 'cryo-sectioning of unperturbed vitreous fully hydrated samples' have been introduced for electron tomography. Here, we review methodological considerations for visualizing nanomachines in a close-to-physiological, cellular context. EM is in a renaissance, and further innovations and training in this field should be fully supported.
Collapse
Affiliation(s)
- Jason Pierson
- Division of Cell Biology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121 B6, 1066 CX Amsterdam, The Netherlands
| | - Musa Sani
- Division of Cell Biology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121 B6, 1066 CX Amsterdam, The Netherlands
| | - Cveta Tomova
- Division of Cell Biology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121 B6, 1066 CX Amsterdam, The Netherlands
| | - Susan Godsave
- Division of Cell Biology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121 B6, 1066 CX Amsterdam, The Netherlands
| | - Peter J. Peters
- Division of Cell Biology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Plesmanlaan 121 B6, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
16
|
Kim E, Archibald JM. Diversity and Evolution of Plastids and Their Genomes. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kim E, Graham LE. EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. PLoS One 2008; 3:e2621. [PMID: 18612431 PMCID: PMC2440802 DOI: 10.1371/journal.pone.0002621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/02/2008] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup.
Collapse
Affiliation(s)
- Eunsoo Kim
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | |
Collapse
|
18
|
|
19
|
Scott I, Sparkes IA, Logan DC. The missing link: inter-organellar connections in mitochondria and peroxisomes? TRENDS IN PLANT SCIENCE 2007; 12:380-1; author reply 381-3. [PMID: 17765598 DOI: 10.1016/j.tplants.2007.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/12/2007] [Accepted: 08/14/2007] [Indexed: 05/17/2023]
|
20
|
Mazumdar J, Striepen B. Make it or take it: fatty acid metabolism of apicomplexan parasites. EUKARYOTIC CELL 2007; 6:1727-35. [PMID: 17715365 PMCID: PMC2043401 DOI: 10.1128/ec.00255-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jolly Mazumdar
- Department of Cellular Biology, University of Georgia, Paul D Coverdell Center, Athens, GA 30602, USA
| | | |
Collapse
|
21
|
Karnataki A, Derocher A, Coppens I, Nash C, Feagin JE, Parsons M. Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 2007; 63:1653-68. [PMID: 17367386 DOI: 10.1111/j.1365-2958.2007.05619.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The apicoplast is a relict plastid essential for viability of the apicomplexan parasites Toxoplasma and Plasmodium. It is surrounded by multiple membranes that proteins, substrates and metabolites must traverse. Little is known about apicoplast membrane proteins, much less their sorting mechanisms. We have identified two sets of apicomplexan proteins that are homologous to plastid membrane proteins that transport phosphosugars or their derivatives. Members of the first set bear N-terminal extensions similar to those that target proteins to the apicoplast lumen. While Toxoplasma gondii lacks this type of translocator, the N-terminal extension from the Plasmodium falciparum sequence was shown to be functional in T. gondii. The second set of translocators lacks an N-terminal targeting sequence. This translocator, TgAPT1, when tagged with HA, localized to multiple apicoplast membranes in T. gondii. Contrasting with the constitutive targeting of luminal proteins, the localization of the translocator varied during the cell cycle. Early-stage parasites showed circumplastid distribution, but as the plastid elongated in preparation for division, vesicles bearing TgAPT1 appeared adjacent to the plastid. After plastid division, the protein resumes a circumplastid colocalization. These studies demonstrate for the first time that vesicular trafficking likely plays a role in the apicoplast biogenesis.
Collapse
Affiliation(s)
- Anuradha Karnataki
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
22
|
Vaishnava S, Striepen B. The cell biology of secondary endosymbiosis--how parasites build, divide and segregate the apicoplast. Mol Microbiol 2006; 61:1380-7. [PMID: 16968220 DOI: 10.1111/j.1365-2958.2006.05343.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protozoan parasites of the phylum Apicomplexa harbour a chloroplast-like organelle, the apicoplast. The biosynthetic pathways localized to this organelle are of cyanobacterial origin and therefore offer attractive targets for the development of new drugs for the treatment of malaria and toxoplasmosis. The apicoplast also provides a unique system to study the cell biology of endosymbiosis. This organelle is the product of secondary endosymbiosis, the marriage of an alga and an auxotrophic eukaryote. This origin has led to a fascinating set of novel cellular mechanisms that are clearly distinct from those employed by the plant chloroplast. Here we explore how the apicoplast interacts with its 'host' to secure building blocks for its biogenesis and how the organelle is divided and segregated during mitosis. Considerable advances in parasite genetics and genomics have transformed apicomplexans, long considered hard to study, into highly tractable model organisms. We discuss how these resources might be marshalled to develop a detailed mechanistic picture of apicoplast cell biology.
Collapse
Affiliation(s)
- Shipra Vaishnava
- Department of Cellular Biology, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | | |
Collapse
|
23
|
Ferguson DJP, Campbell SA, Henriquez FL, Phan L, Mui E, Richards TA, Muench SP, Allary M, Lu JZ, Prigge ST, Tomley F, Shirley MW, Rice DW, McLeod R, Roberts CW. Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. Int J Parasitol 2006; 37:33-51. [PMID: 17112527 PMCID: PMC2803676 DOI: 10.1016/j.ijpara.2006.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/26/2006] [Accepted: 10/03/2006] [Indexed: 11/16/2022]
Abstract
Apicomplexan parasites, Eimeria tenella, Plasmodium spp. and Toxoplasma gondii, possess a homologous plastid-like organelle termed the apicoplast, derived from the endosymbiotic enslavement of a photosynthetic alga. However, currently no eimerian nuclear encoded apicoplast targeted proteins have been identified, unlike in Plasmodium spp. and T. gondii. In this study, we demonstrate that nuclear encoded enoyl reductase of E. tenella (EtENR) has a predicted N-terminal bipartite transit sequence, typical of apicoplast-targeted proteins. Using a combination of immunocytochemistry and EM we demonstrate that this fatty acid biosynthesis protein is located in the apicoplast of E. tenella. Using the EtENR as a tool to mark apicoplast development during the Eimeria lifecycle, we demonstrate that nuclear and apicoplast division appear to be independent events, both organelles dividing prior to daughter cell formation, with each daughter cell possessing one to four apicoplasts. We believe this is the first report of multiple apicoplasts present in the infectious stage of an apicomplexan parasite. Furthermore, the microgametes lacked an identifiable apicoplast consistent with maternal inheritance via the macrogamete. It was found that the size of the organelle and the abundance of EtENR varied with developmental stage of the E. tenella lifecycle. The high levels of EtENR protein observed during asexual development and macrogametogony is potentially associated with the increased synthesis of fatty acids required for the rapid formation of numerous merozoites and for the extracellular development and survival of the oocyst. Taken together the data demonstrate that the E. tenella apicoplast participates in type II fatty acid biosynthesis with increased expression of ENR during parasite growth. Apicoplast division results in the simultaneous formation of multiple fragments. The division mechanism is unknown, but is independent of nuclear division and occurs prior to daughter formation.
Collapse
Affiliation(s)
- D J P Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|