1
|
Zhong X, Nicolardi S, Ouyang R, Wuhrer M, Du C, van Wezel G, Vijgenboom E, Briegel A, Claessen D. CslA and GlxA from Streptomyces lividans form a functional cellulose synthase complex. Appl Environ Microbiol 2024; 90:e0208723. [PMID: 38557137 PMCID: PMC11022532 DOI: 10.1128/aem.02087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Filamentous growth of streptomycetes coincides with the synthesis and deposition of an uncharacterized protective glucan at hyphal tips. Synthesis of this glucan depends on the integral membrane protein CslA and the radical copper oxidase GlxA, which are part of a presumably large multiprotein complex operating at growing tips. Here, we show that CslA and GlxA interact by forming a protein complex that is sufficient to synthesize cellulose in vitro. Mass spectrometry analysis revealed that the purified complex produces cellulose chains with a degree of polymerization of at least 80 residues. Truncation analyses demonstrated that the removal of a significant extracellular segment of GlxA had no impact on complex formation, but significantly diminished activity of CslA. Altogether, our work demonstrates that CslA and GlxA form the active core of the cellulose synthase complex and provide molecular insights into a unique cellulose biosynthesis system that is conserved in streptomycetes. IMPORTANCE Cellulose stands out as the most abundant polysaccharide on Earth. While the synthesis of this polysaccharide has been extensively studied in plants and Gram-negative bacteria, the mechanisms in Gram-positive bacteria have remained largely unknown. Our research unveils a novel cellulose synthase complex formed by the interaction between the cellulose synthase-like protein CslA and the radical copper oxidase GlxA from Streptomyces lividans, a soil-dwelling Gram-positive bacterium. This discovery provides molecular insights into the distinctive cellulose biosynthesis machinery. Beyond expanding our understanding of cellulose biosynthesis, this study also opens avenues for exploring biotechnological applications and ecological roles of cellulose in Gram-positive bacteria, thereby contributing to the broader field of microbial cellulose biosynthesis and biofilm research.
Collapse
Affiliation(s)
- Xiaobo Zhong
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruochen Ouyang
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Chao Du
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Gilles van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
2
|
Cleveland ME, Mathieu Y, Ribeaucourt D, Haon M, Mulyk P, Hein JE, Lafond M, Berrin JG, Brumer H. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases. Cell Mol Life Sci 2021; 78:8187-8208. [PMID: 34738149 PMCID: PMC11072238 DOI: 10.1007/s00018-021-03981-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.
Collapse
Affiliation(s)
- Maria E Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620, Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Paul Mulyk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
4
|
Straw ML, Hough MA, Wilson MT, Worrall JAR. A Histidine Residue and a Tetranuclear Cuprous-thiolate Cluster Dominate the Copper Loading Landscape of a Copper Storage Protein from Streptomyces lividans. Chemistry 2019; 25:10678-10688. [PMID: 31111982 DOI: 10.1002/chem.201901411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Indexed: 01/05/2023]
Abstract
The chemical basis for protecting organisms against the toxic effect imposed by excess cuprous ions is to constrain this through high-affinity binding sites that use cuprous-thiolate coordination chemistry. In bacteria, a family of cysteine rich four-helix bundle proteins utilise thiolate chemistry to bind up to 80 cuprous ions. These proteins have been termed copper storage proteins (Csp). The present study investigates cuprous ion loading to the Csp from Streptomyces lividans (SlCsp) using a combination of X-ray crystallography, site-directed mutagenesis and stopped-flow reaction kinetics with either aquatic cuprous ions or a chelating donor. We illustrate that at low cuprous ion concentrations, copper is loaded exclusively into an outer core region of SlCsp via one end of the four-helix bundle, facilitated by a set of three histidine residues. X-ray crystallography reveals the existence of polynuclear cuprous-thiolate clusters culminating in the assembly of a tetranuclear [Cu4 (μ2 -S-Cys)4 (Νδ1 -His)] cluster in the outer core. As more cuprous ions are loaded, the cysteine lined inner core of SlCsp fills with cuprous ions but in a fluxional and dynamic manner with no evidence for the assembly of further intermediate polynuclear cuprous-thiolate clusters as observed in the outer core. Using site-directed mutagenesis a key role for His107 in the efficient loading of cuprous ions from a donor is established. A model of copper loading to SlCsp is proposed and discussed.
Collapse
Affiliation(s)
- Megan L Straw
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
5
|
Effects on hyphal morphology and development by the putative copper radical oxidase glx1 in Trichoderma virens suggest a novel role as a cell wall associated enzyme. Fungal Genet Biol 2019; 131:103245. [PMID: 31228644 DOI: 10.1016/j.fgb.2019.103245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Trichoderma spp. have been characterized for their capacity to act as biological control agents against several pathogens through the activity of secondary metabolites and cell wall degrading enzymes. However, only T. reesei has been widely studied for the ability to assimilate lignocellulose substrates. Protein analysis by SDS-PAGE of culture filtrate of T. virens revealed the presence of an unknown ∼77 kDa band protein (GLX1) that showed sequence homology to glyoxal-like oxidase genes involved in lignin degradation. The analysis and biochemical characterization of the 1,119 amino acid coded protein showed the presence of five carbohydrate-binding modules (CBMs) with affinity for colloidal chitin, and a functional glyoxal oxidase catalytic domain that is involved in the production of hydrogen peroxide when methylglyoxal was used as a substrate. The silencing of the glx1 gene resulted in mutants with more than 90% expression reduction and the absence of glyoxal oxidase catalytic activity. These mutants showed delayed hyphal growth, reduced colony and conidial hydrophobicity, but showed no changes in their biocontrol ability. Most significantly, mutants exhibited a loss of growth directionality resulting in a curled phenotype that was eliminated in the presence of exogenous H2O2. Here we present evidence that in T. virens, glx1 is not involved in the breakdown of lignin but instead is responsible for normal hyphal growth and morphology and likely does this through free radical production within the fungal cell wall. This is the first time that a glyoxal oxidase protein has been isolated and characterized in ascomycete fungi.
Collapse
|
6
|
Characterization of a New Glyoxal Oxidase from the Thermophilic Fungus Myceliophthora thermophila M77: Hydrogen Peroxide Production Retained in 5-Hydroxymethylfurfural Oxidation. Catalysts 2018. [DOI: 10.3390/catal8100476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myceliophthora thermophyla is a thermophilic industrially relevant fungus that secretes an assortment of hydrolytic and oxidative enzymes for lignocellulose degradation. Among them is glyoxal oxidase (MtGLOx), an extracellular oxidoreductase that oxidizes several aldehydes and α-hydroxy carbonyl substrates coupled to the reduction of O2 to H2O2. This copper metalloprotein belongs to a class of enzymes called radical copper oxidases (CRO) and to the “auxiliary activities” subfamily AA5_1 that is based on the Carbohydrate-Active enZYmes (CAZy) database. Only a few members of this family have been characterized to date. Here, we report the recombinant production, characterization, and structure-function analysis of MtGLOx. Electron Paramagnetic Resonance (EPR) spectroscopy confirmed MtGLOx to be a radical-coupled copper complex and small angle X-ray scattering (SAXS) revealed an extended spatial arrangement of the catalytic and four N-terminal WSC domains. Furthermore, we demonstrate that methylglyoxal and 5-hydroxymethylfurfural (HMF), a fermentation inhibitor, are substrates for the enzyme.
Collapse
|
7
|
Characterization of the one-electron oxidized Cu(II)-salen complexes with a side chain aromatic ring: the effect of the indole ring on the Cu(II)-phenoxyl radical species. J Biol Inorg Chem 2017; 23:51-59. [PMID: 29218633 DOI: 10.1007/s00775-017-1508-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
To gain insights into the role of the proximal indole ring in the redox-active metal center as seen in galactose oxidase, we prepared the Cu(II)-salen-type complexes having a pendent indol-3-ylmethyl (1), methyl (2) or benzyl (3) group substituted on the ethylenediamine moiety and investigated the structures and redox properties by various physicochemical methods and theoretical calculations. Neutral complexes 1, 2, and 3 showed no significant difference in the UV-Vis-NIR and EPR spectra. One-electron oxidation of 1, 2, and 3 by addition of 1 equiv. of thianthrenyl radical gave [1]SbCl 6 , [2]SbCl 6 , and [3]SbCl 6 , respectively, which could be assigned to relatively localized phenoxyl radical species. The cyclic and differential pulse voltammograms of [1]SbCl 6 showed two redox waves with a large separation between the first and second redox potentials compared with the separations observed for [2]SbCl 6 and [3]SbCl 6 . This suggests that [1]SbCl 6 is more stabilized than [2]SbCl 6 and [3]SbCl 6 . The NIR band of [1]SbCl 6 showed a larger blue shift than that of [2]SbCl 6 and [3]SbCl 6 . The EPR spectrum of [2]SbCl 6 exhibited an intense signal at the g value of 2 due to partial disproportionation to form the EPR active two-electron oxidized complex [2] 2+ , while the EPR intensity of [1]SbCl 6 was much weaker than that of [2]SbCl 6 . These results indicate that the pendent indole moiety stabilizes the Cu(II)-phenoxyl radical in [1]SbCl 6 most probably by stacking with the phenoxyl moiety, which is further supported by DFT calculations.
Collapse
|
8
|
Chaplin AK, Bernini C, Sinicropi A, Basosi R, Worrall JAR, Svistunenko DA. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA. Angew Chem Int Ed Engl 2017; 56:6502-6506. [DOI: 10.1002/anie.201701270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Amanda K. Chaplin
- School of Biological Sciences; University of Essex; Wivenhoe Park Colchester Essex CO4 3SQ (U K
| | - Caterina Bernini
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences; University of Siena; Via A. Moro, 2 53100 Siena Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences; University of Siena; Via A. Moro, 2 53100 Siena Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences; University of Siena; Via A. Moro, 2 53100 Siena Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Jonathan A. R. Worrall
- School of Biological Sciences; University of Essex; Wivenhoe Park Colchester Essex CO4 3SQ (U K
| | - Dimitri A. Svistunenko
- School of Biological Sciences; University of Essex; Wivenhoe Park Colchester Essex CO4 3SQ (U K
| |
Collapse
|
9
|
Chaplin AK, Bernini C, Sinicropi A, Basosi R, Worrall JAR, Svistunenko DA. Tyrosine or Tryptophan? Modifying a Metalloradical Catalytic Site by Removal of the Cys-Tyr Cross-Link in the Galactose 6-Oxidase Homologue GlxA. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amanda K. Chaplin
- School of Biological Sciences; University of Essex; Wivenhoe Park Colchester Essex CO4 3SQ (U K
| | - Caterina Bernini
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences; University of Siena; Via A. Moro, 2 53100 Siena Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences; University of Siena; Via A. Moro, 2 53100 Siena Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences; University of Siena; Via A. Moro, 2 53100 Siena Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Jonathan A. R. Worrall
- School of Biological Sciences; University of Essex; Wivenhoe Park Colchester Essex CO4 3SQ (U K
| | - Dimitri A. Svistunenko
- School of Biological Sciences; University of Essex; Wivenhoe Park Colchester Essex CO4 3SQ (U K
| |
Collapse
|
10
|
Glyoxal oxidases: their nature and properties. World J Microbiol Biotechnol 2017; 33:87. [DOI: 10.1007/s11274-017-2254-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 01/30/2023]
|