1
|
Liu J, Vidilaseris K, Johansson NG, Ribeiro O, Dreano L, Yli-Kauhaluoma J, Xhaard H, Goldman A. Expression, purification and preliminary pharmacological characterization of the Plasmodium falciparum membrane-bound pyrophosphatase type 1. PLoS One 2025; 20:e0322756. [PMID: 40424284 DOI: 10.1371/journal.pone.0322756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Membrane-bound pyrophosphatases are integral membrane proteins that catalyze the hydrolysis of pyrophosphate into orthophosphate, while simultaneously facilitating the pumping of protons and/or sodium ions. Since mPPases are absent in humans but play a critical role in the life cycle of protist parasite, they represent promising therapeutic targets. We successfully expressed the Plasmodium falciparum type 1 mPPase in the baculovirus/insect cell expression system and purified the protein, yielding 0.3 mg per liter cell culture. Various detergents were tested for solubilization, with the protein remaining active under all selected detergents. n-dodecyl-β-D-maltoside combined with cholesteryl hemisuccinate provided the highest solubility (88%). Finally, the PfPPase-VP1 was assayed against a set of fourteen antimalarial drugs, along with seven Thermotoga maritima mPPase inhibitors and fourteen compounds of unknown activity against mPPases. Only three compounds, all pyrazolo[1,5-a]pyrimidine-based TmPPase inhibitors, retained micromolar IC50 activity against PfPPase-VP1. The expression and purification of the PfPPase-VP1 will allow to conduct structural studies as well as to develop target-based screens, two steps necessary for the development of inhibitors to combat parasite disease.
Collapse
Affiliation(s)
- Jianing Liu
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Keni Vidilaseris
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Niklas G Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Orquidea Ribeiro
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Loïc Dreano
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Anashkin VA, Bogachev AV, Serebryakova MV, Zavyalova EG, Bertsova YV, Baykov AA. Rapid kinetics of H + transport by membrane pyrophosphatase: Evidence for a "direct-coupling" mechanism. Biochem Biophys Res Commun 2025; 744:151203. [PMID: 39708396 DOI: 10.1016/j.bbrc.2024.151203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Stress resistance-conferring membrane pyrophosphatase (mPPase) found in microbes and plants couples pyrophosphate hydrolysis with H+ transport out of the cytoplasm. There are two opposing views on the energy-coupling mechanism in this transporter: the pumping is associated with either pyrophosphate binding to mPPase or the hydrolysis step. We used our recently developed stopped-flow pyranine assay to measure H+ transport into mPPase-containing inverted membrane vesicles on the timescale of a single turnover. The vesicles were prepared from Escherichia coli overproducing the H+-translocating mPPase of Desulfitobacterium hafniense. Pyrophosphate induced linear accumulation of H+ in the vesicles, without evident lag or burst. In contrast, the binding of three nonhydrolyzable pyrophosphate analogs essentially induced no H+ accumulation. These findings are inconsistent with the "pumping-before-hydrolysis" model of mPPase functioning and support the alternative model positing the hydrolysis reaction as the source of the transported H+ ions. mPPase is thus a first "directly-coupled" proton pump.
Collapse
Affiliation(s)
- Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia.
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia.
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Elena G Zavyalova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia.
| |
Collapse
|
3
|
Bogachev AV, Anashkin VA, Bertsova YV, Zavyalova EG, Baykov AA. Na + Translocation Dominates over H +-Translocation in the Membrane Pyrophosphatase with Dual Transport Specificity. Int J Mol Sci 2024; 25:11963. [PMID: 39596033 PMCID: PMC11593465 DOI: 10.3390/ijms252211963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cation-pumping membrane pyrophosphatases (mPPases; EC 7.1.3.1) vary in their transport specificity from obligatory H+ transporters found in all kingdoms of life, to Na+/H+-co-transporters found in many prokaryotes. The available data suggest a unique "direct-coupling" mechanism of H+ transport, in which the transported proton is generated from nucleophilic water molecule. Na+ transport is best rationalized by assuming that the water-borne proton propels a prebound Na+ ion through the ion conductance channel ("billiard" mechanism). However, the "billiard" mechanism, in its simple form, is not applicable to the mPPases that simultaneously transport Na+ and H+ without evident competition between the cations (Na+,H+-PPases). In this study, we used a pyranine-based fluorescent assay to explore the relationship between the cation transport reactions catalyzed by recombinant Bacteroides vulgatus Na+,H+-PPase in membrane vesicles. Under appropriately chosen conditions, including the addition of an H+ ionophore to convert Na+ influx into equivalent H+ efflux, the pyranine signal measures either H+ or Na+ translocation. Using a stopped-flow version of this assay, we demonstrate that H+ and Na+ are transported by Na+,H+-PPase in a ratio of approximately 1:8, which is independent of Na+ concentration. These findings were rationalized using an "extended billiard" model, whose most likely variant predicts the kinetic limitation of Na+ delivery to the pump-loading site.
Collapse
Affiliation(s)
- Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| | - Yulia V. Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| | - Elena G. Zavyalova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia;
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| |
Collapse
|
4
|
Strauss J, Wilkinson C, Vidilaseris K, de Castro Ribeiro OM, Liu J, Hillier J, Wichert M, Malinen AM, Gehl B, Jeuken LJ, Pearson AR, Goldman A. Functional and structural asymmetry suggest a unifying principle for catalysis in membrane-bound pyrophosphatases. EMBO Rep 2024; 25:853-875. [PMID: 38182815 PMCID: PMC10897367 DOI: 10.1038/s44319-023-00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024] Open
Abstract
Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- Numaferm GmbH, Düsseldorf, Germany
| | - Craig Wilkinson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
| | - Keni Vidilaseris
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - Orquidea M de Castro Ribeiro
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - Jianing Liu
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - James Hillier
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- Bio-Rad Laboratories Ltd., Watford, UK
| | - Maximilian Wichert
- Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Anssi M Malinen
- Department of Life Technologies, University of Turku, FIN-20014, Turku, Finland
| | - Bernadette Gehl
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
- Department of Applied Physics, Aalto University, FI-00076, AALTO, Espoo, Finland
| | - Lars Jc Jeuken
- Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany
| | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland.
| |
Collapse
|
5
|
Holmes AOM, Goldman A, Kalli AC. mPPases create a conserved anionic membrane fingerprint as identified via multi-scale simulations. PLoS Comput Biol 2022; 18:e1010578. [PMID: 36191052 PMCID: PMC9560603 DOI: 10.1371/journal.pcbi.1010578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Membrane-integral pyrophosphatases (mPPases) are membrane-bound enzymes responsible for hydrolysing inorganic pyrophosphate and translocating a cation across the membrane. Their function is essential for the infectivity of clinically relevant protozoan parasites and plant maturation. Recent developments have indicated that their mechanism is more complicated than previously thought and that the membrane environment may be important for their function. In this work, we use multiscale molecular dynamics simulations to demonstrate for the first time that mPPases form specific anionic lipid interactions at 4 sites at the distal and interfacial regions of the protein. These interactions are conserved in simulations of the mPPases from Thermotoga maritima, Vigna radiata and Clostridium leptum and characterised by interactions with positive residues on helices 1, 2, 3 and 4 for the distal site, or 9, 10, 13 and 14 for the interfacial site. Due to the importance of these helices in protein stability and function, these lipid interactions may play a crucial role in the mPPase mechanism and enable future structural and functional studies.
Collapse
Affiliation(s)
- Alexandra O. M. Holmes
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Malinen AM, Anashkin VA, Orlov VN, Bogachev AV, Lahti R, Baykov AA. Pre-steady-state kinetics and solvent isotope effects support the "billiard-type" transport mechanism in Na + -translocating pyrophosphatase. Protein Sci 2022; 31:e4394. [PMID: 36040263 PMCID: PMC9405524 DOI: 10.1002/pro.4394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Membrane-bound pyrophosphatase (mPPase) found in microbes and plants is a membrane H+ pump that transports the H+ ion generated in coupled pyrophosphate hydrolysis out of the cytoplasm. Certain bacterial and archaeal mPPases can in parallel transport Na+ via a hypothetical "billiard-type" mechanism, also involving the hydrolysis-generated proton. Here, we present the functional evidence supporting this coupling mechanism. Rapid-quench and pulse-chase measurements with [32 P]pyrophosphate indicated that the chemical step (pyrophosphate hydrolysis) is rate-limiting in mPPase catalysis and is preceded by a fast isomerization of the enzyme-substrate complex. Na+ , whose binding is a prerequisite for the hydrolysis step, is not required for substrate binding. Replacement of H2 O with D2 O decreased the rates of pyrophosphate hydrolysis by both Na+ - and H+ -transporting bacterial mPPases, the effect being more significant than with a non-transporting soluble pyrophosphatase. We also show that the Na+ -pumping mPPase of Thermotoga maritima resembles other dimeric mPPases in demonstrating negative kinetic cooperativity and the requirement for general acid catalysis. The findings point to a crucial role for the hydrolysis-generated proton both in H+ -pumping and Na+ -pumping by mPPases.
Collapse
Affiliation(s)
| | - Viktor A. Anashkin
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Victor N. Orlov
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Alexander V. Bogachev
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Reijo Lahti
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Alexander A. Baykov
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
7
|
Baykov AA, Anashkin VA, Malinen AM, Bogachev AV. The Mechanism of Energy Coupling in H +/Na +-Pumping Membrane Pyrophosphatase-Possibilities and Probabilities. Int J Mol Sci 2022; 23:9504. [PMID: 36012762 PMCID: PMC9408878 DOI: 10.3390/ijms23169504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Membrane pyrophosphatases (mPPases) found in plant vacuoles and some prokaryotes and protists are ancient cation pumps that couple pyrophosphate hydrolysis with the H+ and/or Na+ transport out of the cytoplasm. Because this function is reversible, mPPases play a role in maintaining the level of cytoplasmic pyrophosphate, a known regulator of numerous metabolic reactions. mPPases arouse interest because they are among the simplest membrane transporters and have no homologs among known ion pumps. Detailed phylogenetic studies have revealed various subtypes of mPPases and suggested their roles in the evolution of the "sodium" and "proton" bioenergetics. This treatise focuses on the mechanistic aspects of the transport reaction, namely, the coupling step, the role of the chemically produced proton, subunit cooperation, and the relationship between the proton and sodium ion transport. The available data identify H+-PPases as the first non-oxidoreductase pump with a "direct-coupling" mechanism, i.e., the transported proton is produced in the coupled chemical reaction. They also support a "billiard" hypothesis, which unifies the H+ and Na+ transport mechanisms in mPPase and, probably, other transporters.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| |
Collapse
|
8
|
A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H +-Translocating Pyrophosphatase. Int J Mol Sci 2021; 22:ijms222312902. [PMID: 34884707 PMCID: PMC8657866 DOI: 10.3390/ijms222312902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a ‘rigid body’-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14–19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data.
Collapse
|
9
|
Anashkin VA, Malinen AM, Bogachev AV, Baykov AA. Catalytic Asymmetry in Homodimeric H +-Pumping Membrane Pyrophosphatase Demonstrated by Non-Hydrolyzable Pyrophosphate Analogs. Int J Mol Sci 2021; 22:ijms22189820. [PMID: 34575984 PMCID: PMC8469034 DOI: 10.3390/ijms22189820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a “direct coupling” mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell’s direct coupling with conformational coupling to catalyze cation transport across the membrane.
Collapse
Affiliation(s)
- Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland;
| | - Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
- Correspondence:
| |
Collapse
|
10
|
Baykov AA. Energy Coupling in Cation-Pumping Pyrophosphatase-Back to Mitchell. FRONTIERS IN PLANT SCIENCE 2020; 11:107. [PMID: 32117404 PMCID: PMC7034417 DOI: 10.3389/fpls.2020.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
|
11
|
Holmes AOM, Kalli AC, Goldman A. The Function of Membrane Integral Pyrophosphatases From Whole Organism to Single Molecule. Front Mol Biosci 2019; 6:132. [PMID: 31824962 PMCID: PMC6882861 DOI: 10.3389/fmolb.2019.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 12/02/2022] Open
Abstract
Membrane integral pyrophosphatases (mPPases) are responsible for the hydrolysis of pyrophosphate. This enzymatic mechanism is coupled to the pumping of H+ or Na+ across membranes in a process that can be K+ dependent or independent. Understanding the movements and dynamics throughout the mPPase catalytic cycle is important, as this knowledge is essential for improving or impeding protein function. mPPases have been shown to play a crucial role in plant maturation and abiotic stress tolerance, and so have the potential to be engineered to improve plant survival, with implications for global food security. mPPases are also selectively toxic drug targets, which could be pharmacologically modulated to reduce the virulence of common human pathogens. The last few years have seen the publication of many new insights into the function and structure of mPPases. In particular, there is a new body of evidence that the catalytic cycle is more complex than originally proposed. There are structural and functional data supporting a mechanism involving half-of-the-sites reactivity, inter-subunit communication, and exit channel motions. A more advanced and in-depth understanding of mPPases has begun to be uncovered, leaving the field of research with multiple interesting avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Alexandra O. M. Holmes
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Vidilaseris K, Kiriazis A, Turku A, Khattab A, Johansson NG, Leino TO, Kiuru PS, Boije af Gennäs G, Meri S, Yli-Kauhaluoma J, Xhaard H, Goldman A. Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. SCIENCE ADVANCES 2019; 5:eaav7574. [PMID: 31131322 PMCID: PMC6530997 DOI: 10.1126/sciadv.aav7574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Membrane-bound pyrophosphatases are homodimeric integral membrane proteins that hydrolyze pyrophosphate into orthophosphates, coupled to the active transport of protons or sodium ions across membranes. They are important in the life cycle of bacteria, archaea, plants, and parasitic protists, but no homologous proteins exist in vertebrates, making them a promising drug target. Here, we report the first nonphosphorus allosteric inhibitor of the thermophilic bacterium Thermotoga maritima membrane-bound pyrophosphatase and its bound structure together with the substrate analog imidodiphosphate. The unit cell contains two protein homodimers, each binding a single inhibitor dimer near the exit channel, creating a hydrophobic clamp that inhibits the movement of β-strand 1-2 during pumping, and thus prevents the hydrophobic gate from opening. This asymmetry of inhibitor binding with respect to each homodimer provides the first clear structural demonstration of asymmetry in the catalytic cycle of membrane-bound pyrophosphatases.
Collapse
Affiliation(s)
- Keni Vidilaseris
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ayman Khattab
- Malaria Research Laboratory, Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Teppo O. Leino
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula S. Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Malaria Research Laboratory, Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation. J Mol Biol 2019; 431:1619-1632. [PMID: 30878480 DOI: 10.1016/j.jmb.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/25/2022]
Abstract
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase-2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225-R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225-R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.
Collapse
|