1
|
Lee F, Shao X, Considine JM, Gao Y(T, Naba A. Time-lapse tryptic digestion: a proteomic approach to improve sequence coverage of extracellular matrix proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645502. [PMID: 40196545 PMCID: PMC11974830 DOI: 10.1101/2025.03.26.645502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing structural support to cells. It also provides biochemical signals governing cellular processes, including proliferation, adhesion, and migration. Alterations of ECM structure and/or composition have been linked to many pathological processes, including cancer and fibrosis. Over the past decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the protein composition of ECMs. However, existing methods do not fully capture the broad dynamic range of protein abundances in the ECM. They also do not permit to achieve the high coverage needed to gain finer biochemical on ECM proteoforms (e.g., isoforms, post-translational modifications) and topographical information critical to better understand ECM protein functions. Here, we present the development of a time-lapsed proteomic pipeline using limited tryptic proteolysis and sequential release of peptides over time. This experimental pipeline was combined with data-independent acquisition mass spectrometry and the assembly of a custom matrisome spectral library to enhance peptide-to-spectrum matching. This pipeline shows superior protein identification, peptide-to-spectrum matching, and significantly increased sequence coverage against standard ECM proteomic pipelines. Exploiting the spatio-temporal resolution of this method, we further demonstrate how time-resolved 3-dimensional peptide mapping can identify protein regions differentially susceptible to trypsin, which may aid in identifying protein-protein interaction sites.
Collapse
Affiliation(s)
- Fred Lee
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - Xinhao Shao
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - James M Considine
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - Yu (Tom) Gao
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, U.S.A
- University of Illinois Cancer Center, Chicago, IL 60612, U.S.A
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
- University of Illinois Cancer Center, Chicago, IL 60612, U.S.A
| |
Collapse
|
2
|
Pally D, Kapoor N, Naba A. The novel ECM protein SNED1 mediates cell adhesion via the RGD-binding integrins α5β1 and αvβ3. J Cell Sci 2025; 138:JCS263479. [PMID: 39713860 PMCID: PMC11828466 DOI: 10.1242/jcs.263479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays crucial roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells. Interestingly, both processes involve the dynamic remodeling of cell-ECM adhesions via cell surface receptors. Sequence analysis revealed that SNED1 contains two amino acid motifs, RGD and LDV, known to bind integrins, the largest class of ECM receptors. We thus sought to investigate the role of SNED1 in cell adhesion. Here, we report that SNED1 mediates breast cancer and neural crest cell adhesion via its RGD motif. We further demonstrate that cell adhesion to SNED1 is mediated by the RGD integrins α5β1 and αvβ3. These findings are a first step toward identifying the signaling pathways activated downstream of the SNED1-integrin interactions guiding craniofacial morphogenesis and breast cancer metastasis.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Song J, Kurgan L. Two decades of advances in sequence-based prediction of MoRFs, disorder-to-order transitioning binding regions. Expert Rev Proteomics 2025; 22:1-9. [PMID: 39789785 DOI: 10.1080/14789450.2025.2451715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Molecular recognition features (MoRFs) are regions in protein sequences that undergo induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from sequences based on their distinctive sequence signatures. AREAS COVERED We overview 20 years of progress in the sequence-based prediction of MoRFs which resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides, and lipids. These methods range from simple discriminant analysis to sophisticated deep transformer networks that use protein language models. They generate relatively accurate predictions as evidenced by the results of a recently published community-driven assessment. EXPERT OPINION MoRFs prediction is a mature field of research that is poised to continue at a steady pace in the foreseeable future. We anticipate further expansion of the scope of MoRF predictions to additional partner molecules, such as nucleic acids, and continued use of recent machine learning advances. Other future efforts should concentrate on improving availability of MoRF predictions by releasing, maintaining, and popularizing web servers and by depositing MoRF predictions to large databases of protein structure and function predictions. Furthermore, accurate MoRF predictions should be coupled with the equally accurate prediction and modeling of the resulting structures of complexes.
Collapse
Affiliation(s)
- Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Lai M, Kim K, Zheng Y, Castellani CA, Ratliff SM, Wang M, Liu X, Haessler J, Huan T, Bielak LF, Zhao W, Joehanes R, Ma J, Guo X, Manson JE, Grove ML, Bressler J, Taylor KD, Lappalainen T, Kasela S, Blackwell TW, Lake NJ, Faul JD, Ferrier KR, Hou L, Kooperberg C, Reiner AP, Zhang K, Peyser PA, Fornage M, Boerwinkle E, Raffield LM, Carson AP, Rich SS, Liu Y, Levy D, Rotter JI, Smith JA, Arking DE, Liu C. Epigenome-wide Association Analysis of Mitochondrial Heteroplasmy Provides Insight into Molecular Mechanisms of Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318557. [PMID: 39677472 PMCID: PMC11643249 DOI: 10.1101/2024.12.05.24318557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The relationship between mitochondrial DNA (mtDNA) heteroplasmy and nuclear DNA (nDNA) methylation (CpGs) remains to be studied. We conducted an epigenome-wide association analysis of heteroplasmy burden scores across 10,986 participants (mean age 77, 63% women, and 54% non-White races/ethnicities) from seven population-based observational cohorts. We identified 412 CpGs (FDR p < 0.05) associated with mtDNA heteroplasmy. Higher levels of heteroplasmy burden were associated with lower nDNA methylation levels at most significant CpGs. Functional inference analyses of genes annotated to heteroplasmy-associated CpGs emphasized mitochondrial functions and showed enrichment in cardiometabolic conditions and traits. We developed CpG-scores based on heteroplasmy-count associated CpGs (MHC-CpG scores) using elastic net Cox regression in a training cohort. A one-unit higher level of the standardized MHC-CpG scores were associated with 1.26-fold higher hazard of all-cause mortality (95% CI: 1.14, 1.39) and 1.09-fold higher hazard of CVD (95% CI: 1.01-1.17) in the meta-analysis of testing cohorts, adjusting for age, sex, and smoking. These findings shed light on the relationship between mtDNA heteroplasmy and DNA methylation, and the role of heteroplasmy-associated CpGs as biomarkers in predicting all-cause mortality and cardiovascular disease.
Collapse
|
5
|
Pally D, Kapoor N, Naba A. The novel ECM protein SNED1 mediates cell adhesion via the RGD-binding integrins α5β1 and αvβ3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606706. [PMID: 39149327 PMCID: PMC11326288 DOI: 10.1101/2024.08.07.606706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The extracellular matrix (ECM) is a complex meshwork comprising over 100 proteins. It serves as an adhesive substrate for cells and, hence, plays critical roles in health and disease. We have recently identified a novel ECM protein, SNED1, and have found that it is required for neural crest cell migration and craniofacial morphogenesis during development and in breast cancer, where it is necessary for the metastatic dissemination of tumor cells. Interestingly, both processes involve the dynamic remodeling of cell-ECM adhesions via cell surface receptors. Sequence analysis revealed that SNED1 contains two amino acid motifs, RGD and LDV, known to bind integrins, the largest class of ECM receptors. We thus sought to investigate the role of SNED1 in cell adhesion. Here, we report that SNED1 mediates breast cancer and neural crest cell adhesion via its RGD motif. We further demonstrate that cell adhesion to SNED1 is mediated by the RGD integrins α5β1 and αvβ3. These findings are a first step toward identifying the signaling pathways activated downstream of the SNED1-integrin interactions guiding craniofacial morphogenesis and breast cancer metastasis.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Illinois, 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois Chicago, Illinois, 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Illinois, 60612, USA
- University of Illinois Cancer Center, Chicago, Illinois, 60612, USA
| |
Collapse
|
6
|
Li W, Moretti L, Su X, Yeh CR, Torres MP, Barker TH. Strain-dependent glutathionylation of fibronectin fibers impacts mechano-chemical behavior and primes an integrin switch. Nat Commun 2024; 15:8751. [PMID: 39384749 PMCID: PMC11479631 DOI: 10.1038/s41467-024-52742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The extracellular matrix (ECM) is a protein polymer network that physically supports cells within a tissue. It acts as an important physical and biochemical stimulus directing cell behaviors. For fibronectin (Fn), a predominant component of the ECM, these physical and biochemical activities are inextricably linked as physical forces trigger conformational changes that impact its biochemical activity. Here, we analyze whether oxidative post-translational modifications, specifically glutathionylation, alter Fn's mechano-chemical characteristics through stretch-dependent protein modification. ECM post-translational modifications represent a potential for time- or stimulus-dependent changes in ECM structure-function relationships that could persist over time with potentially significant impacts on cell and tissue behaviors. In this study, we show evidence that glutathionylation of Fn ECM fibers is stretch-dependent and alters Fn fiber mechanical properties with implications on the selectivity of engaging integrin receptors. These data demonstrate the existence of multimodal post-translational modification mechanisms within the ECM with high relevance to the microenvironmental regulation of downstream cell behaviors.
Collapse
Affiliation(s)
- Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Leandro Moretti
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chiuan-Ren Yeh
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Wang H, Yang Z, Wang S, Zhao A, Wang H, Liu Z, Sui M, Bao L, Zeng Q, Hu J, Bao Z, Huang X. Genome-wide association analysis reveals the genetic basis of thermal tolerance in dwarf surf clam Mulinia lateralis. Genomics 2024; 116:110904. [PMID: 39084476 DOI: 10.1016/j.ygeno.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Recently, elevated seawater temperatures have resulted numerous adverse effects, including significant mortality among bivalves. The dwarf surf clam, Mulinia lateralis, is considered a valuable model species for bivalve research due to its rapid growth and short generation time. The successful cultivation in laboratory setting throughout its entire life cycle makes it an ideal candidate for exploring the potential mechanisms underlying bivalve responses to thermal stress. In this study, a total of 600 clams were subjected to a 17-day thermal stress experiment at a temperature of 30 °C which is the semi-lethal temperature for this species. Ninety individuals who perished initially were classified as heat-sensitive populations (HSP), while 89 individuals who survived the experiment were classified as heat-tolerant populations (HTP). Subsequently, 179 individuals were then sequenced, and 21,292 single nucleotide polymorphisms (SNPs) were genotyped for downstream analysis. The heritability estimate for survival status was found to be 0.375 ± 0.127 suggesting a genetic basis for thermal tolerance trait. Furthermore, a genome-wide association study (GWAS) identified three SNPs and 10 candidate genes associated with thermal tolerance trait in M. lateralis. These candidate genes were involved in the ETHR/EHF signaling pathway and played pivotal role in signal sensory, cell adhesion, oxidative stress, DNA damage repair, etc. Additionally, qPCR results indicated that, excluding MGAT4A, ZAN, and RFC1 genes, all others exhibited significantly higher expression in the HTP (p < 0.05), underscoring the critical involvement of the ETHR/EHF signaling pathway in M. lateralis' thermal tolerance. These results unveil the presence of standing genetic variations associated with thermal tolerance in M. lateralis, highlighting the regulatory role of the ETHR/EHF signaling pathway in the bivalve's response to thermal stress, which contribute to comprehension of the genetic basis of thermal tolerance in bivalves.
Collapse
Affiliation(s)
- Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Shenhai Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lijingjing Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Academy of Future Ocean, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
9
|
Fu Y, Zhou Y, Wang K, Li Z, Kong W. Extracellular Matrix Interactome in Modulating Vascular Homeostasis and Remodeling. Circ Res 2024; 134:931-949. [PMID: 38547250 DOI: 10.1161/circresaha.123.324055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics (Y.Z.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology (Y.F., K.W., Z.L., W.K.), School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
10
|
Zhang Y, Shen S. Epigenome-wide DNA methylation analysis of late-stage mild cognitive impairment. Front Cell Dev Biol 2024; 12:1276288. [PMID: 38298218 PMCID: PMC10824854 DOI: 10.3389/fcell.2024.1276288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Background: Patients with late-stage mild cognitive impairment (LMCI) have a higher risk of progression to Alzheimer's disease (AD) than those with early-stage mild cognitive impairment (EMCI). However, previous studies have often pooled EMCI and LMCI patients into a single MCI group, with limited independent investigation into the pathogenesis of LMCI. Methods: In this study, we employed whole-genome methylation association analysis to determine the differences in peripheral blood methylation profiles between 663 cognitive aging (CN) and 554 LMCI patients. Results: Our results revealed 2,333 differentially methylated probes (DMPs) and 85 differentially methylated regions (DMRs) specific to LMCI. The top hit methylation sites or regions were associated with genes such as SNED1, histone deacetylases coding gene HDACs, and HOX and ZNF gene family. The DNA methylations upregulated the expression of HDAC4, HDAC8, and HOX family genes HOXC5 and HOXC9, but they downregulated the expression of SNED1, ADCYAP1, and ZNF family genes ZNF415 and ZNF502. Gene Ontology (GO) and KEGG analysis showed that the genes associated with these methylation sites were predominantly related to the processes of addiction disorders, neurotransmission, and neurogenesis. Out of the 554 LMCI patients included in this study, 358 subjects (65%) had progressed to AD. Further association analysis between the LMCI subjects with a stable course (sLMCI) and those who progressed to AD (pLMCI) indicated that the methylation signal intensities of HDAC6, ZNF502, HOXC5, HOXC6, and HOXD8 were associated with increased susceptibility to AD. Protective effects against progression to AD were noticed when the methylation of SNED1 and ZNF727 appeared in LMCI patients. Conclusion: Our findings highlight a substantial number of LMCI-specific methylated biomarkers that differ from those identified in previous MCI case-control studies. These biomarkers have the potential to contribute to a better understanding of the pathogenesis of LMCI.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Neuroscience, Panzhihua University, Panzhihua, China
| | | |
Collapse
|
11
|
Kulebyakina M, Basalova N, Butuzova D, Arbatsky M, Chechekhin V, Kalinina N, Tyurin-Kuzmin P, Kulebyakin K, Klychnikov O, Efimenko A. Balance between Pro- and Antifibrotic Proteins in Mesenchymal Stromal Cell Secretome Fractions Revealed by Proteome and Cell Subpopulation Analysis. Int J Mol Sci 2023; 25:290. [PMID: 38203461 PMCID: PMC10779358 DOI: 10.3390/ijms25010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) regulate tissue repair through paracrine activity, with secreted proteins being significant contributors. Human tissue repair commonly results in fibrosis, where fibroblast differentiation into myofibroblasts is a major cellular mechanism. MSCs' paracrine activity can inhibit fibrosis development. We previously demonstrated that the separation of MSC secretome, represented by conditioned medium (CM), into subfractions enriched with extracellular vesicles (EV) or soluble factors (SF) boosts EV and SF antifibrotic effect. This effect is realized through the inhibition of fibroblast-to-myofibroblast differentiation in vitro. To unravel the mechanisms of MSC paracrine effects on fibroblast differentiation, we performed a comparative proteomic analysis of MSC secretome fractions. We found that CM was enriched in NF-κB activators and confirmed via qPCR that CM, but not EV or SF, upregulated NF-κB target genes (COX2, IL6, etc.) in human dermal fibroblasts. Furthermore, we revealed that EV and SF were enriched in TGF-β, Notch, IGF, and Wnt pathway regulators. According to scRNAseq, 11 out of 13 corresponding genes were upregulated in a minor MSC subpopulation disappearing in profibrotic conditions. Thus, protein enrichment of MSC secretome fractions and cellular subpopulation patterns shift the balance in fibroblast-to-myofibroblast differentiation, which should be considered in studies of MSC paracrine effects and the therapeutic use of MSC secretome.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Daria Butuzova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Mikhail Arbatsky
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Oleg Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, 1-12, Leninskie Gory, Lomonosovskiy Av., 119991 Moscow, Russia;
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| |
Collapse
|
12
|
Sasaki T, Kawamura M, Okuno C, Lau K, Riel J, Lee MJ, Miller C. Impact of Maternal Mediterranean-Type Diet Adherence on Microbiota Composition and Epigenetic Programming of Offspring. Nutrients 2023; 16:47. [PMID: 38201877 PMCID: PMC10780434 DOI: 10.3390/nu16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Understanding how maternal diet affects in utero neonatal gut microbiota and epigenetic regulation may provide insight into disease origins and long-term health. The impact of Mediterranean diet pattern adherence (MDA) on fetal gut microbiome and epigenetic regulation was assessed in 33 pregnant women. Participants completed a validated food frequency questionnaire in each trimester of pregnancy; the alternate Mediterranean diet (aMED) score was applied. Umbilical cord blood, placental tissue, and neonatal meconium were collected from offspring. DNA methylation patterns were probed using the Illumnia EPICarray Methylation Chip in parturients with high versus low MDA. Meconium microbial abundance in the first 24 h after birth was identified using 16s rRNA sequencing and compared among neonates born to mothers with high and low aMED scores. Twenty-one mothers were classified as low MDA and 12 as high MDA. Pasteurellaceae and Bacteroidaceae trended towards greater abundance in the high-MDA group, as well as other short-chain fatty acid-producing species. Several differentially methylated regions varied between groups and overlapped gene regions including NCK2, SNED1, MTERF4, TNXB, HLA-DPB, BAG6, and LMO3. We identified a beneficial effect of adherence to a Mediterranean diet on fetal in utero development. This highlights the importance of dietary counseling for mothers and can be used as a guide for future studies of meconium and immuno-epigenetic modulation.
Collapse
Affiliation(s)
- Tamlyn Sasaki
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Megan Kawamura
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Chirstyn Okuno
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kayleen Lau
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jonathan Riel
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, USA
| | - Men-Jean Lee
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, USA
| | - Corrie Miller
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, USA
| |
Collapse
|
13
|
Suárez-Calvet X, Fernández-Simón E, Natera D, Jou C, Pinol-Jurado P, Villalobos E, Ortez C, Monceau A, Schiava M, Codina A, Verdu-Díaz J, Clark J, Laidler Z, Mehra P, Gokul-Nath R, Alonso-Perez J, Marini-Bettolo C, Tasca G, Straub V, Guglieri M, Nascimento A, Diaz-Manera J. Decoding the transcriptome of Duchenne muscular dystrophy to the single nuclei level reveals clinical-genetic correlations. Cell Death Dis 2023; 14:596. [PMID: 37673877 PMCID: PMC10482944 DOI: 10.1038/s41419-023-06103-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. The cellular and molecular consequences of the lack of dystrophin in humans are only partially known, which is crucial for the development of new therapies aiming to slow or stop the progression of the disease. Here we have analyzed quadriceps muscle biopsies of seven DMD patients aged 2 to 4 years old and five age and gender matched controls using single nuclei RNA sequencing (snRNAseq) and correlated the results obtained with clinical data. SnRNAseq identified significant differences in the proportion of cell population present in the muscle samples, including an increase in the number of regenerative fibers, satellite cells, and fibro-adipogenic progenitor cells (FAPs) and a decrease in the number of slow fibers and smooth muscle cells. Muscle samples from the younger patients with stable mild weakness were characterized by an increase in regenerative fibers, while older patients with moderate and progressive weakness were characterized by loss of muscle fibers and an increase in FAPs. An analysis of the gene expression profile in muscle fibers identified a strong regenerative signature in DMD samples characterized by the upregulation of genes involved in myogenesis and muscle hypertrophy. In the case of FAPs, we observed upregulation of genes involved in the extracellular matrix regeneration but also several signaling pathways. Indeed, further analysis of the potential intercellular communication profile showed a dysregulation of the communication profile in DMD samples identifying FAPs as a key regulator of cell signaling in DMD muscle samples. In conclusion, our study has identified significant differences at the cellular and molecular levels in the different cell populations present in skeletal muscle samples of patients with DMD compared to controls.
Collapse
Affiliation(s)
- Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Daniel Natera
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Cristina Jou
- Pathology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Patricia Pinol-Jurado
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Carlos Ortez
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Marianela Schiava
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Anna Codina
- Pathology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - José Verdu-Díaz
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Rasya Gokul-Nath
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Jorge Alonso-Perez
- Neuromuscular Disease Unit. Neurology Department. Hospital Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Andrés Nascimento
- Neuromuscular Disorders Unit. Neurology department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain.
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK.
| |
Collapse
|
14
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
15
|
Schramer TD, Rautsaw RM, Bayona-Serrano JD, Nystrom GS, West TR, Ortiz-Medina JA, Sabido-Alpuche B, Meneses-Millán M, Borja M, Junqueira-de-Azevedo ILM, Rokyta DR, Parkinson CL. An integrative view of the toxic potential of Conophis lineatus (Dipsadidae: Xenodontinae), a medically relevant rear-fanged snake. Toxicon 2021; 205:38-52. [PMID: 34793822 DOI: 10.1016/j.toxicon.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Most traditional research on snake venoms has focused on front-fanged snake families (Viperidae, Elapidae, and Atractaspididae). However, venom is now generally accepted as being a much more broadly possessed trait within snakes, including species traditionally considered harmless. Unfortunately, due to historical inertia and methodological challenges, the toxin repertoires of non-front-fanged snake families (e.g., Colubridae, Dipsadidae, and Natricidae) have been heavily neglected despite the knowledge of numerous species capable of inflicting medically relevant envenomations. Integrating proteomic data for validation, we perform a de novo assembly and analysis of the Duvernoy's venom gland transcriptome of the Central American Road Guarder (Dipsadidae: Xenodontinae: Conophis lineatus), a species known for its potent bite. We identified 28 putative toxin transcripts from 13 toxin families in the Duvernoy's venom gland transcriptome, comprising 63.7% of total transcriptome expression. In addition to ubiquitous snake toxin families, we proteomically confirmed several atypical venom components. The most highly expressed toxins (55.6% of total toxin expression) were recently described snake venom matrix metalloproteases (svMMPs), with 48.0% of svMMP expression contributable to a novel svMMP isoform. We investigate the evolution of the new svMMP isoform in the context of rear-fanged snakes using phylogenetics. Finally, we examine the morphology of the venom apparatus using μCT and explore how the venom relates to autecology and the highly hemorrhagic effects seen in human envenomations. Importantly, we provide the most complete venom characterization of this medically relevant snake species to date, producing insights into the effects and evolution of its venom, and point to future research directions to better understand the venoms of 'harmless' non-front-fanged snakes.
Collapse
Affiliation(s)
- Tristan D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Taylor R West
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Javier A Ortiz-Medina
- Departamento de Sistemática y Ecología Acuática, El Colegio de La Frontera Sur, Unidad Chetumal, Chetumal, Quintana Roo, Mexico; Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico; HERP.MX A.C., Villa de Álvarez, Colima, Mexico
| | - Bianca Sabido-Alpuche
- Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico
| | - Marcos Meneses-Millán
- Unidad de Manejo para La Conservación de La Vida Silvestre, Tsáab Kaan, Baca, Yucatán, Mexico
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez Del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Instituto Butantan, São Paulo, Brazil; Center of Toxins, Immune-Response and Cell Signaling (CeTICS), São Paulo, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA; Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA.
| |
Collapse
|