1
|
Hao C, Fan E, Wei Z, Radeen KR, Purohit N, Li K, Purohit S, Fan X. Elevated Inflammatory Cytokines Persist in the Aqueous Humor Years After Cataract Surgery. Invest Ophthalmol Vis Sci 2025; 66:12. [PMID: 40183733 PMCID: PMC11977793 DOI: 10.1167/iovs.66.4.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose There is currently limited information regarding inflammation and cytokine levels in the aqueous humor (AH) of adult patients with cataract who have undergone phacoemulsification cataract extraction without other ocular comorbidities. Methods AH samples were collected from healthy, non-surgical donors and donors with a history of cataract surgery performed 3 to 12 years prior. Sixty-three cytokines and growth factors were measured using bead-based ProcartaPlex immunoassays. Data analysis included normal distribution assessment, pairwise correlation, logistic regression, and ridge regression. Results Of the 63 molecules analyzed, 34 were selected for further study. Cytokines, such as CD40L, IL-7, MIP-1α, and LIF, were found at significantly higher concentrations in AH samples from donors with a history of cataract surgery compared with non-cataract controls. In contrast, lower concentrations of IL-23, TRAIL, IL-12p70, IFNγ, MIP-3α, and SCF were observed in post-surgical samples. Pairwise correlation analysis identified clusters of significantly correlated molecules, suggesting their potential involvement in the inflammatory environment of AH post-cataract surgery. AH concentration of 34 proteins was combined into a post-cataract surgery inflammation index (PCSII) using ridge regression, which differs significantly between post-cataract surgery donors and non-cataract controls. This PCSII shows that any increase in AH levels of these molecules can stratify cataract surgery donors into low and high-risk of inflammatory groups. Conclusions This study indicates that cataract surgery may lead to a chronic inflammatory state in the AH, which can persist for extended periods post-surgery.
Collapse
Affiliation(s)
- Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Emily Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- University of Georgia, Athens, Georgia, United States
| | - Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Kazi Rafsan Radeen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Neha Purohit
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- University of Georgia, Athens, Georgia, United States
| | - Kailin Li
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Wang S, Chen CY, Liu CC, Stavropoulos D, Rao M, Petrash JM, Chang KC. GDF-15 Attenuates the Epithelium-Mesenchymal Transition and Alleviates TGFβ2-Induced Lens Opacity. Transl Vis Sci Technol 2024; 13:2. [PMID: 38949633 PMCID: PMC11221611 DOI: 10.1167/tvst.13.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor β2 (TGFβ2)-induced lens opacity. Methods To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFβ2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFβ2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFβ2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFβ2. Conclusions Our results indicate that GDF-15 could alleviate TGFβ2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.
Collapse
Affiliation(s)
- Shining Wang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dimitrios Stavropoulos
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Wang L, Xu Z, Hong Y, Liu Y, Zhang X, Feng Q, Zhang D, Chen K, Yiming GH, Li X, Liu A, Dong L. Low expression of TGF-β2 and matrilin2 in human aqueous humour with acute primary angle closure. J Cell Mol Med 2024; 28:e18111. [PMID: 38235996 PMCID: PMC10844682 DOI: 10.1111/jcmm.18111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/26/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-β2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.
Collapse
Affiliation(s)
- Liming Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Zhao Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Yan Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Qiang Feng
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Dandan Zhang
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Kexi Chen
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Guli Humaer Yiming
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Aihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| |
Collapse
|
4
|
Pujals M, Mayans C, Bellio C, Méndez O, Greco E, Fasani R, Alemany-Chavarria M, Zamora E, Padilla L, Mitjans F, Nuciforo P, Canals F, Nonell L, Abad M, Saura C, Tabernero J, Villanueva J. RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene 2023; 42:2610-2628. [PMID: 37468678 DOI: 10.1038/s41388-023-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Mayans
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Chiara Bellio
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercè Alemany-Chavarria
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Zamora
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Padilla
- LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Altos Labs Cambridge Institute of Science, Cambridge, UK
| | - Cristina Saura
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Wei Z, Hao C, Chen JK, Gan L, Fan X. A tamoxifen-inducible Cre knock-in mouse for lens-specific gene manipulation. Exp Eye Res 2023; 226:109306. [PMID: 36372215 PMCID: PMC9839650 DOI: 10.1016/j.exer.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mouse models are valuable tools in studying lens biology and biochemistry, and the Cre-loxP system is the most used technology for gene targeting in the lens. However, numerous genes are indispensable in lens development. The conventional knockout method either prevents lens formation or causes simultaneous cataract formation, hindering the studies of their roles in lens structure, growth, metabolism, and cataractogenesis during lens aging. An inducible Cre-loxP mouse line is an excellent way to achieve such a purpose. We established a lens-specific Cre ERT2 knock-in mouse (LCEK), an inducible mouse model for lens-specific gene targeting in a spatiotemporal manner. LCEK mice were created by in-frame infusion of a P2A-CreERT2 at the C-terminus of the last coding exon of the gene alpha A crystallin (Cryaa). LCEK mice express tamoxifen-inducible Cre recombinase uniquely in the lens. Through ROSAmT/mG and two endogenous genes (Gclc and Rbpj) targeting, we found no Cre recombinase leakage in the lens epithelium, but 50-80% leakage was observed in the lens cortex and nucleus. Administration of tamoxifen almost completely abolished target gene expression in both lens epithelium and cortex but only mildly enhanced gene deletion in the lens nucleus. Notably, no overt leakage of Cre activity was detected in developing LCEK lens when bred with mice carrying loxP floxed genes that are essential for lens development. This newly generated LCEK line will be a powerful tool to target genes in the lens for gene functions study in lens aging, posterior capsule opacification (PCO), and other areas requiring precision gene targeting.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Nam MH, Nahomi RB, Pantcheva MB, Dhillon A, Chiodo VA, Smith WC, Nagaraj RH. AAV2-Mediated Expression of HspB1 in RGCs Prevents Somal Damage and Axonal Transport Deficits in a Mouse Model of Ocular Hypertension. Transl Vis Sci Technol 2022; 11:8. [DOI: 10.1167/tvst.11.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rooban B. Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mina B. Pantcheva
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Armaan Dhillon
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Vince A. Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - W. Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Ram H. Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Xiong L, Sun Y, Huang J, Ma P, Wang X, Wang J, Chen B, Chen J, Huang M, Huang S, Liu Y. Long Non-Coding RNA H19 Prevents Lens Fibrosis through Maintaining Lens Epithelial Cell Phenotypes. Cells 2022; 11:cells11162559. [PMID: 36010635 PMCID: PMC9406623 DOI: 10.3390/cells11162559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-β2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-β2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-β2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-β2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.
Collapse
|
8
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
9
|
Taiyab A, West-Mays J. Lens Fibrosis: Understanding the Dynamics of Cell Adhesion Signaling in Lens Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2022; 10:886053. [PMID: 35656546 PMCID: PMC9152183 DOI: 10.3389/fcell.2022.886053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Injury to the ocular lens perturbs cell-cell and cell-capsule/basement membrane interactions leading to a myriad of interconnected signaling events. These events include cell-adhesion and growth factor-mediated signaling pathways that can ultimately result in the induction and progression of epithelial-mesenchymal transition (EMT) of lens epithelial cells and fibrosis. Since the lens is avascular, consisting of a single layer of epithelial cells on its anterior surface and encased in a matrix rich capsule, it is one of the most simple and desired systems to investigate injury-induced signaling pathways that contribute to EMT and fibrosis. In this review, we will discuss the role of key cell-adhesion and mechanotransduction related signaling pathways that regulate EMT and fibrosis in the lens.
Collapse
|
10
|
Rankenberg J, Rakete S, Wagner BD, Patnaik JL, Henning C, Lynch A, Glomb MA, Nagaraj RH. Advanced glycation end products in human diabetic lens capsules. Exp Eye Res 2021; 210:108704. [PMID: 34302851 DOI: 10.1016/j.exer.2021.108704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Advanced glycation end products (AGEs) accumulate with age in human lens capsules. AGEs in lens capsules potentiate the transforming growth factor beta-2-mediated mesenchymal transition of lens epithelial cells, which suggests that they play a role in posterior capsule opacification after cataract surgery. We measured AGEs by liquid chromatography-mass spectrometry in capsulorhexis specimens obtained during cataract surgery from nondiabetic and diabetic patients with and without established retinopathy. Our data showed that the levels of most AGEs (12 out of 13 measured) were unaltered in diabetic patients and diabetic patients with retinopathy compared to nondiabetic patients. There was one exception: glucosepane, which was significantly higher in diabetic patients, both with (6.85 pmol/μmol OH-proline) and without retinopathy (8.32 pmol/μmol OH-proline), than in nondiabetic patients (4.01 pmol/μmol OH-proline). Our study provides an explanation for the similar incidence of posterior capsule opacification between nondiabetic and diabetic cataract patients observed in several studies.
Collapse
Affiliation(s)
- Johanna Rankenberg
- Sue-Anschutz Eye Center, Department of Ophthalmology, School of Medicine, Aurora, CO, USA
| | - Stefan Rakete
- Sue-Anschutz Eye Center, Department of Ophthalmology, School of Medicine, Aurora, CO, USA; Present Address: Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital LMU, Munich, Germany
| | - Brandie D Wagner
- Sue-Anschutz Eye Center, Department of Ophthalmology, School of Medicine, Aurora, CO, USA; Colorado School of Public Health, Aurora, CO, USA
| | - Jennifer L Patnaik
- Sue-Anschutz Eye Center, Department of Ophthalmology, School of Medicine, Aurora, CO, USA
| | - Christian Henning
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/ Saale, Germany
| | - Anne Lynch
- Sue-Anschutz Eye Center, Department of Ophthalmology, School of Medicine, Aurora, CO, USA
| | - Marcus A Glomb
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/ Saale, Germany
| | - Ram H Nagaraj
- Sue-Anschutz Eye Center, Department of Ophthalmology, School of Medicine, Aurora, CO, USA; School of Pharmacy, University of Colorado, Aurora, CO, USA.
| |
Collapse
|