1
|
Kawaguchi Y, Taoka M, Takekiyo T, Uekita T, Shoji I, Hachiya N, Ichimura T. TRIM32-Cytoplasmic-Body Formation Is an ATP-Consuming Process Stimulated by HSP70 in Cells. PLoS One 2017; 12:e0169436. [PMID: 28052117 PMCID: PMC5215751 DOI: 10.1371/journal.pone.0169436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
The spontaneous and energy-releasing reaction of protein aggregation is typically prevented by cellular quality control machinery (QC). TRIM32 is a member of the TRIM (tripartite motif-containing) ubiquitin E3 ligases, and when overexpressed in cultured cells, readily forms spherical inclusions designated as cytoplasmic bodies (CBs) even without proteasome inhibition. Here, we show that HSP70, a central QC component, is a primary binding factor of overexpressed TRIM32. Contrary to expectation, however, we find that this molecular chaperone facilitates and stabilizes CB assembly depending on intrinsic ATPase activity, rather than preventing CB formation. We also show that the HSP70-TRIM32 complex is biochemically distinct from the previously characterized 14-3-3-TRIM32 phospho-complex. Moreover, the two complexes have opposing roles, with HSP70 stimulating CB formation and 14-3-3 retaining TRIM32 in a diffuse form throughout the cytosol. Our results suggest that CB inclusion formation is actively controlled by cellular QC and requires ATP, similar to protein folding and degradation reactions.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naomi Hachiya
- Biotechnology Group, R&D Division, Tokyo Metropolitan Industrial Technology Research Institute, Koto-ku, Tokyo, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
2
|
Čiplys E, Aučynaitė A, Slibinskas R. Generation of human ER chaperone BiP in yeast Saccharomyces cerevisiae. Microb Cell Fact 2014; 13:22. [PMID: 24512104 PMCID: PMC3926315 DOI: 10.1186/1475-2859-13-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human BiP is traditionally regarded as a major endoplasmic reticulum (ER) chaperone performing a number of well-described functions in the ER. In recent years it was well established that this molecule can also be located in other cell organelles and compartments, on the cell surface or be secreted. Also novel functions were assigned to this protein. Importantly, BiP protein appears to be involved in cancer and rheumatoid arthritis progression, autoimmune inflammation and tissue damage, and thus could potentially be used for therapeutic purposes. In addition, a growing body of evidence indicates BiP as a new therapeutic target for the treatment of neurodegenerative diseases. Increasing importance of this protein and its involvement in critical human diseases demands new source of high quality native recombinant human BiP for further studies and potential application. Here we introduce yeast Saccharomyces cerevisiae as a host for the generation of human BiP protein. RESULTS Expression of a full-length human BiP precursor in S. cerevisiae resulted in a high-level secretion of mature recombinant protein into the culture medium. The newly discovered ability of the yeast cells to recognize, correctly process the native signal sequence of human BiP and secrete this protein into the growth media allowed simple one-step purification of highly pure recombinant BiP protein with yields reaching 10 mg/L. Data presented in this study shows that secreted recombinant human BiP possesses native amino acid sequence and structural integrity, is biologically active and without yeast-derived modifications. Strikingly, ATPase activity of yeast-derived human BiP protein exceeded the activity of E. coli-derived recombinant human BiP by a 3-fold. CONCLUSIONS S. cerevisiae is able to correctly process and secrete human BiP protein. Consequently, resulting recombinant BiP protein corresponds accurately to native analogue. The ability to produce large quantities of native recombinant human BiP in yeast expression system should accelerate the analysis and application of this important protein.
Collapse
Affiliation(s)
- Evaldas Čiplys
- Vilnius University Institute of Biotechnology, V,A, Graiciuno 8, Vilnius LT-02241, Lithuania.
| | | | | |
Collapse
|
3
|
Cao F, Cheng H, Cheng S, Li L, Xu F, Yu W, Yuan H. Expression of selected Ginkgo biloba heat shock protein genes after cold treatment could be induced by other abiotic stress. Int J Mol Sci 2012; 13:5768-5788. [PMID: 22754330 PMCID: PMC3382825 DOI: 10.3390/ijms13055768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily.
Collapse
Affiliation(s)
- Fuliang Cao
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (F.C.); (S.C.); Tel./Fax: +86-713-8833599 (S.C.)
| | - Hua Cheng
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
| | - Shuiyuan Cheng
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (F.C.); (S.C.); Tel./Fax: +86-713-8833599 (S.C.)
| | - Linling Li
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
| | - Feng Xu
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratory, Huanggang Normal University, Huanggang 438000, China; E-Mails: (H.C.); (L.L.); (F.X.)
| | - Wanwen Yu
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; E-Mail:
| | - Honghui Yuan
- College of Chemistry and life science, Huanggang Normal University, Huanggang 438000, China; E-Mail:
| |
Collapse
|
4
|
Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones 2012; 17:1-9. [PMID: 21874533 PMCID: PMC3227850 DOI: 10.1007/s12192-011-0290-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Rapid expression of the survival gene, inducible heat shock protein 70 (hsp70), is critical for mounting cytoprotection against severe cellular stress, like elevated temperature. Hsp70 protein chaperones the refolding of heat-denatured peptides to minimize proteolytic degradation as a part of an eukaryotically conserved phenomenon referred to as the heat shock response. The physiologic stress associated with exercise, which can include elevated temperature, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation, may promote protein unfolding, leading to hsp70 gene expression in skeletal myofibers. Although the pre-transcriptional activation of hsp70 gene expression has been thoroughly reviewed, discussion of downstream hsp70 gene regulation is less extensive. The purpose of this brief review was to examine all levels of hsp70 gene regulation in response to heat stress and exercise with a special focus on skeletal myofibers where data are available. In general, while heat stress represses bulk gene expression, hsp70 mRNA expression is enhanced. Post-transcriptionally, intronless hsp70 mRNA circumvents a host of decay pathways, as well as heat stress-repressed pre-mRNA splicing and nuclear export. Pre-translationally, hsp70 mRNA is excluded from stress granules and preferentially translated during heat stress-repressed global cap-dependent translation. Post-translationally, nascent Hsp70 protein is thermodynamically stable at elevated temperatures, allowing for the commencement of chaperoning activity early after synthesis to attenuate the heat shock response and protect against subsequent injury. This review demonstrates that hsp70 mRNA expression is closely coupled with functional protein translation.
Collapse
Affiliation(s)
- Jordan Thomas Silver
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
- Lawson Health Research Institute, The University of Western Ontario, London, ON Canada N6A 3K7
| |
Collapse
|
5
|
Buriani G, Mancini C, Benvenuto E, Baschieri S. Plant heat shock protein 70 as carrier for immunization against a plant-expressed reporter antigen. Transgenic Res 2011; 20:331-44. [PMID: 20559870 DOI: 10.1007/s11248-010-9418-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/04/2010] [Indexed: 01/18/2023]
Abstract
Mammalian Heat Shock Proteins (HSP), have potent immune-stimulatory properties due to the natural capability to associate with polypeptides and bind receptors on antigen presenting cells. The present study was aimed to explore whether plant HSP, and in particular HSP70, share similar properties. We wanted in particular to evaluate if HSP70 extracted in association to naturally bound polypeptides from plant tissues expressing a recombinant "reporter" antigen, carry antigen-derived polypeptides and can be used to activate antigen-specific immune responses. This application of HSP70 has been very poorly investigated so far. The analysis started by structurally modeling the plant protein and defining the conditions that ensure maximal expression levels and optimal recovery from plant tissues. Afterwards, HSP70 was purified from Nicotiana benthamiana leaves transiently expressing a heterologous "reporter" protein. The purification was carried out taking care to avoid the release from HSP70 of the polypeptides chaperoned within plant cells. The evaluation of antibody titers in mice sera subsequent to the subcutaneous delivery of the purified HSP70 demonstrated that it is highly effective in priming humoral immune responses specific to the plant expressed "reporter" protein. Overall results indicated that plant-derived HSP70 shares structural and functional properties with the mammalian homologue. This study paves the way to further investigations targeted at determining the properties of HSP70 extracted from plants expressing foreign recombinant antigens as a readily available immunological carrier for the efficient delivery of polypeptides derived from these antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibody Specificity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Drug Delivery Systems
- Female
- Genes, Reporter/genetics
- Genes, Reporter/physiology
- HSP70 Heat-Shock Proteins/chemistry
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- HSP70 Heat-Shock Proteins/metabolism
- Immunization
- Immunoglobulin G/blood
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Molecular
- Molecular Sequence Data
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Subunit
Collapse
Affiliation(s)
- Giampaolo Buriani
- Technical Unit Radiation Biology and Human Health, Biotechnologies Laboratory, ENEA C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | | | | | | |
Collapse
|
6
|
Friedrich L, Stangl S, Hahne H, Küster B, Köhler P, Multhoff G, Skerra A. Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics. Protein Eng Des Sel 2010; 23:161-8. [PMID: 20123884 DOI: 10.1093/protein/gzp095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hsp70, the major stress-inducible member of the 70 kDa heat shock protein family, is frequently exposed on the plasma membrane of human tumours and, even more pronounced, on metastases but not detectable on normal tissues. The mouse monoclonal antibody cmHsp70.1, which recognizes a peptide epitope in the C-terminal substrate binding domain of both human and murine Hsp70, provides a promising reagent for the monitoring of Hsp70-positive tumours during cancer therapy. Here, we describe the variable domain sequences of the antibody produced by the hybridoma cell line and attempts to secrete the corresponding recombinant Fab fragment in Escherichia coli. Initially, the yield of soluble functional Fab fragment that could be purified from the periplasmic cell extract was extremely low, even when preparing different chimeric versions with constant domains of human or murine origin or with the light chain constant domain belonging to the kappa or lambda class. Surprisingly, this yield could be raised dramatically by more than a factor 100 in the presence of the folding helper plasmid pTUM4, which overexpresses two periplasmic disulphide oxido-reductases as well as two chaperones with proline-cis/trans-isomerase activity. Thus, more than 15 mg functional recombinant Fab fragment could be purified per litre E.coli culture from a bench top fermenter. This Fab fragment showed high and specific Hsp70 binding activity in ELISA and SPR measurements, revealing a dissociation constant of 35 nM. Notably, the Fab fragment sensitively recognizes the membrane-associated Hsp70 on tumour cell lines both in immunofluorescence microscopy and flow cytometry, thus showing potential for tumour detection in vitro and in vivo.
Collapse
Affiliation(s)
- Lars Friedrich
- Munich Center for Integrated Protein Science and Lehrstuhl für Biologische Chemie, Technische Universität München, München, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78. PLoS One 2010; 5:e8625. [PMID: 20072699 PMCID: PMC2803158 DOI: 10.1371/journal.pone.0008625] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
|
8
|
Liu Y, Bahar I. Toward understanding allosteric signaling mechanisms in the ATPase domain of molecular chaperones. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2009:269-80. [PMID: 19908379 DOI: 10.1142/9789814295291_0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ATPase cycle of the heat shock protein 70 (HSP70) is largely dependent on the ability of its nucleotide binding domain (NBD), also called ATPase domain, to undergo structural changes between its open and closed conformations. We present here a combined study of the Hsp70 NBD sequence, structure and dynamic features to identify the residues that play a crucial role in mediating the allosteric signaling properties of the ATPase domain. Specifically, we identify the residues involved in the shortest-path communications of the domain modeled as a network of nodes (residues) and links (equilibrium interactions). By comparing the calculations on both closed and open conformation of Hsp70 NBD, we identified a subset of central residues located at the interface between the two lobes of the NBD near the nucleotide binding site, which form a putative communication pathway invariant to structural changes. Two pairs of residues forming contacts at the interface in the closed conformation of the NBD are observed to no longer interact in the open conformation, suggesting that these specific interactions may play a switch role in establishing the transition of the NBD between the two functional forms. Sequence co-evolution analysis and collective dynamics analysis with elastic network model further confirm the key roles of these residues in Hsp70 NBD dynamics and functions.
Collapse
Affiliation(s)
- Ying Liu
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
9
|
Cheng L, Jin Z, Fu C, Zhao D. Cloning and expression analysis of a hsp70 gene fromSaussurea medusa. ACTA ACUST UNITED AC 2009; 17:159-65. [PMID: 17076259 DOI: 10.1080/10425170600609256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Members of the 70 kD heat-shock gene family are highly conserved across a wide range of organisms. In an effort to learn more about the evolution and possible functions of extreme environment plant Saussurea medusa Maxim hsp70, we isolated a cDNA clone encoding a putative cytosolic member (Smhsp70) of this family of proteins from a cDNA library of S. medusa cell cultures. The cDNA clone was 2224 bp in length and contained a 1941 bp open reading frame (ORF) encoding a polypeptide of 647 amino acid residues with a predicted molecular mass of 70,794 Da. The predicted protein was found to contain a C-terminal amino acid motif of "PKIEEVD" indicating that Smhsp70 was related to cytosolic members of the hsp70 family in higher plant. The secondary and three-dimensional structures of Smhsp70 were analyzed by molecular modeling. The genomic structure of Smhsp70 included one intron of 1134 bp in length. The deduced Smhsp70 protein has 93.7 and 93.2% similarity with the hsp70 of tobacco and tomato, 73.2% with the hsp70 of human, and 43.7% with DnaK of Escherichia. coli, respectively. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses indicated that the cytosolic Smhsp70 protein was constitutively expressed and markedly increased after relatively short periods of heat shock (37 degrees C) as well as by low temperature (4 degree C) treatments.
Collapse
Affiliation(s)
- Liqin Cheng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxinchun20, Xiangshan, Haidian District, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Brierley-Hobson S. Binding of (-)-epigallocatechin-3-gallate to the Hsp70 ATPase domain may promote apoptosis in colorectal cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1093/biohorizons/hzn002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Mao Y, Deng A, Qu N, Wu X. ATPase domain of Hsp70 exhibits intrinsic ATP-ADP exchange activity. BIOCHEMISTRY (MOSCOW) 2007; 71:1222-9. [PMID: 17140383 DOI: 10.1134/s0006297906110071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperone activity of Hsp70 in protein folding and its conformational switching are regulated through the hydrolysis of ATP and the ATP-ADP exchange cycle. It was reported that, in the presence of physiological concentrations of ATP (approximately 5 mM) and ADP (approximately 0.5 mM), Hsp70 catalyzes ATP-ADP exchange through transfer of gamma-phosphate between ATP and ADP, via an autophosphorylated intermediate, whereas it only catalyzes the hydrolysis of ATP in the absence of ADP. To clarify the functional domain of the ATP-ADP exchange activity of Hsp70, we isolated the 44-kD ATPase domain of Hsp70 after limited proteolysis with alpha-chymotrypsin (EC 3.4.21.1). The possibility of ATP-ADP exchange activity of a contaminating nucleoside diphosphate kinase (EC 2.7.4.6) was monitored throughout the experiments. The purified 44-kD ATPase domain exhibited intrinsic ATP-ADP exchange by catalyzing the transfer of gamma-phosphate between ATP and ADP with acid-stable autophosphorylation at Thr204.
Collapse
Affiliation(s)
- Yubin Mao
- Medical College, Xiamen University-National University of Singapore Laboratory of Biomedical Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | |
Collapse
|
12
|
Yano M, Nakamuta S, Wu X, Okumura Y, Kido H. A novel function of 14-3-3 protein: 14-3-3zeta is a heat-shock-related molecular chaperone that dissolves thermal-aggregated proteins. Mol Biol Cell 2006; 17:4769-79. [PMID: 16943323 PMCID: PMC1635386 DOI: 10.1091/mbc.e06-03-0229] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/05/2006] [Accepted: 08/18/2006] [Indexed: 11/11/2022] Open
Abstract
The 14-3-3 proteins are highly conserved molecules that function as intracellular adaptors in a variety of biological processes, such as signal transduction, cell cycle control, and apoptosis. Here, we show that a 14-3-3 protein is a heat-shock protein (Hsp) that protects cells against physiological stress as its new cellular function. We have observed that, in Drosophila cells, the 14-3-3zeta is up-regulated under heat stress conditions, a process mediated by a heat shock transcription factor. As the biological action linked to heat stress, 14-3-3zeta interacted with apocytochrome c, a mitochondrial precursor protein of cytochrome c, in heat-treated cells, and the suppression of 14-3-3zeta expression by RNA interference resulted in the formation of significant amounts of aggregated apocytochrome c in the cytosol. The aggregated apocytochrome c was converted to a soluble form by the addition of 14-3-3zeta protein and ATP in vitro. 14-3-3zeta also resolubilized heat-aggregated citrate synthase and facilitated its reactivation in cooperation with Hsp70/Hsp40 in vitro. Our observations provide the first direct evidence that a 14-3-3 protein functions as a stress-induced molecular chaperone that dissolves and renaturalizes thermal-aggregated proteins.
Collapse
Affiliation(s)
- Mihiro Yano
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Shinichi Nakamuta
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Xueji Wu
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Yuushi Okumura
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
13
|
Lamb HK, Mee C, Xu W, Liu L, Blond S, Cooper A, Charles IG, Hawkins AR. The affinity of a major Ca2+ binding site on GRP78 is differentially enhanced by ADP and ATP. J Biol Chem 2006; 281:8796-805. [PMID: 16418174 DOI: 10.1074/jbc.m503964200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP78 is a major protein regulated by the mammalian endoplasmic reticulum stress response, and up-regulation has been shown to be important in protecting cells from challenge with cytotoxic agents. GRP78 has ATPase activity, acts as a chaperone, and interacts specifically with other proteins, such as caspases, as part of a mechanism regulating apoptosis. GRP78 is also reported to have a possible role as a Ca2+ storage protein. In order to understand the potential biological effects of Ca2+ and ATP/ADP binding on the biology of GRP78, we have determined its ligand binding properties. We show here for the first time that GRP78 can bind Ca2+, ATP, and ADP, each with a 1:1 stoichiometry, and that the binding of cation and nucleotide is cooperative. These observations do not support the hypothesis that GRP78 is a dynamic Ca2+ storage protein. Furthermore, we demonstrate that whereas Mg2+ enhances GRP78 binding to ADP and ATP to the same extent, Ca2+ shows a differential enhancement. In the presence of Ca2+, the KD for ATP is lowered approximately 11-fold, and the KD for ADP is lowered around 930-fold. The KD for Ca2+ is lowered approximately 40-fold in the presence of ATP and around 880-fold with ADP. These findings may explain the biological requirement for a nucleotide exchange factor to remove ADP from GRP78. Taken together, our data suggest that the Ca2+-binding property of GRP78 may be part of a signal transduction pathway that modulates complex interactions between GRP78, ATP/ADP, secretory proteins, and caspases, and this ultimately has important consequences for cell viability.
Collapse
Affiliation(s)
- Heather K Lamb
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Carbone DL, Doorn JA, Kiebler Z, Sampey BP, Petersen DR. Inhibition of Hsp72-mediated protein refolding by 4-hydroxy-2-nonenal. Chem Res Toxicol 2005; 17:1459-67. [PMID: 15540944 PMCID: PMC2956495 DOI: 10.1021/tx049838g] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic approach was applied to liver cytosol from rats fed a diet consisting of high fat and ethanol to identify 4-hydroxy-2-nonenal (4-HNE)-modified proteins in vivo. Cytosolic Hsp72, the inducible variant of the Hsp70 heat shock protein family, was consistently among the proteins modified by 4-HNE. Despite 1.3-fold induction of Hsp72 in the livers of ethanol-fed animals, no increase in Hsp70-mediated luciferase refolding in isolated heptocytes was observed, suggesting inhibition of this process by 4-HNE. A 50% and 75% reduction in luciferase refolding efficiency was observed in rabbit reticulocyte lysate (RRL) supplemented with recombinant Hsp72 which had been modified in vitro with 10 and 100 microM 4-HNE, respectively. This observation was accompanied by a 25% and 50% decrease in substrate binding by the chaperone following the same treatment; however, no effect on complex formation between Hsp72 and its co-chaperone Hsp40 was observed. Trypsin digest and mass spectral analysis of Hsp72 treated with 10 and 100 microM 4-HNE consistently identified adduct formation at Cys267 in the ATPase domain of the chaperone. The role of this residue in the observed inhibition was demonstrated through the use of DnaK, a bacterial Hsp70 variant lacking Cys267. DnaK was resistant to 4-HNE inactivation. Additionally, Hsp72 was resistant to inactivation by the thiol-unreactive aldehyde malondialdehyde (MDA), further supporting a role for Cys in Hsp72 inhibition by 4-HNE. Finally, the affinity of Hsp72 for ATP was decreased 32% and 72% following treatment of the chaperone with 10 and 100 microM 4-HNE, respectively. In a model of chronic alcoholic liver injury, induction of Hsp72 was not accompanied by an increase in protein refolding ability. This is likely the result of 4-HNE modification of the Hsp72 ATPase domain.
Collapse
Affiliation(s)
| | | | | | | | - Dennis R. Petersen
- To whom correspondence should be addressed. Tel: 303-315-6159. Fax: 303-315-0274.
| |
Collapse
|