1
|
Kwon Y, Lee SJ, Shin YK, Choi JS, Park D, Shin JE. Loss of neuronal βPix isoforms impairs neuronal morphology in the hippocampus and causes behavioral defects. Anim Cells Syst (Seoul) 2025; 29:57-71. [PMID: 39802101 PMCID: PMC11722029 DOI: 10.1080/19768354.2024.2448999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons. Our previous studies using cultured hippocampal neurons identified the roles of βPix-b and βPix-d in spine formation and neurite development, respectively. Here, we analyzed the in vivo role of the neuronal βPix isoforms in brain development and function by using βPix neuronal isoform knockout (βPix-NIKO) mice, in which the expression of the βPix-b and βPix-d isoforms is blocked, while the expression of the ubiquitous βPix-a isoform is maintained. Loss of the neuronal βPix isoforms leads to reduced activity of Rac1 and Cdc42, decreased dendritic complexity and spine density, and increased GluN2B and Ca2+/calmodulin-dependent protein kinase IIα expression in the hippocampus. The defects in neurite development, dendritic spine maturation, and synaptic density in cultured βPix-NIKO hippocampal neurons were rescued by the expression of βPix-b or βPix-d. In behavioral studies, βPix-NIKO mice exhibited robust deficits in novel object recognition and decreased anxiety levels. Our findings suggest that neuronal morphogenetic signaling by the neuronal βPix isoforms contributes to normal behaviors.
Collapse
Affiliation(s)
- Younghee Kwon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Joon Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon Kyung Shin
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Eun Shin
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| |
Collapse
|
2
|
Moody JC, Qadota H, Benian GM. The RhoGAP RRC-1 is required for the assembly or stability of integrin adhesion complexes and is a member of the PIX pathway in muscle. Mol Biol Cell 2024; 35:ar58. [PMID: 38446619 PMCID: PMC11064667 DOI: 10.1091/mbc.e23-03-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
GTPases cycle between active GTP bound and inactive GDP bound forms. Exchange of GDP for GTP is catalyzed by guanine nucleotide exchange factors (GEFs). GTPase activating proteins (GAPs) accelerate GTP hydrolysis, to promote the GDP bound form. We reported that the RacGEF, PIX-1, is required for assembly of integrin adhesion complexes (IAC) in striated muscle of Caenorhabditis elegans. In C. elegans, IACs are found at the muscle cell boundaries (MCBs), and bases of sarcomeric M-lines and dense bodies (Z-disks). Screening C. elegans mutants in proteins containing RhoGAP domains revealed that loss of function of rrc-1 results in loss of IAC components at MCBs, disorganization of M-lines and dense bodies, and reduced whole animal locomotion. RRC-1 localizes to MCBs, like PIX-1. The localization of RRC-1 at MCBs requires PIX-1, and the localization of PIX-1 requires RRC-1. Loss of function of CED-10 (Rac) shows lack of PIX-1 and RRC-1 at MCBs. RRC-1 exists in a complex with PIX-1. Transgenic rescue of rrc-1 was achieved with wild type RRC-1 but not RRC-1 with a missense mutation in a highly conserved residue of the RhoGAP domain. Our results are consistent with RRC-1 being a RhoGAP for the PIX pathway in muscle.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
3
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci 2017; 129:1963-74. [PMID: 27182061 DOI: 10.1242/jcs.179465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering and Design, Lishui University, Lishui 323000, China
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Urbinati C, Grillo E, Chiodelli P, Tobia C, Caccuri F, Fiorentini S, David G, Rusnati M. Syndecan-1 increases B-lymphoid cell extravasation in response to HIV-1 Tat via α vβ 3/pp60src/pp125FAK pathway. Oncogene 2016; 36:2609-2618. [PMID: 27819680 DOI: 10.1038/onc.2016.420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
Syndecan-1 is a heparan sulfate proteoglycan (HSPG) commonly upregulated in AIDS-related B lymphoid malignancies. Tat is the main HIV-1 transactivating factor that has a major role in the pathogenesis of AIDS-related lymphomas (ARL) by engaging heparan sulfate proteoglycans (HSPGs), chemokine receptors and integrins at the lymphoid cell (LC) surface. Here B-lymphoid Namalwa cell clones that do not express or overexpress syndecan-1 (EV-Ncs and SYN-Ncs, respectively) were compared for their responsiveness with Tat: in the absence of syndecan-1, Tat induces a limited EV-Nc migration via C-X-C motif chemokine receptor 4 (CXCR4), G-proteins and Rac. Syndecan-1 overexpression increases SYN-Nc responsiveness to Tat and makes this response independent from CXCR4 and G-protein and dependent instead on pp60src phosphorylation. Tat-induced SYN-Nc migration and pp60src phosphorylation require the engagement of αvβ3 integrin and consequent pp125FAK phosphorylation. This complex set of Tat-driven activations is orchestrated by the direct interaction of syndecan-1 with pp60src and its simultaneous coupling with αvβ3. The Tat/syndecan-1/αvβ3 interplay is retained in vivo and is shared also by other syndecan-1+ B-LCs, including BJAB cells, whose responsiveness to Tat is inhibited by syndecan-1 knockdown. In conclusion, overexpression of syndecan-1 confers to B-LCs an increased capacity to migrate in response to Tat, owing to a switch from a CXCR4/G-protein/Rac to a syndecan-1/αvβ3/pp60src/pp125FAK signal transduction pathway that depends on the formation of a complex in which syndecan-1 interacts with Tat via its HS-chains, with αvβ3 via its core protein ectodomain and with pp60src via its intracellular tail. These findings have implications in ARL progression and may help in identifying new therapeutical targets for the treatment of AIDS-associated neoplasia.
Collapse
Affiliation(s)
- C Urbinati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - E Grillo
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - P Chiodelli
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - C Tobia
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - F Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - S Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - G David
- Department of Human Genetics, University of Leuven and Flanders Institute for Biotechnology, Leuven, Belgium
| | - M Rusnati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches. Cell Syst 2016; 2:38-48. [PMID: 27136688 PMCID: PMC4802415 DOI: 10.1016/j.cels.2016.01.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. RhoA and Rac1 are linked by a double-negative feedback loop A model predicts bistability of the system within a physiological parameter range Rac1 and RhoA activity is bistable in response to PAK inhibition Actin dynamics, cell morphology, and migration show hysteresis upon PAK inhibition
Collapse
|
7
|
Induction of Interleukin-1β by Human Immunodeficiency Virus-1 Viral Proteins Leads to Increased Levels of Neuronal Ferritin Heavy Chain, Synaptic Injury, and Deficits in Flexible Attention. J Neurosci 2015. [PMID: 26203149 DOI: 10.1523/jneurosci.4403-14.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synaptodendritic pruning and alterations in neurotransmission are the main underlying causes of HIV-associated neurocognitive disorders (HAND). Our studies in humans and nonhuman primates indicated that the protein ferritin heavy chain (FHC) is a critical player in neuronal changes and ensuing cognitive deficit observed in these patients. Here we focus on the effect of HIV proteins and inflammatory cytokines implicated in HAND on neuronal FHC levels, dendritic changes, and neurocognitive behavior. In two well characterized models of HAND (HIV transgenic and gp120-treated rats), we report reductions in spine density and dendritic branches in prefrontal cortex pyramidal neurons compared with age-matched controls. FHC brain levels are elevated in these animals, which also show deficits in reversal learning. Moreover, IL-1β, TNF-α, and HIV gp120 upregulate FHC in rat cortical neurons. However, although the inflammatory cytokines directly altered neuronal FHC, gp120 only caused significant FHC upregulation in neuronal/glial cocultures, suggesting that glia are necessary for sustained elevation of neuronal FHC by the viral protein. Although the envelope protein induced secretion of IL-1β and TNF-α in cocultures, TNF-α blockade did not affect gp120-mediated induction of FHC. Conversely, studies with an IL-1β neutralizing antibody or specific IL-1 receptor antagonist revealed the primary involvement of IL-1β in gp120-induced FHC changes. Furthermore, silencing of neuronal FHC abrogates the effect of gp120 on spines, and spine density correlates negatively with FHC levels or cognitive deficit. These results demonstrate that viral and host components of HIV infection increase brain expression of FHC, leading to cellular and functional changes, and point to IL-1β-targeted strategies for prevention of these alterations. Significance statement: This work demonstrates the key role of the cytokine IL-1β in the regulation of a novel intracellular mediator [i.e., the protein ferritin heavy chain (FHC)] of HIV-induced dendritic damage and the resulting neurocognitive impairment. This is also the first study that systematically investigates dendritic damage in layer II/III prefrontal cortex neurons of two different non-infectious models of HIV-associated neurocognitive disorders (HAND) and reveals a precise correlation of these structural changes with specific biochemical and functional alterations also reported in HIV patients. Overall, these data suggest that targeting the IL-1β-dependent FHC increase may represent a valid strategy for neuroprotective adjuvant therapies in HAND.
Collapse
|
8
|
Verma NK, Kelleher D. Adaptor regulation of LFA-1 signaling in T lymphocyte migration: Potential druggable targets for immunotherapies? Eur J Immunol 2014; 44:3484-99. [PMID: 25251823 DOI: 10.1002/eji.201344428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.
Collapse
Affiliation(s)
- Navin K Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| | | |
Collapse
|
9
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
10
|
Pitcher J, Abt A, Myers J, Han R, Snyder M, Graziano A, Festa L, Kutzler M, Garcia F, Gao WJ, Fischer-Smith T, Rappaport J, Meucci O. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. J Clin Invest 2014; 124:656-69. [PMID: 24401274 DOI: 10.1172/jci70090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS.
Collapse
|
11
|
HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. Proc Natl Acad Sci U S A 2012; 109:18541-6. [PMID: 23093676 DOI: 10.1073/pnas.1204322109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-1 negative factor (Nef) elevates virus replication and contributes to immune evasion in vivo. As one of its established in vitro activities, Nef interferes with T-lymphocyte chemotaxis by reducing host cell actin dynamics. To explore Nef's influence on in vivo recirculation of T lymphocytes, we assessed lymph-node homing of Nef-expressing primary murine lymphocytes and found a drastic impairment in homing to peripheral lymph nodes. Intravital imaging and 3D immunofluorescence reconstruction of lymph nodes revealed that Nef potently impaired T-lymphocyte extravasation through high endothelial venules and reduced subsequent parenchymal motility. Ex vivo analyses of transendothelial migration revealed that Nef disrupted T-lymphocyte polarization and interfered with diapedesis and migration in the narrow subendothelial space. Consistently, Nef specifically affected T-lymphocyte motility modes used in dense environments that pose high physical barriers to migration. Mechanistically, inhibition of lymph node homing, subendothelial migration and cell polarization, but not diapedesis, depended on Nef's ability to inhibit host cell actin remodeling. Nef-mediated interference with in vivo recirculation of T lymphocytes may compromise T-cell help and thus represents an important mechanism for its function as a HIV pathogenicity factor.
Collapse
|
12
|
Koh SH, Huh YM, Noh MY, Kim HY, Kim KS, Lee ES, Ko HJ, Cho GW, Yoo AR, Song HT, Hwang S, Lee K, Haam S, Frank JA, Suh JS, Kim SH. β-PIX is critical for transplanted mesenchymal stromal cell migration. Stem Cells Dev 2012; 21:1989-99. [PMID: 22087847 DOI: 10.1089/scd.2011.0430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) have been used successfully as a source of stem cells for treating neurodegenerative diseases. However, for reasons that are not clear, autologous MSC transplants have not yielded successful results in human trials. To test one possible reason, we compared the migratory ability of MSCs from amyotrophic lateral sclerosis (ALS) patients with those of healthy controls. We found that MSCs derived from ALS patients (ALS-MSCs) had a reduced ability to migrate, which may explain why autologous transplantation is not successful. We also found that expression of one of the intracellular factors implicated in migration, β-PIX, was significantly reduced in ALS-MSCs compared with healthy stem cells. Restoration of β-PIX expression by genetic manipulation restored the migratory ability of ALS-MSCs, and inhibition of β-PIX expression with shRNA reduced the migration of healthy MSCs. We suggest that transplantation of allogeneic or genetically modified autologous stem cells might be a more promising strategy for ALS patients than transplantation of autologous stem cells.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Raman D, Milatovic SZ, Milatovic D, Splittgerber R, Fan GH, Richmond A. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:300-13. [PMID: 21704645 PMCID: PMC3236026 DOI: 10.1016/j.taap.2011.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F(2)-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Snjezana-Zaja Milatovic
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Dejan Milatovic
- Department of Pediatrics / Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Ryan Splittgerber
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Guo-Huang Fan
- Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221
| | - Ann Richmond
- VA Medical Center, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| |
Collapse
|
14
|
Verma NK, Dempsey E, Freeley M, Botting CH, Long A, Kelleher D, Volkov Y. Analysis of dynamic tyrosine phosphoproteome in LFA-1 triggered migrating T-cells. J Cell Physiol 2011; 226:1489-98. [PMID: 20945386 DOI: 10.1002/jcp.22478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ordered, directional migration of T-lymphocytes is a key process during immune surveillance and response. This requires cell adhesion to the high endothelial venules or to the extracellular matrix by a series of surface receptor/ligand interactions involving adhesion molecules of the integrin family including lymphocyte function associated molecule-1 (LFA-1) and intercellular adhesion molecules (ICAMs). Reversible protein phosphorylation is emerging as a key player in the regulation of biological functions with tyrosine phosphorylation playing a crucial role in signal transduction. Thus, the study of this type of post-translational modification at the proteomic level has great biological significance. In this work, phospho-enriched cell lysates from LFA-1-triggered migrating human T-cells were subjected to immunoaffinity purification of tyrosine phosphorylated proteins, mass spectrometric, and bioinformatic analysis. In addition to the identification of several well-documented proteins, the analysis suggested involvement of a number of new and novel proteins in LFA-1 induced T-cell migration. This dataset expands the list of the signaling components of the LFA-1 induced phosphotyrosine protein complexes in migrating T-cells that will be extremely useful in the study of their specific roles within LFA-1 associated signaling pathways. Identification of proteins previously not reported in the context of LFA-1 stimulated signal transduction might provide new insights into understanding the LFA-1 signaling networks and aid in the search for new potential therapeutic targets.
Collapse
Affiliation(s)
- Navin K Verma
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Welf ES, Haugh JM. Stochastic Dynamics of Membrane Protrusion Mediated by the DOCK180/Rac Pathway in Migrating Cells. Cell Mol Bioeng 2010; 3:30-39. [PMID: 20473365 PMCID: PMC2869102 DOI: 10.1007/s12195-010-0100-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell migration is regulated by processes that control adhesion to extracellular matrix (ECM) and force generation. While our fundamental understanding of how these control mechanisms are actuated at the molecular level (signal transduction) has been refined over many years, appreciation of their dynamics has grown more recently. Here, we formulate and analyze by stochastic simulation a quantitative model of signaling mediated by the integrin family of adhesion receptors. Nascent adhesions foster the activation of the small GTPase Rac by at least two distinct signaling pathways, one of which involves tyrosine phosphorylation of the scaffold protein paxillin and formation of multiprotein complexes containing the guanine nucleotide exchange factor DOCK180. Active Rac promotes protrusion of the cell's leading edge, which in turn enhances the rate of nascent adhesion nucleation; we call this feedback mechanism the core protrusion cycle. Protrusion is antagonized by stable adhesions, which form by myosin-dependent maturation of nascent adhesions, and we propose here a feedforward mechanism mediated by the tyrosine kinase c-Src by which this antagonism is regulated so as to allow transient protrusion at higher densities of ECM. We show that this "buffering of inhibition" mechanism, coupled with the core protrusion cycle, is capable of tuning the frequencies of protrusion and adhesion maturation events.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Raleigh, NC 27695, USA
| | | |
Collapse
|
16
|
Eriguchi M, Mizuta H, Luo S, Kuroda Y, Hara H, Rubinsztein DC. α Pix enhances mutant huntingtin aggregation. J Neurol Sci 2010; 290:80-5. [DOI: 10.1016/j.jns.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 11/28/2022]
|
17
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
18
|
p210(Bcr-Abl) desensitizes Cdc42 GTPase signaling for SDF-1alpha-directed migration in chronic myeloid leukemia cells. Oncogene 2009; 28:4105-15. [PMID: 19718053 DOI: 10.1038/onc.2009.260] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic myeloid leukemia (CML) is a lethal hematological disorder caused by the p210(Bcr-Abl) oncogene. Previous studies have suggested that p210(Bcr-Abl) transformation contributes to homing and retention defects, typical of immature myeloid cells in CML, by attenuating chemotactic response to stromal-derived factor-1alpha (SDF-1alpha). As Rho family GTPases are key regulators of the cytoskeleton and have been previously found to interact with p210(Bcr-Abl), this study aimed to determine whether p210(Bcr-Abl) signaling affects SDF-1alpha chemotaxis through Rho GTPase signaling. We found that SDF-1alpha stimulated Cdc42 GTPase activation in myeloid progenitor 32D, but not in p210(Bcr-Abl)-transformed (32Dp210) cells. In fact, the basal level of active Cdc42 was elevated in 32Dp210 cells and mononuclear cells isolated from bone marrow of CML patients. Inhibition of p210(Bcr-Abl) kinase activity decreased basal Cdc42 activity and restored SDF-1alpha-induced Cdc42 and migration responses. Transduction of active Tat-Cdc42V12 abolished this reconstituted chemotactic response. As Cdc42 is particularly important in cytoskeletal remodeling and directional sensing, these results suggest that sustained activation of Cdc42 GTPase through p210(Bcr-Abl) tyrosine kinase signaling in CML cells contributes to defects in SDF-1alpha-chemotactic response due to desensitization of the actin polarization signal required for directional migration.
Collapse
|
19
|
Shin EY, Lee CS, Park MH, Kim DJ, Kwak SJ, Kim EG. Involvement of betaPIX in angiotensin II-induced migration of vascular smooth muscle cells. Exp Mol Med 2009; 41:387-96. [PMID: 19322025 DOI: 10.3858/emm.2009.41.6.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Angiotensin II (Ang II) stimulates migration of vascular smooth muscle cell (VSMC) in addition to its contribution to contraction and hypertrophy. It is well established that Rho GTPases regulate cellular contractility and migration by reorganizing the actin cytoskeleton. Ang II activates Rac1 GTPase, but its upstream guanine nucleotide exchange factor (GEF) remains elusive. Here, we show that Ang II-induced VSMC migration occurs in a betaPIX GEF-dependent manner. betaPIX-specific siRNA treatment significantly inhibited Ang II-induced VSMC migration. Ang II activated the catalytic activity of betaPIX towards Rac1 in dose- and time-dependent manners. Activity reached a peak at 10 min and declined close to a basal level by 30 min following stimulation. Pharmacological inhibition with specific kinase inhibitors revealed the participation of protein kinase C, Src family kinase, and phosphatidylinositol 3-kinase (PI3-K) upstream of betaPIX. Both p21-activated kinase and reactive oxygen species played key roles in cytoskeletal reorganization downstream of betaPIX-Rac1. Taken together, our results suggest that betaPIX is involved in Ang II-induced VSMC migration.
Collapse
Affiliation(s)
- Eun Young Shin
- Department of Biochemistry and Signaling Disorder Research CenterCollege of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
T cell cytoarchitecture differs dramatically depending on whether the cell is circulating within the bloodstream, migrating through tissues, or interacting with antigen-presenting cells. The transition between these states requires important signaling-dependent changes in actin cytoskeletal dynamics. Recently, analysis of actin-regulatory proteins associated with T cell activation has provided new insights into how T cells control actin dynamics in response to external stimuli and how actin facilitates downstream signaling events and effector functions. Among the actin-regulatory proteins that have been identified are nucleation-promoting factors such as WASp, WAVE2, and HS1; severing proteins such as cofilin; motor proteins such as myosin II; and linker proteins such as ezrin and moesin. We review the current literature on how signaling pathways leading from diverse cell surface receptors regulate the coordinated activity of these and other actin-regulatory proteins and how these proteins control T cell function.
Collapse
Affiliation(s)
- Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
21
|
Sinha S, Yang W. Cellular signaling for activation of Rho GTPase Cdc42. Cell Signal 2008; 20:1927-34. [PMID: 18558478 DOI: 10.1016/j.cellsig.2008.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/11/2008] [Indexed: 12/20/2022]
Abstract
The Rho family GTPase Cdc42 regulates cytoskeletal organization and membrane trafficking in physiological processes such as cell proliferation, motility and polarity. Aberrant activation of Cdc42 results in pathogenesis, such as tumorigenesis and tumor progression, cardiovascular diseases, diabetes, and neuronal degenerative diseases. The activation of Cdc42 in response to upstream signals is mediated by guanine nucleotide exchange factors (GEFs), which converse GDP-bound inactive form to the GTP-bound active form of Cdc42. The activated Cdc42 transduces signals to downstream effectors and generates cellular effects. This review will discuss the molecular mechanism of activation of Cdc42 and postulate that signaling specificity of Cdc42 is conferred by the GEF/GTPase/Effector (GGE) complexes in response to external stimuli.
Collapse
Affiliation(s)
- Soniya Sinha
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
22
|
AlphaPIX Rho GTPase guanine nucleotide exchange factor regulates lymphocyte functions and antigen receptor signaling. Mol Cell Biol 2008; 28:3776-89. [PMID: 18378701 DOI: 10.1128/mcb.00507-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AlphaPIX is a Rho GTPase guanine nucleotide exchange factor domain-containing signaling protein that associates with other proteins involved in cytoskeletal-membrane complexes. It has been shown that PIX proteins play roles in some immune cells, including neutrophils and T cells. In this study, we report the immune system phenotype of alphaPIX knockout mice. We extended alphaPIX expression experiments and found that whereas alphaPIX was specific to immune cells, its homolog betaPIX was expressed in a wider range of cells. Mice lacking alphaPIX had reduced numbers of mature lymphocytes and defective immune responses. Antigen receptor-directed proliferation of alphaPIX(-) T and B cells was also reduced, but basal migration was enhanced. Accompanying these defects, formation of T-cell-B-cell conjugates and recruitment of PAK and Lfa-1 integrin to the immune synapse were impaired in the absence of alphaPIX. Proximal antigen receptor signaling was largely unaffected, with the exception of reduced phosphorylation of PAK and expression of GIT2 in both T cells and B cells. These results reveal specific roles for alphaPIX in the immune system and suggest that redundancy with betaPIX precludes a more severe immune phenotype.
Collapse
|
23
|
Janz JM, Sakmar TP, Min KC. A Novel Interaction between Atrophin-interacting Protein 4 and β-p21-activated Kinase-interactive Exchange Factor Is Mediated by an SH3 Domain. J Biol Chem 2007; 282:28893-28903. [PMID: 17652093 DOI: 10.1074/jbc.m702678200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-talk between G protein-coupled receptors and receptor tyrosine kinase signaling pathways is crucial to the efficient relay and integration of cellular information. Here we identify and define the novel binding interaction of the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4) with the GTP exchange factor beta-p21-activated kinase-interactive exchange factor (beta PIX). We demonstrate that this interaction is mediated in part by the beta PIX-SH3 domain binding to a proline-rich stretch of AIP4. Analysis of the interaction by isothermal calorimetry is consistent with a heterotrimeric complex with one AIP4-derived peptide binding to two beta PIX-SH3 domains. We determined the crystal structure of the beta PIX-SH3.AIP4 complex to 2.0-A resolution. In contrast to the calorimetry results, the crystal structure shows a monomeric complex in which AIP4 peptide binds the beta PIX-SH3 domain as a canonical Class I ligand with an additional type II polyproline helix that makes extensive contacts with another face of beta PIX. Taken together, the novel interaction between AIP4 and beta PIX represents a new regulatory node for G protein-coupled receptor and receptor tyrosine kinase signal integration. Our structure of the beta PIX-SH3.AIP4 complex provides important insight into the mechanistic basis for beta PIX scaffolding of signaling components, especially those involved in cross-talk.
Collapse
Affiliation(s)
- Jay M Janz
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021.
| | - Thomas P Sakmar
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021
| | - K Christopher Min
- Department of Neurology, Columbia University, New York, New York 10032
| |
Collapse
|
24
|
Zhao M, Mueller BM, DiScipio RG, Schraufstatter IU. Akt plays an important role in breast cancer cell chemotaxis to CXCL12. Breast Cancer Res Treat 2007; 110:211-22. [PMID: 17687643 DOI: 10.1007/s10549-007-9712-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 07/23/2007] [Indexed: 01/22/2023]
Abstract
The chemokine receptor CXCR4 is functionally expressed on the cell surface of various cancer cells, and plays a role in cell proliferation and migration of these cells. Specifically, in breast cancer cells the CXCR4/CXCL12 axis has been implicated in cell migration in vitro and in metastasis in vivo, but the underlying signaling mechanisms are incompletely understood. The xenograft-derived MDA-MB-231 breast cancer cell line (231mfp), which was shown previously to grow more aggressively than the parent cells, showed increased CXCR4 expression at the mRNA, total protein and cell surface expression level. This correlated with an enhanced response to CXCL12, specifically in augmented and prolonged Akt activation in a G(i), Src family kinase and PI-3 kinase dependent fashion. 231mfp cells migrated towards CXCL12--in contrast to the parent cell line--and this chemotaxis was blocked by inhibition of G(i), Src family kinases, PI-3 kinase and interestingly, Akt itself, as could be shown with two pharmacological inhibitors, a dominant negative Akt construct and with Akt shRNA. Collectively, we have demonstrated that prolonged Akt activation is an important signaling pathway for breast cancer cells expressing CXCR4 and is necessary for CXCL12-dependent cell migration.
Collapse
Affiliation(s)
- Ming Zhao
- Division of Cancer Biology, La Jolla Institute for Molecular Medicine, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
25
|
Weisz Hubsman M, Volinsky N, Manser E, Yablonski D, Aronheim A. Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp. Biochem J 2007; 404:487-97. [PMID: 17355222 PMCID: PMC1896286 DOI: 10.1042/bj20061696] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Paks (p21-activated kinases) Pak1, Pak2 and Pak3 are among the most studied effectors of the Rho-family GTPases, Rac, Cdc42 (cell division cycle 42) and Chp (Cdc42 homologous protein). Pak kinases influence a variety of cellular functions, but the process of Pak down-regulation, following activation, is poorly understood. In the present study, we describe for the first time a negative-inhibitory loop generated by the small Rho-GTPases Cdc42 and Chp, resulting in Pak1 inhibition. Upon overexpression of Chp, we unexpectedly observed a T-cell migration phenotype consistent with Paks inhibition. In line with this observation, overexpression of either Chp or Cdc42 caused a marked reduction in the level of Pak1 protein in a number of different cell lines. Chp-induced degradation was accompanied by ubiquitination of Pak1, and was dependent on the proteasome. The susceptibility of Pak1 to Chp-induced degradation depended on its p21-binding domain, kinase activity and a number of Pak1 autophosphorylation sites, whereas the PIX- (Pak-interacting exchange factor) and Nck-binding sites were not required. Together, these results implicate Chp-induced kinase autophosphorylation in the degradation of Pak1. The N-terminal domain of Chp was found to be required for Chp-induced degradation, although not for Pak1 activation, suggesting that Chp provides a second function, distinct from kinase activation, to trigger Pak degradation. Collectively, our results demonstrate a novel mechanism of signal termination mediated by the Rho-family GTPases Chp and Cdc42, which results in ubiquitin-mediated degradation of one of their direct effectors, Pak1.
Collapse
Affiliation(s)
- Monika Weisz Hubsman
- *Department of Molecular Genetics, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St. Bat-Galim, Haifa 31096, Israel
| | - Natalia Volinsky
- †Department of Pharmacology, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St. Bat-Galim, Haifa 31096, Israel
| | - Edward Manser
- ‡Institute for Medical Biology, Proteos Building, 61 Biopolis Drive, Singapore
| | - Deborah Yablonski
- †Department of Pharmacology, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St. Bat-Galim, Haifa 31096, Israel
- Correspondence may be addressed to either of these authors (email or )
| | - Ami Aronheim
- *Department of Molecular Genetics, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 1 Efron St. Bat-Galim, Haifa 31096, Israel
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
26
|
Krummel MF, Macara I. Maintenance and modulation of T cell polarity. Nat Immunol 2006; 7:1143-9. [PMID: 17053799 DOI: 10.1038/ni1404] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/14/2006] [Indexed: 02/07/2023]
Abstract
As T cells move through the lymphatics and tissues, chemokine receptors, adhesion molecules, costimulatory molecules and antigen receptors engage their ligands in the microenvironment and contribute to establishing and maintaining cell polarity. Cytoskeletal assemblies, surface proteins and vesicle traffic are essential components of polarity and probably stabilize the activity of lymphocytes that must negotiate their 'noisy' environment. An additional component of polarity is a family of polarity proteins in T cells that includes Dlg, Scrib and Lgl, as well as a complex of partitioning-defective proteins. Ultimately, the strength of a T cell response may rely on correct T cell polarization. Therefore, loss of polarity regulators or guidance cues may interfere with T cell activation.
Collapse
Affiliation(s)
- Matthew F Krummel
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA.
| | | |
Collapse
|