1
|
Askari K, Johnson JL, Shukla A, Meneses-Salas E, Kiosses WB, Yu J, Catz SD. Nexinhib20 inhibits JFC1-mediated mobilization of a subset of CD11b/CD18+ vesicles decreasing integrin avidity, but does not inhibit Rac1. J Leukoc Biol 2025; 117:qiaf012. [PMID: 39883854 PMCID: PMC12022635 DOI: 10.1093/jleuko/qiaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Regulated sequential exocytosis of neutrophil granules is essential for orchestrating the innate immune response, while uncontrolled secretion causes inflammation. We developed and characterized Nexinhib20, a small-molecule inhibitor that targets azurophilic granule exocytosis in neutrophils by blocking the interaction between the small GTPase Rab27a and its effector JFC1. Its therapeutic potential has been demonstrated in several preclinical models of inflammatory disease. Here, using neutrophils from Jfc1-KO mice, we show that JFC1 regulates the mobilization of a small subpopulation of CD11b+ granules. Nexinhib20 inhibits the mobilization of β2-integrins from a subset of CD11b+ granules to the plasma membrane in human and mouse neutrophils. The putative impact of Nexinhib20 on integrin activation is caused by decreased avidity, secondary to its effect on β2-integrin mobilization. CD11b mobilization and integrin activation were unaffected by pharmacological inhibition or activation of Rac1. Using quantitative 3D enhanced resolution microscopy, we show that neutrophil activation induces the recruitment of JFC1 to CD11b+ granules. Nexinhib20 decreased the localization of JFC1 at CD11b+ granules without affecting the association of Rac1 with CD11b. Nexinhib20 inhibits JFC1 recruitment but not endogenous Rac1 activation in living cells. Using orthogonal analyses of Rac1 activity consisting of a sensitive, time-resolved fluorescence energy transfer, Rac1-PAK1-binding assay, and endogenous Rac1-GTP examination, we show that Nexinhib20 does not interfere with Rac1 activation. Instead, we confirm its molecular mode of action as the inhibition of the Rab27a-JFC1 binding. Thus, Nexinhib20 limits β2-integrin mobilization to the cell surface, decreasing avidity and affecting active integrin availability in a JFC1-dependent but Rac1-independent manner.
Collapse
Affiliation(s)
- Kasra Askari
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jennifer L Johnson
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - William B Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, United States
| | - Juan Yu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Sergio D Catz
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
2
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
3
|
Bhakta SB, Lundgren SM, Sesti BN, Flores BA, Akdogan E, Collins SR, Mercer F. Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation. PLoS One 2024; 19:e0297758. [PMID: 38324578 PMCID: PMC10849234 DOI: 10.1371/journal.pone.0297758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Research on neutrophil biology has been limited by the short life span and limited genetic manipulability of these cells, driving the need for representative and efficient model cell lines. The promyelocytic cell line HL-60 and its subline PLB-985 can be differentiated into neutrophil-like cells (NLCs) and have been used to study neutrophil functions including chemotaxis, phagocytosis, endocytosis, and degranulation. Compared to neutrophils derived from hematopoietic stem cells, NLCs serve as a cost-effective neutrophil model. NLCs derived from both HL-60 and PLB-985 cells have been shown to perform degranulation, an important neutrophil function. However, no study has directly compared the two lines as models for degranulation including their release of different types of mobilizable organelles. Furthermore, Nutridoma, a commercially available supplement, has recently been shown to improve the chemotaxis, phagocytosis, and oxidative burst abilities of NLCs derived from promyelocytic cells, however it is unknown whether this reagent also improves the degranulation ability of NLCs. Here, we show that NLCs derived from both HL-60 and PLB-985 cells are capable of degranulating, with each showing markers for the release of multiple types of secretory organelles, including primary granules. We also show that differentiating HL-60 cells using Nutridoma does not enhance their degranulation activity over NLCs differentiated using Dimethyl Sulfoxide (DMSO) plus Granulocyte-colony stimulating factor (G-CSF). Finally, we show that promyelocytic cells can be genetically engineered and differentiated using these methods, to yield NLCs with a defect in degranulation. Our results indicate that both cell lines serve as effective models for investigating the mechanisms of neutrophil degranulation, which can advance our understanding of the roles of neutrophils in inflammation and immunity.
Collapse
Affiliation(s)
- Suhani B. Bhakta
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Stefan M. Lundgren
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Bethany N. Sesti
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Barbara A. Flores
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Emel Akdogan
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| |
Collapse
|
4
|
Zhang C, Cao J, Xu M, Wu D, Li W, Chang Y. The role of neutrophils in chorioamnionitis. Front Immunol 2023; 14:1198831. [PMID: 37475854 PMCID: PMC10354368 DOI: 10.3389/fimmu.2023.1198831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin central hospital of Gynecology Obstetrics, Tianjin, China
| |
Collapse
|
5
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
6
|
Meijuan C, Meng X, Fang L, Qian W. Synaptotagmin-like protein 1 is a potential diagnostic and prognostic biomarker in endometrial cancer based on bioinformatics and experiments. J Ovarian Res 2023; 16:16. [PMID: 36653850 PMCID: PMC9850549 DOI: 10.1186/s13048-023-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies. Identification of potential EC biomarkers is essential to improve the prognosis and development of therapies against EC. Synaptotagmin-like protein 1 (SYTL1), as a small GTPase Rab27 effector, mainly plays a role in vesicle trafficking and cytotoxic granule exocytosis in lymphocytes. However the role of SYTL1 in EC remains uncertain. We performed a comprehensive assessment of the relationship between SYTL1 and patient diagnosis and prognosis by analysis of EC patients' data from TCGA. We employed the LinkedOmics and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to analyze the biological function of SYTL1 in EC. In addition, the correlation between SYTL1 expression and its DNA methylation was performed by using cBioportal, UALCAN, TCGA Wanderer and MethSurv databases. We further assessed the link between SYTL1 and tumor-infiltrating immune cells by using gene set variation analysis (GSVA).Results We found that SYTL1 was highly expressed in EC patients and cell lines. And increased expression of SYTL1 was associated with age, clinical stage, histological type, histological grade and good overall survival (OS).SYTL1 DNA methylation is negatively associated with SYTL1 expression and UCEC patients' OS. SYTL1 expression is closely correlated with immune infiltration. Furthermore, we carried out in vitro experiments to verify the results of bioinformatic analysis.Conclusion Our results demonstrated that the elevation of SYTL1 expression is associated with good OS and SYTL1 might be a potential diagnostic and prognostic marker in EC.
Collapse
Affiliation(s)
- Cai Meijuan
- grid.452402.50000 0004 1808 3430Department of Clinical Laboratory, Qilu Hospital of Shandong University, No.107 Wenhua West Road, 250013 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong China
| | - Xu Meng
- grid.452402.50000 0004 1808 3430Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong China
| | - Liu Fang
- Department of Pathology, Qingdao Chengyang People’s Hospital, No.758 Hefei Road, Shandong 266035 Qingdao, China
| | - Wang Qian
- grid.452402.50000 0004 1808 3430Department of Clinical Laboratory, Qilu Hospital of Shandong University, No.107 Wenhua West Road, 250013 Jinan, Shandong China ,grid.452402.50000 0004 1808 3430Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong China
| |
Collapse
|
7
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
8
|
Liu D, Chen H, Fu Y, Yao Y, He S, Wang Y, Cao Z, Wang X, Yang M, Zhao Q. KCa3.1 Promotes Proinflammatory Exosome Secretion by Activating AKT/Rab27a in Atrial Myocytes during Rapid Pacing. Cardiovasc Ther 2023; 2023:3939360. [PMID: 37035755 PMCID: PMC10079387 DOI: 10.1155/2023/3939360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose The aim of this study was to investigate the role of the medium-conductance calcium-activated potassium channel (KCNN4, KCa3.1) in the secretion of proinflammatory exosomes by atrial myocytes. Methods Eighteen beagles were randomly divided into the sham group (n = 6), pacing group (n = 6), and pacing+TRAM-34 group (n = 6). Electrophysiological data, such as the effective refractory period, atrial fibrillation (AF) induction, and AF duration, were collected by programmed stimulation. Atrial tissues were subjected to hematoxylin and eosin, Masson's trichrome, and immunofluorescence staining. The expression of KCa3.1 and Rab27a was assessed by immunohistochemistry and western blotting. The downstream signaling pathways involved in KCa3.1 were examined by rapid pacing or overexpressing KCNN4 in HL-1 cells. Results Atrial rapid pacing significantly induced electrical remodeling, inflammation, fibrosis, and exosome secretion in the canine atrium, while TRAM-34 (KCa3.1 blocker) inhibited these changes. Compared with those in control HL-1 cells, the levels of exosome markers and inflammatory factors were increased in pacing HL-1 cells. Furthermore, the levels of CD68 and iNOS in macrophages incubated with exosomes derived from HL-1 cells were higher in the pacing-exo group than in the control group. More importantly, KCa3.1 regulated exosome secretion through the AKT/Rab27a signaling pathway. Similarly, inhibiting the downstream signaling pathway of KCa3.1 significantly inhibited exosome secretion. Conclusions KCa3.1 promotes proinflammatory exosome secretion through the AKT/Rab27a signaling pathway. Inhibiting the KCa3.1/AKT/Rab27a signaling pathway reduces myocardial tissue structural remodeling in AF.
Collapse
Affiliation(s)
- Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xuewen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
9
|
Read CB, Lind MCH, Chiarelli TJ, Izac JR, Adcox HE, Marconi RT, Carlyon JA. The Obligate Intracellular Bacterial Pathogen Anaplasma phagocytophilum Exploits Host Cell Multivesicular Body Biogenesis for Proliferation and Dissemination. mBio 2022; 13:e0296122. [PMID: 36409075 PMCID: PMC9765717 DOI: 10.1128/mbio.02961-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of the emerging infection, granulocytic anaplasmosis. This obligate intracellular bacterium lives in a host cell-derived vacuole that receives membrane traffic from multiple organelles to fuel its proliferation and from which it must ultimately exit to disseminate infection. Understanding of these essential pathogenic mechanisms has remained poor. Multivesicular bodies (MVBs) are late endosomal compartments that receive biomolecules from other organelles and encapsulate them into intralumenal vesicles (ILVs) using endosomal sorting complexes required for transport (ESCRT) machinery and ESCRT-independent machinery. Association of the ESCRT-independent protein, ALIX, directs MVBs to the plasma membrane where they release ILVs as exosomes. We report that the A. phagocytophilum vacuole (ApV) is acidified and enriched in lysobisphosphatidic acid, a lipid that is abundant in MVBs. ESCRT-0 and ESCRT-III components along with ALIX localize to the ApV membrane. siRNA-mediated inactivation of ESCRT-0 and ALIX together impairs A. phagocytophilum proliferation and infectious progeny production. RNA silencing of ESCRT-III, which regulates ILV scission, pronouncedly reduces ILV formation in ApVs and halts infection by arresting bacterial growth. Rab27a and its effector Munc13-4, which drive MVB trafficking to the plasma membrane and subsequent exosome release, localize to the ApV. Treatment with Nexinhib20, a small molecule inhibitor that specifically targets Rab27a to block MVB exocytosis, abrogates A. phagocytophilum infectious progeny release. Thus, A. phagocytophilum exploits MVB biogenesis and exosome release to benefit each major stage of its intracellular infection cycle: intravacuolar growth, conversion to the infectious form, and exit from the host cell. IMPORTANCE Anaplasma phagocytophilum causes granulocytic anaplasmosis, a globally emerging zoonosis that can be severe, even fatal, and for which antibiotic treatment options are limited. A. phagocytophilum lives in an endosomal-like compartment that interfaces with multiple organelles and from which it must ultimately exit to spread within the host. How the bacterium accomplishes these tasks is poorly understood. Multivesicular bodies (MVBs) are intermediates in the endolysosomal pathway that package biomolecular cargo from other organelles as intralumenal vesicles for release at the plasma membrane as exosomes. We discovered that A. phagocytophilum exploits MVB biogenesis and trafficking to benefit all aspects of its intracellular infection cycle: proliferation, conversion to its infectious form, and release of infectious progeny. The ability of a small molecule inhibitor of MVB exocytosis to impede A. phagocytophilum dissemination indicates the potential of this pathway as a novel host-directed therapeutic target for granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn R. Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
10
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
11
|
Liu W, Cronin CG, Cao Z, Wang C, Ruan J, Pulikkot S, Hall A, Sun H, Groisman A, Chen Y, Vella AT, Hu L, Liang BT, Fan Z. Nexinhib20 Inhibits Neutrophil Adhesion and β 2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1574-1585. [PMID: 36165184 PMCID: PMC9529951 DOI: 10.4049/jimmunol.2101112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/03/2022] [Indexed: 11/07/2022]
Abstract
Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting β2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced β2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and β2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chunxia G Cronin
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chengliang Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Jianbin Ruan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT;
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT;
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| |
Collapse
|
12
|
Johnson JL, Meneses-Salas E, Ramadass M, Monfregola J, Rahman F, Carvalho Gontijo R, Kiosses WB, Pestonjamasp K, Allen D, Zhang J, Osborne DG, Zhu YP, Wineinger N, Askari K, Chen D, Yu J, Henderson SC, Hedrick CC, Ursini MV, Grinstein S, Billadeau DD, Catz SD. Differential dysregulation of granule subsets in WASH-deficient neutrophil leukocytes resulting in inflammation. Nat Commun 2022; 13:5529. [PMID: 36130971 PMCID: PMC9492659 DOI: 10.1038/s41467-022-33230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated secretion in neutrophil leukocytes associates with human inflammatory disease. The exocytosis response to triggering stimuli is sequential; gelatinase granules modulate the initiation of the innate immune response, followed by the release of pro-inflammatory azurophilic granules, requiring stronger stimulation. Exocytosis requires actin depolymerization which is actively counteracted under non-stimulatory conditions. Here we show that the actin nucleator, WASH, is necessary to maintain azurophilic granules in their refractory state by granule actin entrapment and interference with the Rab27a-JFC1 exocytic machinery. On the contrary, gelatinase granules of WASH-deficient neutrophil leukocytes are characterized by decreased Rac1, shortened granule-associated actin comets and impaired exocytosis. Rac1 activation restores exocytosis of these granules. In vivo, WASH deficiency induces exacerbated azurophilic granule exocytosis, inflammation, and decreased survival. WASH deficiency thus differentially impacts neutrophil granule subtypes, impairing exocytosis of granules that mediate the initiation of the neutrophil innate response while exacerbating pro-inflammatory granule secretion.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Elsa Meneses-Salas
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jlenia Monfregola
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - William B Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Dale Allen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Douglas G Osborne
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Nathan Wineinger
- Research Translational Institute, Statistics, The Scripps Research Institute, La Jolla, CA, USA
| | - Kasra Askari
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Danni Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Juan Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Sergio Grinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Daniel D Billadeau
- The Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
13
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
14
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Othman A, Sekheri M, Filep JG. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J 2021; 289:3932-3953. [PMID: 33683814 PMCID: PMC9546106 DOI: 10.1111/febs.15803] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Neutrophil granulocytes form the first line of host defense against invading pathogens and tissue injury. They are rapidly recruited from the blood to the affected sites, where they deploy an impressive arsenal of effectors to eliminate invading microbes and damaged cells. This capacity is endowed in part by readily mobilizable proteins acquired during granulopoiesis and stored in multiple types of cytosolic granules with each granule type containing a unique cargo. Once released, granule proteins contribute to killing bacteria within the phagosome or the extracellular milieu, but are also capable of inflicting collateral tissue damage. Neutrophil-driven inflammation underlies many common diseases. Research over the last decade has documented neutrophil heterogeneity and functional versatility far beyond their antimicrobial function. Emerging evidence indicates that neutrophils utilize granule proteins to interact with innate and adaptive immune cells and orchestrate the inflammatory response. Granule proteins have been identified as important modulators of neutrophil trafficking, reverse transendothelial migration, phagocytosis, neutrophil life span, neutrophil extracellular trap formation, efferocytosis, cytokine activity, and autoimmunity. Hence, defining their roles within the inflammatory locus is critical for minimizing damage to the neighboring tissue and return to homeostasis. Here, we provide an overview of recent advances in the regulation of degranulation, granule protein functions, and signaling in modulating neutrophil-mediated immunity. We also discuss how targeting granule proteins and/or signaling could be harnessed for therapeutic benefits.
Collapse
Affiliation(s)
- Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Meriem Sekheri
- Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
16
|
Yin Z, Fan J, Xu J, Wu F, Li Y, Zhou M, Liao T, Duan L, Wang S, Geng W, Jin Y. Immunoregulatory Roles of Extracellular Vesicles and Associated Therapeutic Applications in Lung Cancer. Front Immunol 2020; 11:2024. [PMID: 32983146 PMCID: PMC7483575 DOI: 10.3389/fimmu.2020.02024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer represents a fatal condition that has the highest morbidity and mortality among malignancies. The currently available treatments fall short of improving the survival and quality of life of late-stage lung cancer patients. Extracellular vesicles (EVs) secreted by tumors or immune cells transport proteins, lipids, and nucleic acids to other cells, thereby mediating immune regulation in the tumor microenvironment. The cargo carried by EVs vary by cellular state or extracellular milieu. So far, multiple studies have suggested that EVs from lung tumor cells (TEVs) or immune cells promote tumor progression mainly through suppressing antitumor immunity. However, modified or engineered EVs can be used as vaccines to elicit antitumor immunity. In addition, blocking the function of immunosuppressive EVs and using EVs carrying immunogenic medicine or EVs from certain immune cells also shows great potential in lung cancer treatment. To provide information for future studies on the role of EVs in lung cancer immunity, this review focus on the immunoregulatory role of EVs and associated treatment applications in lung cancer.
Collapse
Affiliation(s)
- Zhengrong Yin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshuo Fan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liao
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Geng
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Birnberg-Weiss F, Castillo LA, Pittaluga JR, Martire-Greco D, Gómez SA, Landoni VI, Fernández GC. Modulation of neutrophil extracellular traps release by Klebsiella pneumoniae. J Leukoc Biol 2020; 109:245-256. [PMID: 32640486 DOI: 10.1002/jlb.4ma0620-099r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
One of the main bactericidal mechanisms of polymorphonuclear neutrophils (PMN) is the release of neutrophil extracellular traps (NETs), which capture and destroy pathogens. Klebsiella pneumoniae (Kpn) producer of carbapenemase (KPC) and belonging to the sequence type 258 (ST258), is a hyper epidemic clone that causes a large number of infections worldwide associated with high persistence and mortality. It is necessary to investigate the interaction of Kpn KPC with the immune system to improve prevention and treatment of infections mediated by this bacterium. Based on the hypothesis that Kpn is able to subvert PMN-mediated death, the aim was to assess whether Kpn KPC ST258 could modulate the bactericidal response of PMN, focusing on NETs formation, compared to another opportunistic pathogen, as Escherichia coli (Eco). The results showed that the release of NETs was absent when PMN were challenged with Kpn KPC, while Eco was a strong inducer of NETosis. Moreover, Kpn KPC was able to inhibit NETosis induced by Eco. The inhibition of Kpn KPC-mediated NETs formation still occurred in spite of exogenous addition of hydrogen peroxide (H2 O2 ), did not involve bacterial-released soluble factors or cell wall components, and was dependent on bacterial viability. Moreover, when degranulation was investigated, we found that Kpn KPC affected only the mobilization of primary granules, which harbor the proteins with more potent bactericidal properties and those related to NETosis. In conclusion, Kpn KPC ST258 effectively managed to evade the PMN response by inhibiting the release of NETs, and primary granule mobilization.
Collapse
Affiliation(s)
- Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Jose R Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Sonia A Gómez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', CABA, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-CONICET/Academia Nacional de Medicina, CABA, Argentina
| |
Collapse
|
18
|
Roles of Interaction between CCN2 and Rab14 in Aggrecan Production by Chondrocytes. Int J Mol Sci 2020; 21:ijms21082769. [PMID: 32316324 PMCID: PMC7215643 DOI: 10.3390/ijms21082769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
To identify proteins that cooperate with cellular communication network factor 2 (CCN2), we carried out GAL4-based yeast two-hybrid screening using a cDNA library derived from the chondrocytic cell line HCS-2/8. Rab14 GTPase (Rab14) polypeptide was selected as a CCN2-interactive protein. The interaction between CCN2 and Rab14 in HCS-2/8 cells was confirmed using the in situ proximity ligation assay. We also found that CCN2 interacted with Rab14 through its IGFBP-like domain among the four domains in CCN2 protein. To detect the colocalization between CCN2 and Rab14 in the cells in detail, CCN2, wild-type Rab14 (Rab14WT), a constitutive active form (Rab14CA), and a dominant negative form (Rab14DN) of Rab14 were overexpressed in monkey kidney-tissue derived COS7 cells. Ectopically overexpressed Rab14 showed a diffuse cytosolic distribution in COS7 cells; however, when Rab14WT was overexpressed with CCN2, the Rab14WT distribution changed to dots that were evenly distributed within the cytosol, and both Rab14 and CCN2 showed clear colocalization. When Rab14CA was overexpressed with CCN2, Rab14CA and CCN2 also showed good localization as dots, but their distribution was more widespread within cytosol. The coexpression of Rab14DN and CCN2 also showed a dotted codistribution but was more concentrated in the perinuclear area. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that the reduction in RAB14 or CCN2 mRNA by their respective siRNA significantly enhanced the expression of ER stress markers, BIP and CHOP mRNA in HCS-2/8 chondrocytic cells, suggesting that ER and Golgi stress were induced by the inhibition of membrane vesicle transfer via the suppression of CCN2 or Rab14. Moreover, to study the effect of the interaction between CCN2 and its interactive protein Rab14 on proteoglycan synthesis, we overexpressed Rab14WT or Rab14CA or Rab14DN in HCS-2/8 cells and found that the overexpression of Rab14DN decreased the extracellular proteoglycan accumulation more than the overexpression of Rab14WT/CA did in the chondrocytic cells. These results suggest that intracellular CCN2 is associated with Rab14 on proteoglycan-containing vesicles during their transport from the Golgi apparatus to endosomes in chondrocytes and that this association may play a role in proteoglycan secretion by chondrocytes.
Collapse
|
19
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
20
|
Rohwedder I, Kurz ARM, Pruenster M, Immler R, Pick R, Eggersmann T, Klapproth S, Johnson JL, Alsina SM, Lowell CA, Mócsai A, Catz SD, Sperandio M. Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration. Haematologica 2019; 105:1845-1856. [PMID: 31699792 PMCID: PMC7327629 DOI: 10.3324/haematol.2019.225722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment into inflamed tissue is highly dependent on the activation and binding of integrins to their respective ligands, followed by the induction of various signaling events within the cell referred to as outside-in signaling. Src family kinases (SFK) are the central players in the outside-in signaling process, assigning them a critical role for proper immune cell function. Our study investigated the role of SFK on neutrophil recruitment in vivo using Hck−/- Fgr−/- Lyn−/- mice, which lack SFK expressed in neutrophils. We show that loss of SFK strongly reduces neutrophil adhesion and post-arrest modifications in a shear force dependent manner. Additionally, we found that in the absence of SFK, neutrophils display impaired Rab27a-dependent surface mobilization of neutrophil elastase, VLA3 and VLA6 containing vesicles. This results in a defect in neutrophil vascular basement membrane penetration and thus strongly impaired extravasation. Taken together, we demonstrate that SFK play a role in neutrophil post-arrest modifications and extravasation during acute inflammation. These findings may support the current efforts to use SFK-inhibitors in inflammatory diseases with unwanted neutrophil recruitment.
Collapse
Affiliation(s)
- Ina Rohwedder
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Angela R M Kurz
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Monika Pruenster
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Robert Pick
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tanja Eggersmann
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sarah Klapproth
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergi Masgrau Alsina
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Markus Sperandio
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
21
|
Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC, Catz SD. Neutrophils: New insights and open questions. Sci Immunol 2018; 3:eaat4579. [PMID: 30530726 DOI: 10.1126/sciimmunol.aat4579] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2024]
Abstract
Neutrophils are the first line of defense against bacteria and fungi and help combat parasites and viruses. They are necessary for mammalian life, and their failure to recover after myeloablation is fatal. Neutrophils are short-lived, effective killing machines. Their life span is significantly extended under infectious and inflammatory conditions. Neutrophils take their cues directly from the infectious organism, from tissue macrophages and other elements of the immune system. Here, we review how neutrophils traffic to sites of infection or tissue injury, how they trap and kill bacteria, how they shape innate and adaptive immune responses, and the pathophysiology of monogenic neutrophil disorders.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego,9500 Gilman Drive, La Jolla, CA, USA
| | - Hal M Hoffman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Paul Kubes
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Strada Le Grazie 4, 37134 Verona, Italy
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego,9500 Gilman Drive, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Kurz ARM, Catz SD, Sperandio M. Noncanonical Hippo Signalling in the Regulation of Leukocyte Function. Trends Immunol 2018; 39:656-669. [PMID: 29954663 DOI: 10.1016/j.it.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
Abstract
The mammalian sterile 20-like (MST) kinases are central constituents of the evolutionary ancient canonical Hippo pathway regulating cell proliferation and survival. However, perhaps surprisingly, MST1 deficiency in human patients leads to a severe combined immunodeficiency syndrome with features of autoimmune disease. In line with this, Mst1-deficient mice exhibit severe defects in lymphocyte and neutrophil functions as well as disturbed intracellular vesicle transport. These findings spurred research on the noncanonical functions of MST1 in leukocytes. Here, we summarise the latest findings on this topic and discuss MST1 as a critical regulator of various leukocyte functions.
Collapse
Affiliation(s)
- Angela R M Kurz
- Walter Brendel Center of Experimental Medicine, BMC, Klinikum der Universität, LMU Munich, Germany; The Centenary Institute, Camperdown, New South Wales, Australia
| | - Sergio D Catz
- The Scripps Research Institute, La Jolla, California, USA
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, BMC, Klinikum der Universität, LMU Munich, Germany; DZHK Munich, Germany.
| |
Collapse
|
23
|
Johnson JL, Ramadass M, Haimovich A, McGeough MD, Zhang J, Hoffman HM, Catz SD. Increased Neutrophil Secretion Induced by NLRP3 Mutation Links the Inflammasome to Azurophilic Granule Exocytosis. Front Cell Infect Microbiol 2017; 7:507. [PMID: 29322034 PMCID: PMC5732154 DOI: 10.3389/fcimb.2017.00507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/23/2017] [Indexed: 12/25/2022] Open
Abstract
Heterozygous mutations in the NLRP3 gene in patients with cryopyrin associated periodic syndrome (CAPS) lead to hyper-responsive inflammasome function. CAPS is a systemic auto-inflammatory syndrome characterized by the activation of the innate immune system induced by elevated pro-inflammatory cytokines, but the involvement of selective innate immune cells in this process is not fully understood. Neutrophil secretion and the toxic components of their granules are mediators of inflammation associated with several human diseases and inflammatory conditions. Here, using the Nlrp3A350V inducible mouse model (MWS CreT) that recapitulates human patients with the A352V mutation in NLRP3 observed in the Muckle-Wells sub-phenotype of CAPS, we studied the relationship between hyper-activation of the inflammasome and neutrophil exocytosis. Using a flow cytometry approach, we show that Nlrp3A350V (MWS) neutrophils express normal basal levels of CD11b at the plasma membrane and that the upregulation of CD11b from secretory vesicles in response to several plasma membrane or endocytic agonist including the bacterial-derived mimetic peptide formyl-Leu-Met-Phe (fMLF) and the unmethylated oligonucleotide CpG is normal in MWS neutrophils. Significant but modest CD11b upregulation in MWS neutrophils compared to wild type was only observed in response to GM-CSF and CpG. The same pattern was observed for the secretion of matrix metalloproteinase-9 (MMP-9) from gelatinase granules in that MMP-9 secretion in MWS neutrophils was not different from that observed in wild-type neutrophils except when stimulated with GM-CSF and CpG. In contrast, azurophilic granule secretion, whose cargoes constitute the most toxic secretory and pro-inflammatory factors of the neutrophil, was markedly dysregulated in MWS neutrophils under both basal and stimulated conditions. This could not be attributed to paracrine effects of secretory cytokines because IL-1β secretion by neutrophils was undetectable under these experimental conditions. The increased azurophilic granule exocytosis in MWS neutrophils was attenuated by treatment with the neutrophil exocytosis inhibitor Nexinhib20. In agreement with a possible neutrophil contribution to systemic inflammation in CAPS, the levels of neutrophil secretory proteins were significantly elevated in the plasma from Nlrp3A350V mice. Altogether, our data indicates an azurophilic granule-selective dysregulation of neutrophil exocytosis in CAPS.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Ariela Haimovich
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, La Jolla, CA, United States
| | - Matthew D McGeough
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, La Jolla, CA, United States
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, La Jolla, CA, United States
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
24
|
Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res 2017; 371:455-471. [PMID: 29185068 DOI: 10.1007/s00441-017-2731-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Neutrophils respond nearly instantly to infection, rapidly deploying a potent enzymatic and chemical arsenal immediately upon entering an infected site. This capacity for rapid and potent responses is endowed by stores of antimicrobial proteins contained in readily mobilizable granules. These granules contain the proteins necessary to mediate the recruitment, chemotaxis, antimicrobial function and NET formation of neutrophils. Four granule types exist, and are sequentially deployed as neutrophils enter infected sites. Secretory vesicles are released first, enabling recruitment of neutrophils out of the blood. Next, specific and gelatinase granules are released to enable neutrophil migration and begin the formation of an antimicrobial environment. Finally, azurophilic granules release potent antimicrobial proteins at the site of infection and into phagosomes. The step-wise mobilization of these granules is regulated by calcium signaling, while specific trafficking regulators and membrane fusion complexes ensure the delivery of granules to the correct subcellular site. In this review, we describe neutrophil granules from their formation through to their deployment at the site of infection, focusing on recent developments in our understanding of the signaling pathways and vesicular trafficking mechanisms which mediate neutrophil degranulation.
Collapse
|
25
|
Neutrophil programming dynamics and its disease relevance. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1168-1177. [PMID: 28971361 DOI: 10.1007/s11427-017-9145-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
Abstract
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.
Collapse
|
26
|
Prashar A, Schnettger L, Bernard EM, Gutierrez MG. Rab GTPases in Immunity and Inflammation. Front Cell Infect Microbiol 2017; 7:435. [PMID: 29034219 PMCID: PMC5627064 DOI: 10.3389/fcimb.2017.00435] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
Collapse
Affiliation(s)
| | | | | | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
27
|
Ramadass M, Catz SD. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation. Immunol Rev 2017; 273:249-65. [PMID: 27558339 DOI: 10.1111/imr.12452] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
28
|
Peptoanaerobacter stomatis Primes Human Neutrophils and Induces Granule Exocytosis. Infect Immun 2017; 85:IAI.01043-16. [PMID: 28438978 DOI: 10.1128/iai.01043-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Peptoanaerobacter stomatis is a newly appreciated taxon associated with periodontal diseases; however, little is known about the organism's pathogenic potential or its interaction with the host immune response. Neutrophils are the most abundant innate immune cell present in the gingival tissue and function to constrain the oral microbial challenge. However, some periodontal pathogens have developed strategies to evade phagocytosis and killing by neutrophils. Therefore, to begin to understand the role of P. stomatis in periodontitis, we studied its interactions with human neutrophils. Our data showed that after 30 min of incubation, neutrophils failed to engulf P. stomatis efficiently; however, when P. stomatis was internalized, it was promptly eradicated. P. stomatis challenge induced a robust intracellular respiratory burst; however, this response did not contribute to bacterial killing. Minimal superoxide release was observed by direct bacterial challenge; however, P. stomatis significantly increased N-formyl-methionyl-leucyl phenylalanine (fMLF)-stimulated superoxide release to an extent similar to that of cells primed with tumor necrosis factor alpha (TNF-α). When neutrophils were challenged with P. stomatis, 52% of the bacterium-containing phagosomes were enriched for the specific granule marker lactoferrin and 82% with the azurophil granule marker elastase. P. stomatis challenge stimulated exocytosis of the four neutrophil granule subtypes. Moreover, P. stomatis susceptibility to extracellular killing could be attributed to the exocytosis of antimicrobial components present in neutrophil granules. Priming neutrophils for an enhanced respiratory burst together with promoting granule content release could contribute to the chronic inflammation and tissue destruction that characterize periodontal diseases.
Collapse
|
29
|
Ramadass M, Johnson JL, Catz SD. Rab27a regulates GM-CSF-dependent priming of neutrophil exocytosis. J Leukoc Biol 2016; 101:693-702. [PMID: 27733578 DOI: 10.1189/jlb.3ab0416-189rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 01/10/2023] Open
Abstract
Neutrophil secretory proteins are mediators of systemic inflammation in infection, trauma, and cancer. In response to specific inflammatory mediators, neutrophil granules are mobilized and cargo proteins released to modulate the microenvironment of inflammatory sites and tumors. In particular, GM-CSF, a cytokine secreted by several immune, nonimmune, and tumor cells, regulates neutrophil priming and exocytosis. Whereas a comprehensive understanding of this process is necessary to design appropriate anti-inflammatory therapies, the molecular effectors regulating GM-CSF-dependent priming of neutrophil exocytosis are currently unknown. With the use of neutrophils deficient in the small GTPase Rab27a or its effector Munc13-4, we show that although both of these secretory factors control matrix metalloproteinase-9 (MMP-9) and myeloperoxidase (MPO) exocytosis in response to GM-CSF, their involvement in exocytosis after GM-CSF priming is very different. Whereas GM-CSF priming-induced exocytosis is abolished in the absence of Rab27a for all secondary stimuli tested, including TLR7, TLR9, and formyl peptide receptor 1 (Fpr1) ligands, cells lacking Munc13-4 showed a significant exocytic response to GM-CSF priming. The mobilization of CD11b was independent of both Rab27a and Munc13-4 in GM-CSF-primed cells unless the cells were stimulated with nucleic acid-sensing TLR ligand, thus highlighting a role for both Rab27a and Munc13-4 in endocytic TLR maturation. Finally, the observation that the absence of Rab27a expression impairs the exocytosis of MMP-9 and MPO under both primed and unprimed conditions suggests that Rab27a is a possible target for intervention in inflammatory processes in which GM-CSF-dependent neutrophil priming is involved.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jennifer Linda Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
30
|
Kurz ARM, Pruenster M, Rohwedder I, Ramadass M, Schäfer K, Harrison U, Gouveia G, Nussbaum C, Immler R, Wiessner JR, Margraf A, Lim DS, Walzog B, Dietzel S, Moser M, Klein C, Vestweber D, Haas R, Catz SD, Sperandio M. MST1-dependent vesicle trafficking regulates neutrophil transmigration through the vascular basement membrane. J Clin Invest 2016; 126:4125-4139. [PMID: 27701149 DOI: 10.1172/jci87043] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils need to penetrate the perivascular basement membrane for successful extravasation into inflamed tissue, but this process is incompletely understood. Recent findings have associated mammalian sterile 20-like kinase 1 (MST1) loss of function with a human primary immunodeficiency disorder, suggesting that MST1 may be involved in immune cell migration. Here, we have shown that MST1 is a critical regulator of neutrophil extravasation during inflammation. Mst1-deficient (Mst1-/-) neutrophils were unable to migrate into inflamed murine cremaster muscle venules, instead persisting between the endothelium and the basement membrane. Mst1-/- neutrophils also failed to extravasate from gastric submucosal vessels in a murine model of Helicobacter pylori infection. Mechanistically, we observed defective translocation of VLA-3, VLA-6, and neutrophil elastase from intracellular vesicles to the surface of Mst1-/- neutrophils, indicating that MST1 is required for this crucial step in neutrophil transmigration. Furthermore, we found that MST1 associates with the Rab27 effector protein synaptotagmin-like protein 1 (JFC1, encoded by Sytl1 in mice), but not Munc13-4, thereby regulating the trafficking of Rab27-positive vesicles to the cellular membrane. Together, these findings highlight a role for MST1 in vesicle trafficking and extravasation in neutrophils, providing an additional mechanistic explanation for the severe immune defect observed in patients with MST1 deficiency.
Collapse
|
31
|
Johnson JL, Ramadass M, He J, Brown SJ, Zhang J, Abgaryan L, Biris N, Gavathiotis E, Rosen H, Catz SD. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation: DRUGGABILITY OF THE SMALL GTPase Rab27a. J Biol Chem 2016; 291:25965-25982. [PMID: 27702998 DOI: 10.1074/jbc.m116.741884] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Neutrophils constitute the first line of cellular defense in response to bacterial and fungal infections and rely on granular proteins to kill microorganisms, but uncontrolled secretion of neutrophil cargos is injurious to the host and should be closely regulated. Thus, increased plasma levels of neutrophil secretory proteins, including myeloperoxidase and elastase, are associated with tissue damage and are hallmarks of systemic inflammation. Here, we describe a novel high-throughput screening approach to identify small molecule inhibitors of the interaction between the small GTPase Rab27a and its effector JFC1, two central regulators of neutrophil exocytosis. Using this assay, we have identified small molecule inhibitors of Rab27a-JFC1 binding that were also active in cell-based neutrophil-specific exocytosis assays, demonstrating the druggability of Rab GTPases and their effectors. These compounds, named Nexinhibs (neutrophil exocytosis inhibitors), inhibit exocytosis of azurophilic granules in human neutrophils without affecting other important innate immune responses, including phagocytosis and neutrophil extracellular trap production. Furthermore, the compounds are reversible and potent inhibitors of the extracellular production of superoxide anion by preventing the up-regulation of the granule membrane-associated subunit of the NADPH oxidase at the plasma membrane. Nexinhibs also inhibit the up-regulation of activation signature molecules, including the adhesion molecules CD11b and CD66b. Importantly, by using a mouse model of endotoxin-induced systemic inflammation, we show that these inhibitors have significant activity in vivo manifested by decreased plasma levels of neutrophil secretory proteins and significantly decreased tissue infiltration by inflammatory neutrophils. Altogether, our data present the first neutrophil exocytosis-specific inhibitor with in vivo anti-inflammatory activity, supporting its potential use as an inhibitor of systemic inflammation.
Collapse
Affiliation(s)
| | | | - Jing He
- From the Departments of Molecular and Experimental Medicine and
| | - Steven J Brown
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Jinzhong Zhang
- From the Departments of Molecular and Experimental Medicine and
| | - Lusine Abgaryan
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Nikolaos Biris
- the Departments of Biochemistry and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Evripidis Gavathiotis
- the Departments of Biochemistry and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hugh Rosen
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Sergio D Catz
- From the Departments of Molecular and Experimental Medicine and
| |
Collapse
|
32
|
Reichhart N, Markowski M, Ishiyama S, Wagner A, Crespo-Garcia S, Schorb T, Ramalho JS, Milenkovic VM, Föckler R, Seabra MC, Strauß O. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II-III linker of CaV1.3 subunit. Cell Signal 2015; 27:2231-40. [PMID: 26235199 DOI: 10.1016/j.cellsig.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
In a variety of cells, secretory processes require the activation of both Rab27a and L-type channels of the Ca(V)1.3 subtype. In the retinal pigment epithelium (RPE), Rab27a and Ca(V)1.3 channels regulate growth-factor secretion towards its basolateral side. Analysis of murine retina sections revealed a co-localization of both Rab27a and Ca(V)1.3 at the basolateral membrane of the RPE. Heterologously expressed Ca(V)1.3/β3/α2δ1 channels showed negatively shifted voltage-dependence and decreased current density of about 70% when co-expressed with Rab27a. However, co-localization analysis using α(5)β(1) integrin as a membrane marker revealed that Rab27a co-expression reduced the surface expression of Ca(V)1.3 only about 10%. Physical binding of heterologously expressed Rab27a with Ca(V)1.3 channels was shown by co-localization in immunocytochemistry as well as co-immunoprecipitation which was abolished after deletion of a MyRIP-homologous amino acid sequence at the II-III linker of the Ca(V)1.3 subunit. Rab27a over-expression in ARPE-19 cells positively shifted the voltage dependence, decreased current density of endogenous Ca(V)1.3 channels and reduced VEGF-A secretion. We show the first evidence of a direct functional modulation of an ion channel by Rab27a suggesting a new mechanism of Rab and ion channel interaction in the control of VEGF-A secretion in the RPE.
Collapse
Affiliation(s)
- Nadine Reichhart
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Magdalena Markowski
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Shimpei Ishiyama
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Andrea Wagner
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Sergio Crespo-Garcia
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Talitha Schorb
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - José S Ramalho
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vladimir M Milenkovic
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Department of Psychiatry and Psychotherapy, Molecular Neuroscience, University of Regensburg, Germany
| | - Renate Föckler
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olaf Strauß
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany.
| |
Collapse
|
33
|
Gilman-Sachs A, Tikoo A, Akman-Anderson L, Jaiswal M, Ntrivalas E, Beaman K. Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis. J Leukoc Biol 2015; 97:1121-31. [PMID: 25877929 DOI: 10.1189/jlb.3a1214-620rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
Neutrophils kill microorganisms by inducing exocytosis of granules with antibacterial properties. Four isoforms of the "a" subunit of V-ATPase-a1V, a2V, a3V, and a4V-have been identified. a2V is expressed in white blood cells, that is, on the surface of monocytes or activated lymphocytes. Neutrophil associated-a2V was found on membranes of primary (azurophilic) granules and less often on secondary (specific) granules, tertiary (gelatinase granules), and secretory vesicles. However, it was not found on the surface of resting neutrophils. Following stimulation of neutrophils, primary granules containing a2V as well as CD63 translocated to the surface of the cell because of exocytosis. a2V was also found on the cell surface when the neutrophils were incubated in ammonium chloride buffer (pH 7.4) a weak base. The intracellular pH (cytosol) became alkaline within 5 min after stimulation, and the pH increased from 7.2 to 7.8; this pH change correlated with intragranular acidification of the neutrophil granules. Upon translocation and exocytosis, a2V on the membrane of primary granules remained on the cell surface, but myeloperoxidase was secreted. V-ATPase may have a role in the fusion of the granule membrane with the cell surface membrane before exocytosis. These findings suggest that the granule-associated a2V isoform has a role in maintaining a pH gradient within the cell between the cytosol and granules in neutrophils and also in fusion between the surface and the granules before exocytosis. Because a2V is not found on the surface of resting neutrophils, surface a2V may be useful as a biomarker for activated neutrophils.
Collapse
Affiliation(s)
- Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anjali Tikoo
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Leyla Akman-Anderson
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Mukesh Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Evangelos Ntrivalas
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
34
|
A role for Rab27 in neutrophil chemotaxis and lung recruitment. BMC Cell Biol 2014; 15:39. [PMID: 25359237 PMCID: PMC4221698 DOI: 10.1186/s12860-014-0039-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Neutrophils are a critical part of the innate immune system. Their ability to migrate into infected or injured tissues precedes their role in microbial killing and clearance. We have previously shown that Rab27a can promote neutrophil migration by facilitating uropod release through protease secretion from primary granule exocytosis at the cell rear. Rab27b has been implicated in primary granule exocytosis but its role in neutrophil migration has not been investigated. Results Here we found Rab27b to be expressed in bone marrow derived neutrophils and Rab27b knockout (Rab27b KO) along with Rab27a/b double knockout (Rab27DKO) neutrophils exhibited impaired transwell migration in vitro in response to chemokines MIP-2 and LTB4. Interestingly, no additional defect in migration was observed in Rab27DKO neutrophils compared with Rab27b KO neutrophils. In vivo, Rab27DKO mice displayed severe impairment in neutrophil recruitment to the lungs in a MIP-2 dependent model but not in an LPS dependent model. Conclusions These data taken together implicate Rab27b in the regulation of neutrophil chemotaxis, likely through the regulation of primary granule exocytosis.
Collapse
|
35
|
Abstract
Neutrophil granulocytes are key effector cells of the vertebrate immune system. They represent 50-70% of the leukocytes in the human blood and their loss by disease or drug side effect causes devastating bacterial infections. Their high turnover rate, their fine-tuned killing machinery, and their arsenal of toxic vesicles leave them particularly vulnerable to various genetic deficiencies. The aim of this review is to highlight those congenital immunodeficiencies which impede the dynamics of neutrophils, such as migration, cytoskeletal rearrangements, vesicular trafficking, and secretion.
Collapse
|
36
|
Catz SD. The role of Rab27a in the regulation of neutrophil function. Cell Microbiol 2014; 16:1301-10. [PMID: 24964030 DOI: 10.1111/cmi.12328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Neutrophils are central regulators of the innate immune response and help shape the adaptive immune response. Malfunction and unregulated neutrophil activation leads to disease and inflammation. During the host response to infection, neutrophils display several mechanisms of defense mediated by their arsenal of granular proteins. Regulation of granular trafficking, docking and fusion is at the core of the neutrophil defense response to pathogens. The small GTPase Rab27a has emerged as a central regulator of the neutrophil response through its tight control of vesicular trafficking and degranulation. This review focuses on the latest research that has led to the characterization of Rab27a as an essential regulator of neutrophil function.
Collapse
Affiliation(s)
- Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
37
|
A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood 2014; 124:999-1009. [PMID: 24934256 DOI: 10.1182/blood-2014-02-555268] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies have endeavored to reconcile whether dysfunction of neutrophils in people with cystic fibrosis (CF) is a result of the genetic defect or is secondary due to infection and inflammation. In this study, we illustrate that disrupted function of the CF transmembrane conductance regulator (CFTR), such as that which occurs in patients with ∆F508 and/or G551D mutations, correlates with impaired degranulation of antimicrobial proteins. We demonstrate that CF blood neutrophils release less secondary and tertiary granule components compared with control cells and that activation of the low-molecular-mass GTP-binding protein Rab27a, involved in the regulation of granule trafficking, is defective. The mechanism leading to impaired degranulation involves altered ion homeostasis caused by defective CFTR function with increased cytosolic levels of chloride and sodium, yet decreased magnesium measured in CF neutrophils. Decreased magnesium concentration in vivo and in vitro resulted in significantly decreased levels of GTP-bound Rab27a. Treatment of G551D patients with the ion channel potentiator ivacaftor resulted in normalized neutrophil cytosolic ion levels and activation of Rab27a, thereby leading to increased degranulation and bacterial killing. Our results confirm that intrinsic alterations of circulating neutrophils from patients with CF are corrected by ivacaftor, thus illustrating additional clinical benefits for CFTR modulator therapy.
Collapse
|
38
|
Zhang Y, Tang W, Zhang H, Niu X, Xu Y, Zhang J, Gao K, Pan W, Boggon TJ, Toomre D, Min W, Wu D. A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell 2014; 27:215-226. [PMID: 24176643 DOI: 10.1016/j.devcel.2013.09.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/14/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022]
Abstract
Neutrophil degranulation plays an important role in acute innate immune responses and is tightly regulated because the granule contents can cause tissue damage. However, this regulation remains poorly understood. Here, we identify the complex of STK24 and CCM3 as being an important regulator of neutrophil degranulation. Lack of either STK24 or CCM3 increases the release of a specific granule pool without affecting other neutrophil functions. STK24 appears to suppress exocytosis by interacting and competing with UNC13D C2B domain for lipid binding, whereas CCM3 has dual roles in exocytosis regulation. Although CCM3 stabilizes STK24, it counteracts STK24-mediated inhibition of exocytosis by recruiting STK24 away from the C2B domain through its Ca(2+)-sensitive interaction with UNC13D C2A domain. This STK24/CCM3-regulated exocytosis plays an important role in the protection of kidneys from ischemia-reperfusion injury. Together, these findings reveal a function of the STK24 and CCM3 complex in the regulation of ligand-stimulated exocytosis.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wenwen Tang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Haifeng Zhang
- Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaofeng Niu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yingke Xu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun Gao
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wang Min
- Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
39
|
Kawakami T, He J, Morita H, Yokoyama K, Kaji H, Tanaka C, Suemori SI, Tohyama K, Tohyama Y. Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells. PLoS One 2014; 9:e84704. [PMID: 24404184 PMCID: PMC3880328 DOI: 10.1371/journal.pone.0084704] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
Neutrophils play a crucial role in host defence. In response to a variety of inflammatory stimulation, they form neutrophil extracellular traps (NETs). NETs are extracellular structures composed of chromatin fibers decorated with antimicrobial proteins and developing studies indicate that NETs contribute to extracellular microbial killing. While the intracellular signaling pathways that regulate NET formation remain largely unknown, there is growing evidence that generation of reactive oxygen species (ROS) is a key event for NET formation. The Rab family small GTPase Rab27a is an important component of the secretory machinery of azurophilic granules in neutrophils. However, the precise mechanism of NET formation and whether or not Rab27a contributes to this process are unknown. Using neutrophil-like differentiated HL60 cells, we show here that Rab27a plays an essential role in both phorbol myristate acetate (PMA)- and Candida albicans-induced NET formation by regulating ROS production. Rab27a-knockdown inhibited ROS-positive phagosome formation during complement-mediated phagocytosis. To investigate the role of Rab27a in neutrophil function in detail, both primary human neutrophils and neutrophil-like differentiated HL60 cells were treated with PMA, and NET formation process was assessed by measurement of release of histone H3 into the medium, citrullination of the arginine in position 3 of histone H4 and chase of the nuclear change of the living cells in the co-existence of both cell-permeable and -impermeable nuclear indicators. PMA-induced NET formation occured sequentially in both neutrophil-like differentiated HL60 cells and primary neutrophils, and Rab27a-knockdown clearly inhibited NET formation in association with reduced ROS production. We also found that serum-treated Candida albicans triggers NET formation in a ROS-dependent manner, and that Rab27a-knockdown inhibits this process as well. Our findings demonstrate that Rab27a plays an important role in NET formation induced by both Candida albicans infection and PMA treatment by regulating ROS production.
Collapse
Affiliation(s)
- Tatsumi Kawakami
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Jinsong He
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Hiroyuki Morita
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Kunio Yokoyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
- Division of Gastroenterological Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Kaji
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Chisato Tanaka
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Shin-ichiro Suemori
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
- * E-mail:
| |
Collapse
|
40
|
Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G, Li X. Exosomes derived from Rab27a‑overexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep 2013; 8:1876-82. [PMID: 24146068 DOI: 10.3892/mmr.2013.1738] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/10/2013] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the leading cause of mortality worldwide. However, there is a lack of effective therapeutic strategies. Currently, tumor immunotherapy based on exosomes, which are secreted by a variety of cell types including tumor cells, has drawn particular attention and are suggested to have the potential for exploitation in tumor therapy. Nevertheless, the therapeutic efficacy mediated via tumor cell-derived exosomes is not satisfactory. Rab27a, one of the Rab family of small GTPases, has been suggested to be important in exosome secretion. Thus, the purpose of the present study was to examine whether exosomes derived from Rab27a‑overexpressing cells elicited more potent antitumor immunity. A Rab27a‑overexpressing line was established via transfection of a Rab27a overexpression vector into the human non-small-cell lung cancer cell line, A549. Exosomes were isolated and the typical exosomal protein markers, CD9, CD63, heat shock protein (Hsp) 70 and Hsp90, were found to be enriched in the exosomes derived from Rab27a‑overexpressing cells. Subsequently, these exosomes were demonstrated to be capable of upregulating major histocompatibility complex class II molecules as well as the co-stimulatory molecules CD80 and CD86 on dendritic cells (DCs), suggesting that more potent maturation of DCs was induced. Furthermore, DCs loaded with exosomes derived from Rab27-overexpressing cells significantly promoted CD4+ T cell proliferation in vitro. In addition, in vivo immunization of exosomes derived from Rab27a‑overexpressing cells inhibited tumor growth in a mouse model. It was also demonstrated that splenocytes from mice immunized with exosomes derived from Rab27-overexpressing cells expressed high levels of type I cytokines, including IL-2 and IFN-γ, which are important in the regulation of cell-mediated antitumor immunity. Collectively, it was demonstrated that exosomes derived from Rab27a‑overexpressing cancer cells elicited more potent antitumor immune effects, which may provide novel insights for the development of efficient exosome-based cancer vaccines.
Collapse
Affiliation(s)
- Wenhai Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim JD, Willetts L, Ochkur S, Srivastava N, Hamburg R, Shayeganpour A, Seabra MC, Lee JJ, Moqbel R, Lacy P. An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 2013; 94:1265-74. [PMID: 23986549 DOI: 10.1189/jlb.0812431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil degranulation has been implicated in inflammatory processes associated with allergic asthma. Rab27a, a Rab-related GTPase, is a regulatory intracellular signaling molecule expressed in human eosinophils. We postulated that Rab27a regulates eosinophil degranulation. We investigated the role of Rab27a in eosinophil degranulation within the context of airway inflammation. Rab27a expression and localization in eosinophils were investigated by using subcellular fractionation combined with Western blot analysis, and the results were confirmed by immunofluorescence analysis of Rab27a and the granule membrane marker CD63. To determine the function of eosinophil Rab27a, we used Ashen mice, a strain of Rab27a-deficient animals. Ashen eosinophils were tested for degranulation in response to PAF and calcium ionophore by measuring released EPX activity. Airway EPX release was also determined by intratracheal injection of eosinophils into mice lacking EPX. Rab27a immunoreactivity colocalized with eosinophil crystalloid granules, as determined by subcellular fractionation and immunofluorescence analysis. PAF induced eosinophil degranulation in correlation with redistribution of Rab27a(+) structures, some of which colocalized with CD63(+) crystalloid granules at the cell membrane. Eosinophils from mice had significantly reduced EPX release compared with normal WT eosinophils, both in vitro and in vivo. In mouse models, Ashen mice demonstrated reduced EPX release in BAL fluid. These findings suggest that Rab27a has a key role in eosinophil degranulation. Furthermore, these findings have implications for Rab27a-dependent eosinophil degranulation in airway inflammation.
Collapse
Affiliation(s)
- John Dongil Kim
- 2.559 HMRC, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Johnson MB, Criss AK. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell Microbiol 2013; 15:1323-40. [PMID: 23374609 PMCID: PMC3713093 DOI: 10.1111/cmi.12117] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/11/2013] [Accepted: 01/27/2013] [Indexed: 12/21/2022]
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) promotes inflammation driven by polymorphonuclear leucocytes (PMNs, neutrophils), yet some Gc survive PMN exposure during infection. Here we report a novel mechanism of gonococcal resistance to PMNs: Gc phagosomes avoid maturation into phagolysosomes by delayed fusion with primary (azurophilic) granules, which contain antimicrobial components including serine proteases. Reduced phagosome-primary granule fusion was observed in gonorrheal exudates and human PMNs infected ex vivo. Delayed phagosome-granule fusion could be overcome by opsonizing Gc with immunoglobulin. Using bacterial viability dyes along with antibodies to primary granules revealed that Gc survival in PMNs correlated with early residence in primary granule-negative phagosomes. However, when Gc was killed prior to PMN exposure, dead bacteria were also found in primary granule-negative phagosomes. These results suggest that Gc surface characteristics, rather than active bacterial processes, influence phagosome maturation and that Gc death inside PMNs occurs after phagosome-granule fusion. Ectopically increasing primary granule-phagosome fusion, by immunoglobulin opsonization or PMN treatment with lysophosphatidylcholine, reduced intracellular Gc viability, which was attributed in part to serine protease activity. We conclude that one method for Gc to avoid PMN clearance in acute gonorrhoea is by delaying primary granule-phagosome fusion, thus preventing formation of a degradative phagolysosome.
Collapse
Affiliation(s)
- M. Brittany Johnson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
43
|
Catz SD. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors. J Leukoc Biol 2013; 94:613-22. [PMID: 23378593 DOI: 10.1189/jlb.1112600] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes.
Collapse
Affiliation(s)
- Sergio Daniel Catz
- 1.The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA. ; Twitter: http://www.scripps.edu/catz/
| |
Collapse
|
44
|
Monfregola J, Johnson JL, Meijler MM, Napolitano G, Catz SD. MUNC13-4 protein regulates the oxidative response and is essential for phagosomal maturation and bacterial killing in neutrophils. J Biol Chem 2012; 287:44603-18. [PMID: 23115246 DOI: 10.1074/jbc.m112.414029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.
Collapse
Affiliation(s)
- Jlenia Monfregola
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Schleker S, Garcia-Garcia J, Klein-Seetharaman J, Oliva B. Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem Biodivers 2012; 9:991-1018. [PMID: 22589098 PMCID: PMC3407687 DOI: 10.1002/cbdv.201100392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Salmonellosis caused by Salmonella bacteria is a food-borne disease and a worldwide health threat causing millions of infections and thousands of deaths every year. This pathogen infects an unusually broad range of host organisms including human and plants. A better understanding of the mechanisms of communication between Salmonella and its hosts requires identifying the interactions between Salmonella and host proteins. Protein-protein interactions (PPIs) are the fundamental building blocks of communication. Here, we utilize the prediction platform BIANA to obtain the putative Salmonella-human and Salmonella-Arabidopsis interactomes based on sequence and domain similarity to known PPIs. A gold standard list of Salmonella-host PPIs served to validate the quality of the human model. 24,726 and 10,926 PPIs comprising interactions between 38 and 33 Salmonella effectors and virulence factors with 9,740 human and 4,676 Arabidopsis proteins, respectively, were predicted. Putative hub proteins could be identified, and parallels between the two interactomes were discovered. This approach can provide insight into possible biological functions of so far uncharacterized proteins. The predicted interactions are available via a web interface which allows filtering of the database according to parameters provided by the user to narrow down the list of suspected interactions. The interactions are available via a web interface at http://sbi.imim.es/web/SHIPREC.php.
Collapse
Affiliation(s)
- Sylvia Schleker
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-5), 52425 Jülich, Germany
| | - Javier Garcia-Garcia
- Structural Bioinformatics Group (GRIB-IMIM). Universitat Pompeu Fabra. Barcelona Research Park of Biomedicine (PRBB), Barcelona 08003, Catalonia, Spain (phone: +34 933 160 509; fax: +34 933 160 550
| | - Judith Klein-Seetharaman
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-5), 52425 Jülich, Germany
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA (phone: +1 412 383 7325; fax: +1 412 648 8998
| | - Baldo Oliva
- Structural Bioinformatics Group (GRIB-IMIM). Universitat Pompeu Fabra. Barcelona Research Park of Biomedicine (PRBB), Barcelona 08003, Catalonia, Spain (phone: +34 933 160 509; fax: +34 933 160 550
| |
Collapse
|
46
|
Johnson JL, Monfregola J, Napolitano G, Kiosses WB, Catz SD. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein. Mol Biol Cell 2012; 23:1902-16. [PMID: 22438581 PMCID: PMC3350554 DOI: 10.1091/mbc.e11-12-1001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanism of cytoskeleton remodeling during exocytosis is not well defined. A combination of vesicular dynamics and functional studies shows that the Rab27a effector JFC1 and the RhoA-GTPase–activating protein Gem-interacting protein are necessary for RhoA regulation, actin depolymerization, and vesicular transport through the actin cortex during exocytosis. Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase–activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Singh RK, Liao W, Tracey-White D, Recchi C, Tolmachova T, Rankin SM, Hume AN, Seabra MC. Rab27a-mediated protease release regulates neutrophil recruitment by allowing uropod detachment. J Cell Sci 2012; 125:1652-6. [PMID: 22375060 PMCID: PMC3346826 DOI: 10.1242/jcs.100438] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Neutrophil migration is vital for immunity and precedes effector functions such as pathogen killing. Here, we report that this process is regulated by the Rab27a GTPase, a protein known to control granule exocytosis. Rab27a-deficient (Rab27a KO) neutrophils exhibit migration defects in vitro and in vivo, and live-cell microscopy suggests that delayed uropod detachment causes the migratory defect. Surface expression of CD11b, a key adhesion molecule, is increased in chemokine-stimulated Rab27a KO neutrophils compared with the control, suggesting a turnover delay caused by a defect in elastase secretion from azurophilic granules at the rear of bone marrow polymorphonuclear leukocytes (BM-PMNs). We suggest that Rab27a-dependent protease secretion regulates neutrophil migration through proteolysis-dependent de-adhesion of uropods, a mechanism that could be conserved in cell migration and invasion.
Collapse
Affiliation(s)
- Rajesh K Singh
- Molecular Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Moresco EMY, Beutler B. Resisting viral infection: the gene by gene approach. Curr Opin Virol 2011; 1:513-8. [PMID: 22440911 DOI: 10.1016/j.coviro.2011.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 01/18/2023]
Abstract
This review focuses on genes required for resistance to mouse cytomegalovirus (MCMV), as identified through unbiased genetic screening. Components of the developmental, sensing, and effector pathways, functioning in multiple cell types, were detected by infecting 22,000 G3 mutant mice with MCMV at an inoculum easily contained by WT animals. Merging these findings with discoveries from hypothesis-based studies, we present a cohesive picture of the essential elements utilized by the mouse innate immune system to counter MCMV. We believe that many breakthrough discoveries will yet be made using a classical genetic approach.
Collapse
Affiliation(s)
- Eva Marie Y Moresco
- Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Chen G, Zhang Z, Wei Z, Cheng Q, Li X, Li W, Duan S, Gu X. Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia 2011; 60:295-305. [PMID: 22042600 DOI: 10.1002/glia.21263] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/06/2011] [Indexed: 12/21/2022]
Abstract
Myelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport, and cytoskeletal dynamics. Although abnormalities of myelin are common in lysosomal storage diseases, our understanding of the role of lysosomes in the formation and maintenance of myelin is still limited. Here, we show that late endosomes/lysosomes in Schwann cells contain abundant myelin protein P0, which accounts for over half the total protein of compact myelin in the peripheral nervous system and exhibit Ca(2+) -dependent exocytosis in response to various stimuli. Downregulation of Rab27a, a small GTPase required for the trafficking of the secretory lysosomes to the plasma membrane, largely blocked lysosomal exocytosis in Schwann cells and reduced the remyelination of regenerated sciatic nerve. These findings highlight a novel role for lysosomes in Schwann cells and suggest that the regulated lysosome exocytosis in Schwann cells may have important physiological and pathological significance in the peripheral nervous system.
Collapse
Affiliation(s)
- Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Increased survival and reduced neutrophil infiltration of the liver in Rab27a- but not Munc13-4-deficient mice in lipopolysaccharide-induced systemic inflammation. Infect Immun 2011; 79:3607-18. [PMID: 21746860 DOI: 10.1128/iai.05043-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic defects in the Rab27a or Munc13-4 gene lead to immunodeficiencies in humans, characterized by frequent viral and bacterial infections. However, the role of Rab27a and Munc13-4 in the regulation of systemic inflammation initiated by Gram-negative bacterium-derived pathogenic molecules is currently unknown. Using a model of lipopolysaccharide-induced systemic inflammation, we show that Rab27a-deficient (Rab27a(ash/ash)) mice are resistant to lipopolysaccharide (LPS)-induced death, while Munc13-4-deficient (Munc13-4(jinx/jinx)) mice show only moderate protection. Rab27a(ash/ash) but not Munc13-4(jinx/jinx) mice showed significantly decreased tumor necrosis factor alpha (TNF-α) plasma levels after LPS administration. Neutrophil sequestration in lungs from Rab27a(ash/ash) and Munc13-4(jinx/jinx) LPS-treated mice was similar to that observed for wild-type mice. In contrast, Rab27a- but not Munc13-4-deficient mice showed decreased neutrophil infiltration in liver and failed to undergo LPS-induced neutropenia. Decreased liver infiltration in Rab27a(ash/ash) mice was accompanied by lower CD44 but normal CD11a and CD11b expression in neutrophils. Both Rab27a- and Munc13-4-deficient mice showed decreased azurophilic granule secretion in vivo, suggesting that impaired liver infiltration and improved survival in Rab27a(ash/ash) mice is not fully explained by deficient exocytosis of this granule subset. Altogether, our data indicate that Rab27a but not Munc13-4 plays an important role in neutrophil recruitment to liver and LPS-induced death during endotoxemia, thus highlighting a previously unrecognized role for Rab27a in LPS-mediated systemic inflammation.
Collapse
|