1
|
Yao C, Wang H, Han J, Yang K, Lin T, Jin J, Zhu C, Liu H. Zn-Based Multi-Active Framework Nanoparticles TSA-CAN-Zn Inhibit Skin Glycation via Dual Blockade of HMGB1/RAGE and AGEs/RAGE Pathways. Adv Healthc Mater 2025:e2500664. [PMID: 40370206 DOI: 10.1002/adhm.202500664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Indexed: 05/16/2025]
Abstract
Receptor for advanced glycation end products (RAGE) plays an important role in skin glycation damage. High-mobility group 1B protein (HMGB1) and advanced glycation end products (AGEs) are key RAGE ligands. Simultaneous inhibition of HMGB1/RAGE and AGEs/RAGE pathways maybe an effective strategy to alleviate glycation induced skin damage. In this work, Theasinensin A (TSA) is identified as the active molecule inhibiting HMGB1-RAGE interaction through molecular docking. To simultaneously suppress HMGB1/RAGE and AGEs/RAGE pathways, Zn-based multi-active framework nanoparticles TSA-CAN-Zn are designed, which contain TSA and the active molecule L-carnosine (CAN) that inhibits AGEs production. In vitro studies demonstrated that TSA-CAN-Zn have radical scavenging activity and AGEs formation inhibition activity. TSA-CAN-Zn can not only inhibit ROS accumulation, cell apoptosis, and inflammatory factors production induced by glycation in HaCaT cells but also enhanced the lysosomal degradation of AGEs. TSA-CAN-Zn also mitigated the damage caused by glycation in mouse skin glycation model. Single-cell RNA sequencing results revealed the impact of TSA-CAN-Zn on different cell types of skin tissue, especially the basal cells of the epidermal layer and inflammation-related macrophages. And pathway analysis revealed that TSA-CAN-Zn mainly influences the downstream pathways of RAGE. Collectively, TSA-CAN-Zn is a promising therapeutic candidate for ameliorating glycation-induced skin damage.
Collapse
Affiliation(s)
- Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- Shanghai Cheermore Aesthetic Clinic, Shanghai, China
| | - Heqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Tingting Lin
- Medical plastic and cosmetic center, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- Shanghai Cheermore Aesthetic Clinic, Shanghai, China
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
3
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024; 96:203-220. [PMID: 38265172 PMCID: PMC11579821 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| |
Collapse
|
4
|
Jiang S, Xia N, Buonfiglio F, Böhm EW, Tang Q, Pfeiffer N, Olinger D, Li H, Gericke A. High-fat diet causes endothelial dysfunction in the mouse ophthalmic artery. Exp Eye Res 2024; 238:109727. [PMID: 37972749 DOI: 10.1016/j.exer.2023.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.
Collapse
Affiliation(s)
- Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Elsa W Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Dominik Olinger
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Young MD, Cancio TS, Thorpe CR, Willis RP, Snook JK, Jordan BS, Demons ST, Salinas J, Yang Z. Circulatory HMGB1 is an early predictive and prognostic biomarker of ARDS and mortality in a swine model of polytrauma. Front Immunol 2023; 14:1227751. [PMID: 37520569 PMCID: PMC10382277 DOI: 10.3389/fimmu.2023.1227751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a leading cause of morbidity and mortality in polytrauma patients. Pharmacological treatments of ARDS are lacking, and ARDS patients rely on supportive care. Accurate diagnosis of ARDS is vital for early intervention and improved outcomes but is presently delayed up to days. The use of biomarkers for early identification of ARDS development is a potential solution. Inflammatory mediators high-mobility group box 1 (HMGB1), syndecan-1 (SDC-1), and C3a have been previously proposed as potential biomarkers. For this study, we analyzed these biomarkers in animals undergoing smoke inhalation and 40% total body surface area burns, followed by intensive care for 72 h post-injury (PI) to determine their association with ARDS and mortality. We found that the levels of inflammatory mediators in serum were affected, as well as the degree of HMGB1 and Toll-like receptor 4 (TLR4) signal activation in the lung. The results showed significantly increased HMGB1 expression levels in animals that developed ARDS compared with those that did not. Receiver operating characteristic (ROC) analysis showed that HMGB1 levels at 6 h PI were significantly associated with ARDS development (AUROC=0.77) and mortality (AUROC=0.82). Logistic regression analysis revealed that levels of HMGB1 ≥24.10 ng/ml are associated with a 13-fold higher incidence of ARDS [OR:13.57 (2.76-104.3)], whereas the levels of HMGB1 ≥31.39 ng/ml are associated with a 12-fold increase in mortality [OR: 12.00 (2.36-93.47)]. In addition, we found that mesenchymal stem cell (MSC) therapeutic treatment led to a significant decrease in systemic HMGB1 elevation but failed to block SDC-1 and C3a increases. Immunohistochemistry analyses showed that smoke inhalation and burn injury induced the expression of HMGB1 and TLR4 and stimulated co-localization of HMGB1 and TLR4 in the lung. Interestingly, MSC treatment reduced the presence of HMGB1, TLR4, and the HMGB1-TLR4 co-localization. These results show that serum HMGB1 is a prognostic biomarker for predicting the incidence of ARDS and mortality in swine with smoke inhalation and burn injury. Therapeutically blocking HMGB1 signal activation might be an effective approach for attenuating ARDS development in combat casualties or civilian patients.
Collapse
|
6
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Staphylococcus aureus Biofilm Inhibiting Activity of Advanced Glycation Endproduct Crosslink Breaking and Glycation Inhibiting Compounds. Antibiotics (Basel) 2022; 11:antibiotics11101412. [PMID: 36290070 PMCID: PMC9598957 DOI: 10.3390/antibiotics11101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that plays a role in the pathogenesis of skin lesions in diabetes mellitus, atopic dermatitis, and psoriasis, all of which are associated with elevated non-enzymatic glycation biomarkers. The production of biofilm protects resident bacteria from host immune defenses and antibiotic interventions, prolonging pathogen survival, and risking recurrence after treatment. Glycated proteins formed from keratin and glucose induce biofilm formation in S. aureus, promoting dysbiosis and increasing pathogenicity. In this study, several glycation-inhibiting and advanced glycation endproduct (AGE) crosslink-breaking compounds were assayed for their ability to inhibit glycated keratin-induced biofilm formation as preliminary screening for clinical testing candidates. Ascorbic acid, astaxanthin, clove extract, n-phenacylthiazolium bromide, and rosemary extract were examined in an in vitro static biofilm model with S. aureus strain ATCC 12600. Near complete biofilm inhibition was achieved with astaxanthin (ED50 = 0.060 mg/mL), clove extract (ED50 = 0.0087 mg/mL), n-phenacylthiazolium bromide (ED50 = 5.3 mg/mL), and rosemary extract (ED50 = 1.5 mg/mL). The dosage necessary for biofilm inhibition was not significantly correlated with growth inhibition (R2 = 0.055. p = 0.49). Anti-glycation and AGE breaking compounds with biofilm inhibitory activity are ideal candidates for treatment of S. aureus dysbiosis and skin infection that is associated with elevated skin glycation.
Collapse
|
8
|
Mikhalchik EV, Ivanov VA, Borodina IV, Pobeguts OV, Smirnov IP, Gorudko IV, Grigorieva DV, Boychenko OP, Moskalets AP, Klinov DV, Panasenko OM, Filatova LY, Kirzhanova EA, Balabushevich NG. Neutrophil Activation by Mineral Microparticles Coated with Methylglyoxal-Glycated Albumin. Int J Mol Sci 2022; 23:ijms23147840. [PMID: 35887188 PMCID: PMC9321525 DOI: 10.3390/ijms23147840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.
Collapse
Affiliation(s)
- Elena V. Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Correspondence: ; Tel.: +7-499-2464352
| | - Victor A. Ivanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Borodina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Igor P. Smirnov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus; (I.V.G.); (D.V.G.)
| | - Olga P. Boychenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Alexander P. Moskalets
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia; (V.A.I.); (I.V.B.); (O.V.P.); (I.P.S.); (O.P.B.); (A.P.M.); (D.V.K.); (O.M.P.)
| | - Luboff Y. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Ekaterina A. Kirzhanova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| | - Nadezhda G. Balabushevich
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.Y.F.); (E.A.K.); (N.G.B.)
| |
Collapse
|
9
|
Grape-Seed-Derived Procyanidin Attenuates Chemotherapy-Induced Cognitive Impairment by Suppressing MMP-9 Activity and Related Blood–Brain-Barrier Damage. Brain Sci 2022; 12:brainsci12050571. [PMID: 35624958 PMCID: PMC9139059 DOI: 10.3390/brainsci12050571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Chemotherapy-induced cognitive impairment (CICI) is often observed in cancer patients and impairs their life quality. Grape-seed-orientated procyanidin has been shown to have anti-inflammatory and neuroprotective effects, yet its effects in preventing CICI have not been investigated. (2) Method: Adult male mice received 2.3 mg/kg cisplatin or saline injections for three cycles consisting of five daily injections followed by 5 days of rest. Procyanidin or saline was administered 1 h prior to cisplatin treatment. Cognitive testing, gelatin zymography, and blood–brain-barrier (BBB) penetration tests were performed after treatment cessation. RAW264.7 cells were treated by stimulated supernatant of SHSY5Y cells. In addition, high-mobility group protein B1 (HMGB1) expression and MMP-9 activity were tested. (3) Results: Repeated cisplatin treatment increased BBB penetration, MMP-9 activity, impaired performance in contextual fear conditioning, and novel object recognition tasks. The knockout of MMP-9 rescues cognitive impairment and cisplatin-induced upregulation of HMGB1 in SHSY5Y cells. HMGB1/TLR4/IP3K/AKT signaling contributes to the increased MMP-9 activity in RAW264.7 cells. Procyanidin treatment attenuates MMP-9 activity, BBB damage, and CICI. (4) Conclusions: The results indicated that MMP-9 activation and BBB disruption is involved in CICI. Procyanidin may effectively alleviate the harmful effects of cisplatin.
Collapse
|
10
|
Jafarnejad S, Hooshiar S, Esmaili H, Taherian A. Exercise, Advanced Glycation End Products, and Their Effects on Cardiovascular Disorders: A Narrative Review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
A Novel Microfluidic Device for the Neutrophil Functional Phenotype Analysis: Effects of Glucose and Its Derivatives AGEs. MICROMACHINES 2021; 12:mi12080944. [PMID: 34442566 PMCID: PMC8399494 DOI: 10.3390/mi12080944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
Neutrophil dysfunction is closely related to the pathophysiology of patients with diabetes mellitus, but existing immunoassays are difficult to implement in clinical applications, and neutrophil’s chemotaxis as a functional biomarker for diabetes mellitus prognostic remains largely unexplored. Herein, a novel microfluidic device consisted of four independent test units with four cell docking structures was developed to study the neutrophil chemotaxis, which allowed multiple cell migration observations under a single field of view (FOV) and guaranteed more reliable results. In vitro studies, the chemotaxis of healthy neutrophils to N-Formyl-Met-Leu-Phe (fMLP) gradient (0, 10, 100, and 1000 nM) was concentration-dependent. The distinct promotion or suppression in the chemotaxis of metformin or pravastatin pretreated cells were observed after exposure to 100 nM fMLP gradient, indicating the feasibility and efficiency of this novel microfluidic device for clinically relevant evaluation of neutrophil functional phenotype. Further, the chemotaxis of neutrophils pretreated with 25, 50, or 70 mM of glucose was quantitatively lower than that of the control groups (i.e., 5 mM normal serum level). Neutrophils exposed to highly concentrated advanced glycation end products (AGEs) (0.2, 0.5, or 1.0 μM; 0.13 μM normal serum AGEs level), a product of prolonged hyperglycemia, showed that the higher the AGEs concentration was, the weaker the migration speed became. Specifically, neutrophils exposed to high concentrations of glucose or AGEs also showed a stronger drifting along with the flow, further demonstrating the change of neutrophil chemotaxis. Interestingly, adding the N-benzyl-4-chloro-N-cyclohexylbenzamide (FPS-ZM1) (i.e., high-affinity RAGE inhibitor) into the migration medium with AGEs could hinder the binding between AGEs and AGE receptor (RAGE) located on the neutrophil, thereby keeping the normal chemotaxis of neutrophils than the ones incubated with AGEs alone. These results revealed the negative effects of high concentrations of glucose and AGEs on the neutrophil chemotaxis, suggesting that patients with diabetes should manage serum AGEs and also pay attention to blood glucose indexes. Overall, this novel microfluidic device could significantly characterize the chemotaxis of neutrophils and have the potential to be further improved into a tool for risk stratification of diabetes mellitus.
Collapse
|
12
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
14
|
Li J, Wang K, Huang B, Li R, Wang X, Zhang H, Tang H, Chen X. The receptor for advanced glycation end products mediates dysfunction of airway epithelial barrier in a lipopolysaccharides-induced murine acute lung injury model. Int Immunopharmacol 2021; 93:107419. [PMID: 33548580 DOI: 10.1016/j.intimp.2021.107419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) act as the first barrier protecting against invasion of environment agents and maintain integrity of lung structure and function. Dysfunction of airway epithelial barrier has been shown to be involved in ALI/ARDS pathogenesis. Yet, the exact mechanism is still obscure. Our study evaluated whether the receptor for advanced glycation end products (RAGE) mediates impaired airway epithelial barrier in LPS-induced murine ALI model. METHODS Male BALB/c mice were subjected to intratracheal instillation of LPS to generate an ALI model. Inhibitors of RAGE, FPS-ZM1 and Azeliragon were respectively given to the mice through intraperitoneal injection. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected for further analysis. RESULTS LPS exposure led to markedly increased expression of RAGE and its ligands HMGB1, HSP70, S100b. Treatment of FPS-ZM1 or Azeliragon not only effectively descended the expression of RAGE and its ligands but also attenuated LPS-induced neutrophil-predominant airway inflammation and injury, decreased levels of IL-6, IL-1β and TNF-α in BALF, alleviated increased alveolar-capillary permeability and pulmonary edema. LPS stimulation significantly impaired the integrity of airway epithelium, paralleled with dislocation of adheren junction (AJ) protein E-cadherin at cell-cell contacts and down-expression of both AJ and tight junction (TJ) proteins Claudin-2 and occludin, all of which were dramatically rescued by RAGE inhibition. CONCLUSION RAGE signaling mediates airway epithelial barrier dysfunction in a LPS-induced ALI murine model.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Kai Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Bo Huang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Xilong Wang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China
| | - Haixiong Tang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China.
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
15
|
Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Bonfiglio V, Plateroti R, Alisi L. The Complex Relationship between Diabetic Retinopathy and High-Mobility Group Box: A Review of Molecular Pathways and Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080666. [PMID: 32722545 PMCID: PMC7464385 DOI: 10.3390/antiox9080666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a protein that is part of a larger family of non-histone nuclear proteins. HMGB1 is a ubiquitary protein with different isoforms, linked to numerous physiological and pathological pathways. HMGB1 is involved in cytokine and chemokine release, leukocyte activation and migration, tumorigenesis, neoangiogenesis, and the activation of several inflammatory pathways. HMGB1 is, in fact, responsible for the trigger, among others, of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), and vascular endothelial growth factor (VEGF) pathways. Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM) that is rapidly growing in number. DR is an inflammatory disease caused by hyperglycemia, which determines the accumulation of oxidative stress and cell damage, which ultimately leads to hypoxia and neovascularization. Recent evidence has shown that hyperglycemia is responsible for the hyperexpression of HMGB1. This protein activates numerous pathways that cause the development of DR, and HMGB1 levels are constantly increased in diabetic retinas in both proliferative and non-proliferative stages of the disease. Several molecules, such as glycyrrhizin (GA), have proven effective in reducing diabetic damage to the retina through the inhibition of HMGB1. The main focus of this review is the growing amount of evidence linking HMGB1 and DR as well as the new therapeutic strategies involving this protein.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
- Correspondence: ; Tel.: +39-06-4997-5357; Fax: +39-06-4997-5425
| | - Marta Armentano
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Giosuè Tucciarone
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Vincenza Bonfiglio
- Department of Ophthalmology, University of Catania, Via S. Sofia 76, 95100 Catania, Italy;
| | - Rocco Plateroti
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Ludovico Alisi
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| |
Collapse
|
16
|
Abstract
Cardiovascular disease and infections are major causes for the high incidence of morbidity and mortality of patients with chronic kidney disease. Both complications are directly or indirectly associated with disturbed functions or altered apoptotic rates of polymorphonuclear leukocytes, monocytes, lymphocytes, and dendritic cells. Normal responses of immune cells can be reduced, leading to infectious diseases or pre-activated/primed, giving rise to inflammation and subsequently to cardiovascular disease. This review summarizes the impact of kidney dysfunction on the immune system. Renal failure results in disturbed renal metabolic activities with reduced renin, erythropoietin, and vitamin D production, which adversely affects the immune system. Decreased kidney function also leads to reduced glomerular filtration and the retention of uremic toxins. A large number of uremic toxins with detrimental effects on immune cells have been identified. Besides small water-soluble and protein-bound compounds originating from the intestinal microbiome, several molecules in the middle molecular range, e.g., immunoglobulin light chains, retinol-binding protein, the neuropeptides Met-enkephalin and neuropeptide Y, endothelin-1, and the adipokines leptin and resistin, adversely affect immune cells. Posttranslational modifications such as carbamoylation, advanced glycation products, and oxidative modifications contribute to uremic toxicity. Furthermore, high-density lipoprotein from uremic patients has an altered protein profile and thereby loses its anti-inflammatory properties.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
17
|
Fan Y, Liang Y, Deng K, Zhang Z, Zhang G, Zhang Y, Wang F. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics 2020; 21:327. [PMID: 32349667 PMCID: PMC7191724 DOI: 10.1186/s12864-020-6751-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DNA methylation is an epigenetic regulatory form that plays an important role in regulating the gene expression and the tissues development.. However, DNA methylation regulators involved in sheep muscle development remain unclear. To explore the functional importance of genome-scale DNA methylation during sheep muscle growth, this study systematically investigated the genome-wide DNA methylation profiles at key stages of Hu sheep developmental (fetus and adult) using deep whole-genome bisulfite sequencing (WGBS). RESULTS Our study found that the expression levels of DNA methyltransferase (DNMT)-related genes were lower in fetal muscle than in the muscle of adults. The methylation levels in the CG context were higher than those in the CHG and CHH contexts, and methylation levels were highest in introns, followed by exons and downstream regions. Subsequently, we identified 48,491, 17, and 135 differentially methylated regions (DMRs) in the CG, CHG, and CHH sequence contexts and 11,522 differentially methylated genes (DMGs). The results of bisulfite sequencing PCR (BSP) correlated well with the WGBS-Seq data. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis revealed that some DMGs were involved in regulating skeletal muscle development and fatty acid metabolism. By combining the WGBS-Seq and previous RNA-Seq data, a total of 159 overlap genes were obtained between differentially expressed genes (DEGs) and DMGs (FPKM > 10 and fold change > 4). Finally, we found that 9 DMGs were likely to be involved in muscle growth and metabolism of Hu sheep. CONCLUSIONS We systemically studied the global DNA methylation patterns of fetal and adult muscle development in Hu sheep, which provided new insights into a better understanding of the epigenetic regulation of sheep muscle development.
Collapse
Affiliation(s)
- Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Zhang Y, You B, Liu X, Chen J, Peng Y, Yuan Z. High-Mobility Group Box 1 (HMGB1) Induces Migration of Endothelial Progenitor Cell via Receptor for Advanced Glycation End-Products (RAGE)-Dependent PI3K/Akt/eNOS Signaling Pathway. Med Sci Monit 2019; 25:6462-6473. [PMID: 31461437 PMCID: PMC6733152 DOI: 10.12659/msm.915829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-mobility group box1 (HMGB1) is a cytokine that has been demonstrated to have an important role in inducing migration and homing of endothelial progenitor cells (EPCs) in the process of neovascularization during wound healing, but its specific mechanism remains elusive. The aim of this study was to investigate the effects of the HMGB-RAGE axis in EPC migration, as well as the underlying molecular mechanism responsible for these effects. MATERIAL AND METHODS EPCs were isolated from the mice and identified using flow cytometry and fluorescence staining. The effect of HMGB1 on the activity of EPCs was detected using the Cell Counting Kit-8 (CCK-8). Then, the migration of EPCs was detected by scratch wound-healing and cell migration assay. NO levels were analyzed by ELISA. The expression of p-PI3K, p-Akt, and p-eNOS was determined by Western blot analysis. RAGE expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. F-actin was assessed by fluorescent staining. RESULTS The results showed that HMGB1 induced a concentration-dependent migration of EPCs, and the migration was RAGE-dependent. The migration could be almost completely blocked by PI3K inhibitors and eNOS inhibitor. HMGB1-RAGE upregulated the expression of p-Akt, p-eNOS, and p-ERK. We also demonstrated that the MEK/ERK signaling pathway is not involved in the EPC migration induced by HMGB1-RAGE. CONCLUSIONS These data demonstrate that HMGB1 activates RAGE and induces PI3K/Akt/eNOS signaling transduction pathway activation to promote EPC migration. Therefore, the HMGB1-RAGE axis plays an important role in the EPC migration process and may become a potential target in wound healing.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Bo You
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland).,Department of Burn, 958 Hospital of the People's Liberation Army, Chongqing, China (mainland)
| | - Xinzhu Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Jin Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| | - Zhiqiang Yuan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medicine University (Army Medical University), Chongqing, China (mainland)
| |
Collapse
|
19
|
Larsen NK, Reilly MJ, Thankam FG, Fitzgibbons RJ, Agrawal DK. Novel understanding of high mobility group box-1 in the immunopathogenesis of incisional hernias. Expert Rev Clin Immunol 2019; 15:791-800. [PMID: 30987468 DOI: 10.1080/1744666x.2019.1608822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Incisional hernias (IH) arise as a complication of patients undergoing laparotomy. Current literature has assessed the role of extracellular matrix (ECM) disorganization, alterations in type I and type III collagen, matrix metalloproteinases, and tissue inhibitors of metalloproteases on IH. However, there is limited information on the underlying molecular mechanisms that lead to ECM disorganization. Areas covered: We critically reviewed the literature surrounding IH and ECM disorganization and offer a novel pathway that may be the underlying mechanism resulting in ECM disorganization and the immunopathogenesis of IH. Expert opinion: High mobility group box-1 (HMGB-1), a damage-associated molecular pattern, plays an important role in the sterile inflammatory pathway and has been linked to ECM disorganization and the triggering of the NLRP3 inflammasome. Further research to investigate the role of HMGB-1 in the molecular pathogenesis of IH would be critical in identifying novel therapeutic targets in the management of IH formation.
Collapse
Affiliation(s)
- Nicholas K Larsen
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| | - Matthew J Reilly
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| | - Finosh G Thankam
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA.,b Surgery , Creighton University School of Medicine , Omaha , USA
| | - Robert J Fitzgibbons
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA.,b Surgery , Creighton University School of Medicine , Omaha , USA
| | - Devendra K Agrawal
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| |
Collapse
|
20
|
Bansal S, Kare PK, Tripathi AK, Madhu SV. Advanced Glycation End Products: A Potential Contributor of Oxidative Stress for Cardio-Vascular Problems in Diabetes. OXIDATIVE STRESS IN HEART DISEASES 2019:437-459. [DOI: 10.1007/978-981-13-8273-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Rodrigues KL, Borges JP, Lopes GDO, Pereira ENGDS, Mediano MFF, Farinatti P, Tibiriça E, Daliry A. Influence of Physical Exercise on Advanced Glycation End Products Levels in Patients Living With the Human Immunodeficiency Virus. Front Physiol 2018; 9:1641. [PMID: 30574090 PMCID: PMC6291474 DOI: 10.3389/fphys.2018.01641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Introduction: Combined antiretroviral therapy (cART) used to treat acquired immunodeficiency virus (HIV) induces a number of adverse effects, such as insulin resistance and dyslipidemia, which ultimately increases the cardiovascular risk. Advanced glycation end products (AGEs) have been implicated in the etiology of cardiovascular diseases, diabetes and other chronic diseases. It is known that physical exercise improves the lipid profile, insulin resistance and reduces the risk of cardiovascular diseases. However, the impact of physical exercise on AGE levels in HIV-infected patients has not been so far investigated. Therefore, this study compared AGEs levels in people with and without HIV and verified the effect of physical training on serum AGE levels. Methods: Participants were initially assigned into three groups: healthy control (CTL, n = 35), physically inactive HIV-infected (In-HIV, n = 33) and physically active HIV-infected (Ac-HIV, n = 19). The In-HIV group underwent physical training for 3 months, consisting of 60-min sessions of multimodal supervised exercise (aerobic, resistance and flexibility) with moderate intensity (50–80% heart rate reserve), performed 3 times/week. AGEs were measured in serum by fluorescence spectrometry. Results: At baseline, serum AGEs fluorescence level was significantly higher in inactive HIV-patients when compared to controls or active HIV-patients (In-HIV: 0.93 ± 0.08 vs. controls: 0.68 ± 0.13 and Ac-HIV: 0.59 ± 0.04 A.U.; P < 0.001). Triglycerides were also higher in In-HIV than CTL (182.8 ± 102 vs. 132.8 ± 52.3 mg/dL; P < 0.05). Waist circumference was lower in Ac-HIV, compared to In-HIV and controls (83.9 ± 10.4 vs. 92.9 ± 13.5 and 98.3 ± 12.4, respectively; P < 0.05). Body mass, fasting blood glucose, LDL, HDL, and total cholesterol were similar between groups. After training, AGE levels decreased (Baseline: 0.93 ± 0.08 vs. 3 months follow-up: 0.59 ± 0.04 AU; P < 0.001), no further difference being detected vs. CTL or Ac-HIV. Conclusion: HIV-infected patients under cART exhibited elevated AGEs levels compared to healthy individuals and physically active patients. Short-term aerobic training of moderate intensity counteracted this condition.
Collapse
Affiliation(s)
- Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriella de Oliveira Lopes
- Laboratory of Physical Activity and Health Promotion, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mauro Felippe Felix Mediano
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Tibiriça
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Wang Y, Zhang Y, Peng G, Han X. Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1. Int Immunopharmacol 2018; 60:9-17. [PMID: 29702284 DOI: 10.1016/j.intimp.2018.04.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/29/2022]
Abstract
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease prevalent worldwide. This study investigated the effects of glycyrrhizin, an extract of licorice root, on the well-established model of 2,4-dinitrochlorobenzene-induced AD-like symptoms in mice. The severity of dermatitis, histopathological changes, serum IgE levels, changes in expression of high-mobility group box 1 (HMGB1), the receptor for advanced glycation end products (RAGE), nuclear factor (NF)-κB and inflammatory cytokines were evaluated. Treatment with glycyrrhizin inhibited the HMGB1 signaling cascade and ameliorated the symptoms of AD. Furthermore, in an in vitro study, the expression of RAGE was detected in a mouse mast cell line, P815 cells, and rmHMGB1 was found to be a potent inducer of mast cell activation by increasing Ca2+ influx, upregulating the CD117 and activating NF-κB signaling; these effects were also inhibited by glycyrrhizin. These findings implicate HMGB1 in the pathogenesis of AD and suggest that GL could be an effective therapeutic approach for cutaneous inflammation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Dermatology, Shengjing Hospital of China Medical University, Heping District, Shenyang, Liaoning 110004, China
| | - Yue Zhang
- Department of Dermatology, Shengjing Hospital of China Medical University, Heping District, Shenyang, Liaoning 110004, China
| | - Ge Peng
- Department of Dermatology, Shengjing Hospital of China Medical University, Heping District, Shenyang, Liaoning 110004, China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
23
|
Zhu J, Yu H, Chen S, Yang P, Dong Z, Ling Y, Tang H, Bai S, Yang W, Tang L, Shen F, Wang H, Wen W. Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2018; 61:912-923. [PMID: 29441453 DOI: 10.1007/s11427-017-9188-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
The inflammatory environment and existence of cancer stem cells are critical for progression and intrahepatic recurrence of hepatocellular carcinoma (HCC) after curative resections. Here, we investigated the prognostic significance of combining high mobility group box 1 (HMGB1) expression and hepatic progenitor marker OV6 in hepatocellular carcinoma. Expression of HMGB1 and OV6 was evaluated using immunohistochemistry profiling in tissue microarrays containing samples from 208 HCC patients. Invasive clinical or pathological factors were found in patients with high expression of HMGB1 or OV6. Higher HMGB1 was associated with poorer clinical outcomes, and independently related to elevated 5-year recurrence incidence (85.5% vs. 62.4%, P<0.001). We also found that more OV6 positive staining was correlated with poor prognosis of HCC patients (P<0.001). Notably, expression of HMGB1 was positively correlated with OV6 in density (R2=0.032, P<0.001) and reversely related to HCC outcomes. Abnormal expression of HMGB1 in combination with positive staining of OV6 displayed poorer prognostic performance than single biomarker alone (area under curve (AUC) survival=0.696). Therefore, HMGB1 and OV6 positive staining are promising prognostic parameters for HCC, and we propose that HMGB1 and OV6 may cooperate with each other and predict poor prognosis of HCC.
Collapse
Affiliation(s)
- Jihui Zhu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Han Yu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zihui Dong
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Ling
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hao Tang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shilei Bai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wen Yang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liang Tang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hongyang Wang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China. .,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China. .,Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| | - Wen Wen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China. .,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China. .,Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| |
Collapse
|
24
|
O'Shea KM, Ananthakrishnan R, Li Q, Quadri N, Thiagarajan D, Sreejit G, Wang L, Zirpoli H, Aranda JF, Alberts AS, Schmidt AM, Ramasamy R. The Formin, DIAPH1, is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine 2017; 26:165-174. [PMID: 29239839 PMCID: PMC5832565 DOI: 10.1016/j.ebiom.2017.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023] Open
Abstract
The biochemical, ionic, and signaling changes that occur within cardiomyocytes subjected to ischemia are exacerbated by reperfusion; however, the precise mechanisms mediating myocardial ischemia/reperfusion (I/R) injury have not been fully elucidated. The receptor for advanced glycation end-products (RAGE) regulates the cellular response to cardiac tissue damage in I/R, an effect potentially mediated by the binding of the RAGE cytoplasmic domain to the diaphanous-related formin, DIAPH1. The aim of this study was to investigate the role of DIAPH1 in the physiological response to experimental myocardial I/R in mice. After subjecting wild-type mice to experimental I/R, myocardial DIAPH1 expression was increased, an effect that was echoed following hypoxia/reoxygenation (H/R) in H9C2 and AC16 cells. Further, compared to wild-type mice, genetic deletion of Diaph1 reduced infarct size and improved contractile function after I/R. Silencing Diaph1 in H9C2 cells subjected to H/R downregulated actin polymerization and serum response factor-regulated gene expression. Importantly, these changes led to increased expression of sarcoplasmic reticulum Ca2+ ATPase and reduced expression of the sodium calcium exchanger. This work demonstrates that DIAPH1 is required for the myocardial response to I/R, and that targeting DIAPH1 may represent an adjunctive approach for myocardial salvage after acute infarction.
Collapse
Affiliation(s)
- Karen M O'Shea
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Radha Ananthakrishnan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Qing Li
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Gopalkrishna Sreejit
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lingjie Wang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Hylde Zirpoli
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Juan Francisco Aranda
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Arthur S Alberts
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
25
|
Caraher EJ, Kwon S, Haider SH, Crowley G, Lee A, Ebrahim M, Zhang L, Chen LC, Gordon T, Liu M, Prezant DJ, Schmidt AM, Nolan A. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure. PLoS One 2017; 12:e0184331. [PMID: 28926576 PMCID: PMC5604982 DOI: 10.1371/journal.pone.0184331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is associated with WTC-LI. In our murine model, absence of RAGE mitigated acute deleterious effects of PM and may be a biologically plausible mediator of PM-related lung disease.
Collapse
Affiliation(s)
- Erin J. Caraher
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Syed H. Haider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Audrey Lee
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Minah Ebrahim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Liqun Zhang
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Respiratory Medicine, PLA, Army General Hospital, Beijing, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ann Marie Schmidt
- Departments of Biochemistry and Molecular Pharmacology and Pathology, Division of Endocrinology, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
| |
Collapse
|
26
|
Plausible Roles for RAGE in Conditions Exacerbated by Direct and Indirect (Secondhand) Smoke Exposure. Int J Mol Sci 2017; 18:ijms18030652. [PMID: 28304347 PMCID: PMC5372664 DOI: 10.3390/ijms18030652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Approximately 1 billion people smoke worldwide, and the burden placed on society by primary and secondhand smokers is expected to increase. Smoking is the leading risk factor for myriad health complications stemming from diverse pathogenic programs. First- and second-hand cigarette smoke contains thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic inflammatory responses and destructive remodeling events. In the current review, we outline details related to compromised pulmonary and systemic conditions related to smoke exposure. Specifically, data are discussed relative to impaired lung physiology, cancer mechanisms, maternal-fetal complications, cardiometabolic, and joint disorders in the context of smoke exposure exacerbations. As a general unifying mechanism, the receptor for advanced glycation end-products (RAGE) and its signaling axis is increasingly considered central to smoke-related pathogenesis. RAGE is a multi-ligand cell surface receptor whose expression increases following cigarette smoke exposure. RAGE signaling participates in the underpinning of inflammatory mechanisms mediated by requisite cytokines, chemokines, and remodeling enzymes. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of lung disease and systemic complications that combine during the demise of those exposed.
Collapse
|
27
|
Tissue damage negatively regulates LPS-induced macrophage necroptosis. Cell Death Differ 2016; 23:1428-47. [PMID: 26943325 DOI: 10.1038/cdd.2016.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 01/10/2023] Open
Abstract
Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules.
Collapse
|
28
|
High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 2016; 6:18815. [PMID: 26739898 PMCID: PMC4703978 DOI: 10.1038/srep18815] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is implicated in bronchial remodeling and loss of lung function in chronic inflammatory airway diseases. Previous studies showed the involvement of the high mobility group box 1 (HMGB1) protein in the pathology of chronic pulmonary inflammatory diseases. However, the role of HMGB1 in EMT of human airway epithelial cells is still unclear. In this study, we used RNA sequencing to show that HMGB1 treatment regulated EMT-related gene expression in human primary-airway epithelial cells. The top five upregulated genes were SNAI2, FGFBP1, VIM, SPARC (osteonectin), and SERPINE1, while the downregulated genes included OCLN, TJP1 (ZO-1), FZD7, CDH1 (E-cadherin), and LAMA5. We found that HMGB1 induced downregulation of E-cadherin and ZO-1, and upregulation of vimentin mRNA transcription and protein translation in a dose-dependent manner. Additionally, we observed that HMGB1 induced AKT phosphorylation, resulting in GSK3β inactivation, cytoplasmic accumulation, and nuclear translocation of β-catenin to induce EMT in human airway epithelial cells. Treatment with PI3K inhibitor (LY294006) and β-catenin shRNA reversed HMGB1-induced EMT. Moreover, HMGB1 induced expression of receptor for advanced glycation products (RAGE), but not that of Toll-like receptor (TLR) 2 or TLR4, and RAGE shRNA inhibited HMGB1-induced EMT in human airway epithelial cells. In conclusion, we found that HMGB1 induced EMT through RAGE and the PI3K/AKT/GSK3β/β-catenin signaling pathway.
Collapse
|
29
|
Liu X, Liu K, Wang Z, Liu C, Han Z, Tao J, Lu P, Wang J, Wu B, Huang Z, Yin C, Gu M, Tan R. Advanced glycation end products accelerate arteriosclerosis after renal transplantation through the AGE/RAGE/ILK pathway. Exp Mol Pathol 2015. [PMID: 26210487 DOI: 10.1016/j.yexmp.2015.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The effects of advanced glycation end products (AGEs) on arteriosclerosis (AS) after kidney transplantation and the molecular mechanisms involved remain unclear. METHODS Samples were collected from 30 healthy volunteers and 30 renal transplant recipients (RTRs) to determine the levels of AGEs and to observe both histological changes and α-smooth muscle actin (α-SMA) and osteopontin (OPN) expression. Furthermore, we analyzed α-SMA, OPN and integrin-linked kinase (ILK) in rat vascular smooth muscle cells (VSMCs) that were treated with AGEs and in ILK plasmid transfected rat VSMCs treated with AGEs. Finally, we measured the expression of ILK and the receptor for advanced glycation end (RAGE) products in rat VSMCs treated with AGEs and an anti-RAGE antibody. RESULTS Significant differences in the histological changes, serum AGEs, and expression of α-SMA and OPN in arterial walls were noted between healthy volunteers and RTRs. Significant OPN and ILK overexpression and reduced α-SMA expression were detected in a time-dependent manner in rat VSMCs after treatment with AGEs. Similar outcomes were observed regarding the overexpression of ILK, and these results could be prevented via RAGE inhibition. CONCLUSIONS AGEs may play a critical role in the formation and progression of AS after renal transplantation by inducing VSMCs-to-osteoblast trans-differentiation through the AGE/RAGE/ILK pathway.
Collapse
Affiliation(s)
- Xuzhong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Kun Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China; Department of Urology, Huai'an First People's Hospital, 6 Beijing West Road, Huai'an, Jiangsu Province 223300, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Chao Liu
- Department of Urology, Suzhou Municipal Hospital, 26 Daoqian Road, Suzhou, Jiangsu Province 215001, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Pei Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Jun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Bian Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Zhengkai Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China.
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
30
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
31
|
McVicar CM, Ward M, Colhoun LM, Guduric-Fuchs J, Bierhaus A, Fleming T, Schlotterer A, Kolibabka M, Hammes HP, Chen M, Stitt AW. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 2015; 58:1129-37. [PMID: 25687235 PMCID: PMC4392170 DOI: 10.1007/s00125-015-3523-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy. METHODS Diabetes was induced in wild-type (WT) and Rage (-/-) mice (also known as Ager (-/-) mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined. RESULTS Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (p < 0.01) but not after 24 weeks. Rage (-/-) mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage (-/-) mice showed significantly less vasopermeability, leucostasis and microglial activation (p < 0.05-0.001). Rage (-/-) mice were also protected against diabetes-related retinal acellular capillary formation (p < 0.001) but not against pericyte loss. CONCLUSIONS/INTERPRETATION Rage (-/-) in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Carmel M. McVicar
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Micheal Ward
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Liza M. Colhoun
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Angelika Bierhaus
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schlotterer
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kolibabka
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Hans-Peter Hammes
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Mei Chen
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| |
Collapse
|
32
|
Hu H, Jiang H, Ren H, Hu X, Wang X, Han C. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system. Diabetes Metab Res Rev 2015; 31:127-37. [PMID: 24846076 DOI: 10.1002/dmrr.2560] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Chronic subclinical inflammation represents a risk factor of type 2 diabetes and several diabetes complications, including neuropathy and atherosclerosis including macro-vasculopathy and micro-vasculopathy. However, the inflammatory response in the diabetic wound was shown to be remarkably hypocellular, unregulated and ineffective. Advanced glycation end products (AGEs) and one of its receptors, RAGE, were involved in inducing chronic immune imbalance in diabetic patients. Such interactions attracts immune cell into diffused glycated tissue and activates these cells to induce inflammatory damage, but disturbs the normal immune rhythm in diabetic wound. Traditional measurements of AGEs are high-performance liquid chromatography and immunohistochemistry staining, but their application faces the limitations including complexity, cost and lack of reproducibility. A new noninvasive method emerged in 2004, using skin autofluorescence as indicator for AGEs accumulation. It had been reported to be informative in evaluating the chronic risk of diabetic patients. Studies have indicated therapeutic potentials of anti-AGE recipes. These recipes can reduce AGE absorption/de novo formation, block AGE-RAGE interaction and arrest downstream signaling after RAGE activation.
Collapse
Affiliation(s)
- Hang Hu
- Department of Burns and Wound Center, Second Affiliated Hospital College of Medicine, Zhejiang University, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Watanabe K, Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Suzuki K, Nakamura T, Nomoto M, Miyashita S, Fukumoto K, Ueno K. Pruni cortex ameliorates skin inflammation possibly through HMGB1-NFκB pathway in house dust mite induced atopic dermatitis NC/Nga transgenic mice. J Clin Biochem Nutr 2015; 56:186-94. [PMID: 26060348 PMCID: PMC4454076 DOI: 10.3164/jcbn.14-75] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022] Open
Abstract
Pruni cortex, the bark of Prunus jamasakura Siebold ex Koidzumi, has been used in the Japanese systems of medicine for many years for its anti-inflammatory, antioxidant and antitussive properties. In this study, we investigated the effect of pruni cortex on atopic dermatitis NC/Nga mouse model. Atopic dermatitis-like lesion was induced by the application of house dust mite extract to the dorsal skin. After induction of atopic dermatitis, pruni cortex aqueous extract (1 g/kg, p.o.) was administered daily for 2 weeks. We evaluated dermatitis severity, histopathological changes and cellular protein expression by Western blotting for nuclear and cytoplasmic high mobility group box 1, receptor for advanced glycation end products, nuclear factor κB, apoptosis and inflammatory markers in the skin of atopic dermatitis mice. The clinical observation confirmed that the dermatitis score was significantly lower when treated with pruni cortex than in the atopic dermatitis group. Similarly pruni cortex inhibited hypertrophy and infiltration of inflammatory cells as identified by histopathology. In addition, pruni cortex significantly inhibited the protein expression of cytoplasmic high mobility group box 1, receptor for advanced glycation end products, nuclear p-nuclear factor kappa B, apoptosis and inflammatory markers. These results indicate that pruni cortex may have therapeutic potential in the treatment of atopic dermatitis by attenuating high mobility group box 1 and inflammation possibly through the nuclear factor κB pathway.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Rajarajan A Thandavarayan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Vigneshwaran Pitchaimani
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Rejina Afrin
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Hiroshi Suzuki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kenji Suzuki
- Department of Gastroenterology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Takashi Nakamura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Mayumi Nomoto
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Shizuka Miyashita
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kyoko Fukumoto
- Department of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kazuyuki Ueno
- Department of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|
34
|
Batkulwar KB, Bansode SB, Patil GV, Godbole RK, Kazi RS, Chinnathambi S, Shanmugam D, Kulkarni MJ. Investigation of phosphoproteome in RAGE signaling. Proteomics 2015; 15:245-259. [PMID: 25315903 DOI: 10.1002/pmic.201400169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/14/2014] [Accepted: 10/06/2014] [Indexed: 01/03/2025]
Abstract
The receptor for advanced glycation end products (RAGE) is one of the most important proteins implicated in diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. It is a pattern recognition receptor by virtue of its ability to interact with multiple ligands, RAGE activates several signal transduction pathways through involvement of various kinases that phosphorylate their respective substrates. Only few substrates have been known to be phosphorylated in response to activation by RAGE (e.g., nuclear factor kappa B); however, it is possible that these kinases can phosphorylate multiple substrates depending upon their expression and localization, leading to altered cellular responses in different cell types and conditions. One such example is, glycogen synthase kinase 3 beta which is known to phosphorylate glycogen synthase, acts downstream to RAGE, and hyperphosphorylates microtubule-associated protein tau causing neuronal damage. Thus, it is important to understand the role of various RAGE-activated kinases and their substrates. Therefore, we have reviewed here the details of RAGE-activated kinases in response to different ligands and their respective phosphoproteome. Furthermore, we discuss the analysis of the data mined for known substrates of these kinases from the PhosphoSitePlus (http://www.phosphosite.org) database, and the role of some of the important substrates involved in cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In summary, this review provides information on RAGE-activated kinases and their phosphoproteome, which will be helpful in understanding the possible role of RAGE and its ligands in progression of diseases.
Collapse
Affiliation(s)
- Kedar B Batkulwar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 2014; 42:85-102. [PMID: 24905859 DOI: 10.1016/j.preteyeres.2014.05.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in vision loss associated with macula degeneration, cataract formation, diabetic retinopathy and glaucoma. This pathogenic potential is mainly attributed to their accumulation in ocular tissues where they mediate aberrant crosslinking of extracellular matrix proteins and disruption of endothelial junctional complexes that affects cell permeability, mediates angiogenesis and breakdown of the inner blood-retinal barrier. Furthermore, AGEs severely affect cellular metabolism by disrupting ATP production, enhancing oxidative stress and modulating gene expression of anti-angiogenic and anti-inflammatory genes. Elucidation of AGE-induced mechanisms of action in different eye compartments will help in the understanding of the complex cellular and molecular processes associated with eye diseases. Several pharmaceutical agents with anti-glycating and anti-oxidant properties as well as AGE crosslink 'breakers' have been currently applied to eye diseases. The role of diet and the beneficial effects of certain nutriceuticals provide an alternative way to manage chronic visual disorders that affect the quality of life of millions of people.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, 'AHEPA' Hospital, Thessaloniki, Greece
| | | |
Collapse
|
36
|
Voziyan P, Brown KL, Chetyrkin S, Hudson B. Site-specific AGE modifications in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin Chem Lab Med 2014; 52:39-45. [PMID: 23492568 DOI: 10.1515/cclm-2012-0818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/07/2013] [Indexed: 11/15/2022]
Abstract
Non-enzymatic modification of proteins in hyperglycemia is a major proposed mechanism of diabetic complications. Specifically, advanced glycation end products (AGEs) derived from hyperglycemia-induced reactive carbonyl species (RCS) can have pathogenic consequences when they target functionally critical protein residues. Modification of a small number of these critical residues, often undetectable by the methodologies relying on measurements of total AGE levels, can cause significant functional damage. Therefore, detection of specific sites of protein damage in diabetes is central to understanding the molecular basis of diabetic complications and for identification of biomarkers which are mechanistically linked to the disease. The current paradigm of RCS-derived protein damage places a major focus on methylglyoxal (MGO), an intermediate of cellular glycolysis. We propose that glyoxal (GO) is a major contributor to extracellular matrix (ECM) damage in diabetes. Here, we review the current knowledge and provide new data about GO-derived site-specific ECM modification in experimental diabetes.
Collapse
|
37
|
Kerkeni M, Weiss IS, Jaisson S, Dandana A, Addad F, Gillery P, Hammami M. Increased serum concentrations of pentosidine are related to presence and severity of coronary artery disease. Thromb Res 2014; 134:633-8. [PMID: 25065554 DOI: 10.1016/j.thromres.2014.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/26/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND There are limited data regarding the contribution of advanced glycation end products (AGEs) in the presence of coronary artery disease (CAD). We investigated whether serum pentosidine and Nε-carboxymethyllysine (CML) were related to the presence and the severity of CAD. METHODS 69 Tunisian patients with CAD (≥ 50% obstruction in ≥ 1 coronary artery), 32 Tunisian patients without CAD but with potential cardiovascular risk factors and 60 Tunisian control subjects were included in a cross-sectional study. Patients were classified as CAD and non CAD patients according to angiographic results. The severity of CAD was assessed using the Gensini score. Serum pentosidine and CML were measured by LC-MS/MS. RESULTS Serum pentosidine and CML concentrations were significantly higher in non-CAD patients vs control subjects (P<0.001). Serum pentosidine concentrations were significantly higher in CAD patients vs non-CAD patients (P<0.001). A multiple logistic regression analysis demonstrated that pentosidine was independently associated with the presence of CAD (OR=1.52, 95% CI: 1.12-2.07, P=0.007). The area under curve (AUC) determined by ROC analysis was 0.74 (95% CI: 0.64-0.84, P<0.001) and the optimal cut-off value of pentosidine to predict the presence of CAD was 3.2 μmol/mol Lys, with 64% sensitivity and 78% specificity. Furthermore, in a multivariate stepwise regression analysis, pentosidine was independently correlated with Gensini score (standardized β= 0.46, 95% CI: 0.70-1.99, P<0.001). CONCLUSIONS High concentrations of pentosidine show the presence and the severity of CAD with high sensitivity.
Collapse
Affiliation(s)
- Mohsen Kerkeni
- Laboratory of Biochemistry, LR12ES05, Faculty of Medicine, University of Monastir, Tunisia.
| | - Izabella Santos Weiss
- Laboratory of Paediatric Biology and Research, American Memorial Hospital, University Hospital of Reims, Faculty of Medicine, Reims, France; Laboratory of Biochemistry and Molecular Biology, UMR CNRS/URCA n°7369, Faculty of Medicine, Reims, France
| | - Stephane Jaisson
- Laboratory of Paediatric Biology and Research, American Memorial Hospital, University Hospital of Reims, Faculty of Medicine, Reims, France; Laboratory of Biochemistry and Molecular Biology, UMR CNRS/URCA n°7369, Faculty of Medicine, Reims, France
| | - Azza Dandana
- Laboratory of Biochemistry, CHU-Farhat Hached, Sousse, Tunisia
| | - Faouzi Addad
- Department of Cardiology-University Hopital A. Mami, Ariana, Tunisia
| | - Philippe Gillery
- Laboratory of Paediatric Biology and Research, American Memorial Hospital, University Hospital of Reims, Faculty of Medicine, Reims, France; Laboratory of Biochemistry and Molecular Biology, UMR CNRS/URCA n°7369, Faculty of Medicine, Reims, France
| | - Mohamed Hammami
- Laboratory of Biochemistry, LR12ES05, Faculty of Medicine, University of Monastir, Tunisia
| |
Collapse
|
38
|
Whitmore LC, Goss KL, Newell EA, Hilkin BM, Hook JS, Moreland JG. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome. Am J Physiol Lung Cell Mol Physiol 2014; 307:L71-82. [PMID: 24793165 DOI: 10.1152/ajplung.00054.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation. We recently demonstrated that NOX2 protects against lung injury and mortality in a murine model of SIRS. In the present study, we investigated the role of NOX2-derived oxidants in the progression from SIRS to MODS. Using a murine model of sterile systemic inflammation, we observed significantly greater illness and subacute mortality in gp91(phox-/y) (NOX2-deficient) mice compared with wild-type mice. Cellular analysis revealed continued neutrophil recruitment to the peritoneum and lungs of the NOX2-deficient mice and altered activation states of both neutrophils and macrophages. Histological examination showed multiple organ pathology indicative of MODS in the NOX2-deficient mice, and several inflammatory cytokines were elevated in lungs of the NOX2-deficient mice. Overall, these data suggest that NOX2 function protects against the development of MODS and is required for normal resolution of systemic inflammation.
Collapse
Affiliation(s)
- Laura C Whitmore
- Department of Pediatrics, Inflammation Program, the University of Iowa, Iowa City, Iowa; and Interdisciplinary Graduate Program in Molecular and Cellular Biology, the University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Department of Pediatrics, Inflammation Program, the University of Iowa, Iowa City, Iowa; and
| | - Elizabeth A Newell
- Department of Pediatrics, Inflammation Program, the University of Iowa, Iowa City, Iowa; and
| | - Brieanna M Hilkin
- Department of Pediatrics, Inflammation Program, the University of Iowa, Iowa City, Iowa; and
| | - Jessica S Hook
- Department of Pediatrics, Inflammation Program, the University of Iowa, Iowa City, Iowa; and
| | - Jessica G Moreland
- Department of Pediatrics, Inflammation Program, the University of Iowa, Iowa City, Iowa; and Interdisciplinary Graduate Program in Molecular and Cellular Biology, the University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Xu J, Jiang Y, Wang J, Shi X, Liu Q, Liu Z, Li Y, Scott MJ, Xiao G, Li S, Fan L, Billiar TR, Wilson MA, Fan J. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ 2014; 21:1229-39. [PMID: 24769733 DOI: 10.1038/cdd.2014.40] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/22/2014] [Accepted: 03/05/2014] [Indexed: 01/08/2023] Open
Abstract
Macrophages can be activated and regulated by high-mobility group box 1 (HMGB1), a highly conserved nuclear protein. Inflammatory functions of HMGB1 are mediated by binding to cell surface receptors, including the receptor for advanced glycation end products (RAGE), Toll-like receptor (TLR)2, TLR4, and TLR9. Pyroptosis is a caspase-1-dependent programmed cell death, which features rapid plasma membrane rupture, DNA fragmentation, and release of proinflammatory intracellular contents. Pyroptosis can be triggered by various stimuli, however, the mechanism underlying pyroptosis remains unclear. In this study, we identify a novel pathway of HMGB1-induced macrophage pyroptosis. We demonstrate that HMGB1, acting through RAGE and dynamin-dependent signaling, initiates HMGB1endocytosis, which in turn induces cell pyroptosis. The endocytosis of HMGB1 triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. We further confirm that HMGB1-induced macrophage pyroptosis also occurs in vivo during endotoxemia, suggesting a pathophysiological significance for this form of pyroptosis in the development of inflammation. These findings shed light on the regulatory role of ligand-receptor internalization in directing cell fate, which may have an important role in the progress of inflammation following infection and injury.
Collapse
Affiliation(s)
- J Xu
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Y Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - J Wang
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - X Shi
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pharmacology, Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Q Liu
- 1] Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Liu
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Y Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Xiao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - S Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - L Fan
- University of Pittsburgh School of Arts and Science, Pittsburgh, PA, USA
| | - T R Billiar
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M A Wilson
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - J Fan
- 1] Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA [3] Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Martinez N, Kornfeld H. Diabetes and immunity to tuberculosis. Eur J Immunol 2014; 44:617-26. [PMID: 24448841 DOI: 10.1002/eji.201344301] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
Abstract
The dual burden of tuberculosis (TB) and diabetes has attracted much attention in the past decade as diabetes prevalence has increased dramatically in countries already afflicted with a high burden of TB. The confluence of these two major diseases presents a serious threat to global public health; at the same time it also presents an opportunity to learn more about the key elements of human immunity to TB that may be relevant to the general population. Some effects of diabetes on innate and adaptive immunity that are potentially relevant to TB defense have been identified, but have yet to be verified in humans and are unlikely to fully explain the interaction of these two disease states. This review provides an update on the clinical and epidemiological features of TB in the diabetic population and relates them to recent advances in understanding the mechanistic basis of TB susceptibility and other complications of diabetes. Issues that merit further investigation - such as geographic host and pathogen differences in the diabetes/TB interaction, the role of hyperglycemia-induced epigenetic reprogramming in immune dysfunction, and the impact of diabetes on lung injury and fibrosis caused by TB - are highlighted in this review.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
41
|
Cirillo P, Giallauria F, Di Palma V, Maresca F, Ziviello F, Bevilacqua M, Vigorito C, Trimarco B. Cardiovascular disease and high-mobility group box 1--is a new inflammatory killer in town? Angiology 2013; 64:343-355. [PMID: 22942130 DOI: 10.1177/0003319712458032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
High-mobility group box 1 (HMGB-1) is a nuclear protein physiologically involved in the maintaining of DNA structure in the nucleus. When tissue damage occurs, necrotic cells as well as inflammatory cells, once activated, release this protein in circulating blood, where it seems to exert a direct proinflammatory action. Thus, HMGB-1 might be involved in the pathophysiology of several diseases, including cardiovascular disease. However, the experimental evidence has not yet clarified its cardiovascular role which is still debated. Specifically, it is still not completely resolved whether HMGB-1 plays a protective or detrimental role on cardiovascular function. In this review, we consider the role of HMGB-1 in pathological conditions and comment on the role of this protein in the cardiovascular disease.
Collapse
Affiliation(s)
- Plinio Cirillo
- Department of Clinical Medicine, Cardiovascular and Immunological Science, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
RAGE is a key molecule in the onset and sustainment of the inflammatory response. New studies indicate that RAGE might represent a new link between the innate and adaptive immune system. RAGE belongs to the superfamily of Ig cell-surface receptors and is expressed on all types of leukocytes promoting activation, migration, or maturation of the different cells. RAGE expression is prominent on the activated endothelium, where it mediates leukocyte adhesion and transmigration. Moreover, proinflammatory molecules released from the inflamed or injured vascular system induce migration and proliferation of SMCs. RAGE binds a large number of different ligands and is therefore considered as a PRR, recognizing a structural motif rather than a specific ligand. In this review, we summarize the current knowledge about the signaling pathways activated in the different cell types and discuss a potential activation mechanism of RAGE, as well as putative options for therapeutic intervention.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
43
|
Abstract
Uraemia causes inflammation and reduces immune system function as evidenced by an increased risk of viral-associated cancers, increased susceptibility to infections and decreased vaccination responses in patients with end-stage renal disease (ESRD). The substantially increased risk of atherosclerosis in these patients is also probably related to uraemia-associated inflammation. Uraemia is associated with a reduction in the number and function of lymphoid cells, whereas numbers of myeloid cells in uraemic patients are normal or increased with increased production of inflammatory cytokines and reactive oxygen species. Similar to healthy elderly individuals, patients with ESRD have increased numbers of specific proinflammatory subsets of T cells and monocytes, suggesting the presence of premature immunological ageing in these patients. These cells might contribute to inflammation and destabilization of atherosclerotic plaques, and have, therefore, been identified as novel nonclassical cardiovascular risk factors. The cellular composition of the immune system does not normalize after successful kidney transplantation despite a rapid reduction in inflammation and oxidative stress. This finding suggests that premature ageing of the immune system in patients with ESRD might be related to a permanent skewing of the haematopoetic stem cell population towards myeloid-generating subsets, similar to that seen in healthy elderly individuals.
Collapse
|
44
|
Yang SJ, Chen CY, Chang GD, Wen HC, Chen CY, Chang SC, Liao JF, Chang CH. Activation of Akt by advanced glycation end products (AGEs): involvement of IGF-1 receptor and caveolin-1. PLoS One 2013; 8:e58100. [PMID: 23472139 PMCID: PMC3589465 DOI: 10.1371/journal.pone.0058100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 02/03/2013] [Indexed: 01/08/2023] Open
Abstract
Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs.
Collapse
Affiliation(s)
- Su-Jung Yang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chen-Yu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hui-Chin Wen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Ching-Yu Chen
- Department of Family Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Geriatric Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Shi-Chuan Chang
- Chest Department, Taipei Veterans General Hospital, Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (SCC); (CHC)
| | - Jyh-Fei Liao
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail: (SCC); (CHC)
| |
Collapse
|
45
|
Abstract
Abstract
Collapse
|
46
|
Mardente S, Mari E, Consorti F, Di Gioia C, Negri R, Etna M, Zicari A, Antonaci A. HMGB1 induces the overexpression of miR-222 and miR-221 and increases growth and motility in papillary thyroid cancer cells. Oncol Rep 2012; 28:2285-9. [PMID: 23023232 DOI: 10.3892/or.2012.2058] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/22/2012] [Indexed: 11/06/2022] Open
Abstract
Experimental and epidemiological studies have revealed that chronic inflammation contributes to cancer progression and even predisposes to cellular transformation. Inflammatory infiltrates in papillary thyroid cancer include lymphocytes, macrophages and cytokines. High-mobility group box 1 protein (HMGB1) is a late inflammatory cytokine that signals danger to the immune system through the receptor for advanced glycation end-products (RAGE) and Toll-like receptor. The activation of the above receptors results in the secretion of growth, chemotactic and angiogenic factors that contribute to chronic inflammation. In this study, we suggest that apart from the activation of signal transduction pathways by the activation of RAGE, the indirect inhibition of cell cycle regulators [such as phosphatase and tensin homolog (PTEN)] may also cause an increase in cell growth and motility. MicroRNAs (miRNAs) have increasingly been implicated in regulating the malignant progression of cancer. MiR-221 and miR-222 have been found to be deregulated in human papillary thyroid carcinomas. They are involved in cell proliferation through the inhibition of the cell cycle regulator, p27kip1, in human papillary carcinomas. In this study, we show that HMGB1 increases the expression of miR-221 and miR-222 in primary cultures of excised papillary lesions and in an established papillary cancer cell line (BC PAP). The overexpression of oncogenic miR-221 and miR-222 caused by HMGB1 is associated with an increase in malignancy scores, namely cell growth and motility.
Collapse
Affiliation(s)
- Stefania Mardente
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Robinson AB, Stogsdill JA, Lewis JB, Wood TT, Reynolds PR. RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease. Front Physiol 2012; 3:301. [PMID: 22934052 PMCID: PMC3429072 DOI: 10.3389/fphys.2012.00301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
Collapse
Affiliation(s)
| | | | | | | | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young UniversityProvo, UT, USA
| |
Collapse
|
48
|
Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem 2011; 361:289-96. [DOI: 10.1007/s11010-011-1114-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
49
|
Berthelot F, Fattoum L, Casulli S, Gozlan J, Maréchal V, Elbim C. The Effect of HMGB1, a Damage-Associated Molecular Pattern Molecule, on Polymorphonuclear Neutrophil Migration Depends on Its Concentration. J Innate Immun 2011; 4:41-58. [DOI: 10.1159/000328798] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
|
50
|
Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci B, Russo MA. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis 2011; 32:1167-75. [PMID: 21642357 DOI: 10.1093/carcin/bgr101] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role of hypoxia in regulating tumor progression is still controversial. Here, we demonstrate that, similarly to what previously observed by us in human prostate and breast tumor samples, hypoxia increases expression of the receptor for advanced glycation end products (RAGE) and the purinergic receptor P2X7 (P2X7R). The role of hypoxia was shown by the fact that hypoxia-inducible factor (HIF)-1α silencing downregulated RAGE and P2X7R protein levels as well as nuclear factor-kappaB (NF-κB) expression. In contrast, NF-κB silencing reduced P2X7R expression without affecting RAGE protein levels or nuclear accumulation of HIF-1α. Treatment of hypoxic tumor cells with HMGB1 and BzATP ligands, respectively, of RAGE and P2X7R, activated a signaling pathway that, through Akt and Erk phosphorylation, determines nuclear accumulation of NF-κB and increases cell invasion. Inhibition of Akt by SH5 and Erk by INH1 prevented both nuclear translocation of NF-κB and cell invasion. Moreover, silencing RAGE and P2X7R abolished nuclear accumulation of NF-κB as well as cell invasion without affecting HIF-1α stabilization. Once in the nucleus, NF-κB would contribute to cell survival and invasion under hypoxia, by maintaining RAGE and P2X7R expression levels and matrix metalloproteinases 2 and 9 synthesis. These results show that, hypoxia can upregulate expression levels of membrane receptors that, by binding extracellular molecules eventually released by necrotic cells, contribute to the increased invasiveness of transformed tumor cells. Moreover, these observations strengthen our working hypothesis that upregulation of damage-associated molecular patterns receptors by HIF-1α represents the crucial event bridging hypoxia and inflammation in obtaining the malignant phenotype.
Collapse
Affiliation(s)
- Marco Tafani
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|